BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The genus Anamycetaea Strohecker, 1975, established for Anamycetaea keralae, a single species from India, was originally placed in the diverse endomychid subfamily Mycetaeinae and has subsequently been considered a member of the subfamily Anamorphinae based on closed mesocoxal cavities, a postulated synapomorphy of this group. Recent molecular research resulted in raising Anamorphinae to family level and revealed this group to be distantly related to Endomychidae sensu stricto. However, Anamycetaea has been ‘neglected’ since description. Our detailed study of this genus has been possible due to new material collected from Oriental and Australian regions. Striking overall similarity to the endomychine genus Tharina and a tentorium with anterior arms fused medially (separated in almost all Anamorphidae) have raised our doubts and led to further investigation of the phylogenetic placement of this enigmatic genus within Endomychidae sensu lato (handsome fungus beetles). Phylogenetic analyses of molecular and morphological datasets were conducted under Bayesian (BI), maximum likelihood (ML) and parsimony (MP) frameworks. Our results recovered Anamycetaea as belonging to the family Endomychidae, in the subfamily Endomychinae, distant from Anamorphidae. The close affinity to Stenotarsus and allies was strongly supported in all analyses. Based on material studied, A. keralae is described in detail here and includes description of previously unknown male genitalia. Four new species are also described, extending the ragne of the genus to the Australian region: Anamycetaea borneensis sp. nov. (from Borneo), A. novoguineensis sp. nov. and A. papuensis sp. nov. (from Papua New Guinea) and A. queenslandica sp. nov. (from Australia). Illustrations of morphological details and diagnoses are provided for each species. A key to the species of the genus is also presented.
In recent years, the impact of rising water temperatures associated with global warming on cold-water freshwater organisms has become a major issue, and understanding the physiological and ecological elements that support temperature limits is essential for the conservation biology of freshwater organisms. We describe a new species of thermophilic hyalellid amphipod, Hyalella yashmara sp. nov. from the Peruvian hot spring Baños del Inca Cajamarca and this could potentially contribute to understanding the high temperature preference of these. We found that this new species can live in water temperatures ranging from 19.8 to 52.1°C, that, to our knowledge, is the highest recorded habitat temperature of amphipods. Hyalella yashmara sp. nov. is most similar to H. meinerti Stebbing, 1899 from Peru. However, this new species differs from the latter in features of gnathopods 1 and 2, sternal gills, uropod 3 and telson. A detailed morphological comparison between Hyalella yashmara sp. nov. and Peruvian species is also provided. Our molecular phylogenetic analyses based on the nuclear 28S rRNA and mitochondrial cytochrome c oxidase subunit I (COI) gene sequences strongly support the monophyly of Hyalellidae (=Hyalella). Since Hyalellidae was found to form a sister group with Chiltoniidae, these two families were expected to have originated from a common ancestor that invaded freshwater habitats from marine environments when the continents of South America, Africa and Australia were united as Gondwana. Our findings suggest that the South American species of Hyalella are not monophyletic and that the North American species are likely to share a most recent common ancestor with H. yashmara sp. nov.
The superfamily Buccinoidea is the most speciose group of Neogastropoda within the Antarctic Convergence, with ~70 species classified in 21 genera, but is still poorly represented in molecular phylogenies. The first molecular data on the group presented in the recent phylogeny of the Buccinoidea (Kantor et al. 2022) lacked many important lineages, thereby limiting inference of the relationships of Antarctic Buccinoidea. We revisited relationships of the Antarctic Buccinoidea, involving recently collected molecular-grade samples from the bathyal and abyssal depths of the Scotia Sea, the Weddel Sea and adjacent regions. Our data set includes 25 species (including six genera studied on a molecular basis for the first time), sequenced for five phylogenetic markers: the barcode fragment of cox1 gene, fragments of ribosomal 12S, 16S rRNA and 28S and nuclear H3 genes. Based on phylogenetic reconstructions, we synonymise the genus Lussitromina with Falsitromina and reassign the latter from Cominellidae to Prosiphonidae. We confirm the placement of four further genera, Drepanodontus, Germonea, Parabuccinum and Spikebuccinum in Prosiphonidae. We detect a previously unrecognised deep lineage of the family Prosiphonidae and describe this as the new genus Scotiabuccinum. The genus Parabuccinum, previously recorded in the Magellanic province and off the eastern coast of Argentina was reported for the first time within the Antarctic Convergence. We discover four previously unrecognised species of Antarctic Prosiphonidae and these are the first Buccinoidea from Antarctic waters described based on molecular data. According to our data, all but two species of Antarctic Buccinoidea belong to the family Prosiphonidae. Seven of the nineteen Recent Antarctic Prosiphonidae genera (36%) cross the boundaries of the Convergence and eight Antarctic genera are monotypic (42%). Currently no Buccinoidea species are known to occur both within and outside the Antarctic Convergence.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere