Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Since the description in 1900 of the iconic Happy Face spider, Theridion grallator, Simon, along with nine relatives, the Theridion fauna of the Hawaiian Islands has remained unstudied. Here, we present a systematic revision of the Hawaiian Theridion, which includes the examination of abundant material collected during the last 50 years, with scanning of the genitalia of several species using SEM techniques, and a cladistic analysis based on 22 morphological characters, to provide a first hypothesis of the phylogenetic structure of the group. We describe eight new species, namely T. ariel, sp. nov., T. caliban, sp. nov., T. ceres, sp. nov., T. ferdinand, sp. nov., T. juno, sp. nov., T. miranda, sp. nov., T. prospero, sp. nov. and T. sycorax, sp. nov. Additionally, we provide new diagnoses for former species and illustrate and describe for the first time the male of T. kauaiense Simon, 1900 and the female of T. praetextum Simon, 1900. We further propose that T. campestratum Simon, 1900 is a junior synonym of T. melinum Simon, 1900 and T. praetextum concolor Simon, 1900 is a junior synonym of T. praetextum. Finally, we provide updated information on the distribution of the species. Most species are easily diagnosed based on the male and female genitalia, but we also reveal the existence of somatic characters that differ among species, such as the body size and the shape and size of the chelicerae, which may have played a role in the diversification and coexistence of some of the species. The preferred cladogram from the cladistic analysis, although compatible with a progression rule, also suggests a complex pattern of multiple back and forward colonisations, albeit most of the clades are poorly supported.
The Cyphophthalmi genus Troglosiro (the only genus of the family Troglosironidae) is endemic to New Caledonia, representing one of the oldest lineages of this emerged part of Zealandia. Its species are short-range endemics, many known from single localities. Here we examined the phylogenetic relationships of Troglosironidae using standard Sanger-sequenced markers (nuclear 18S rRNA, 28S rRNA, and mitochondrial 16S rRNA and cytochrome c oxidase subunit I) and a combination of phylogenetic methods, including parsimony under Direct Optimization and maximum likelihood with static homology. We also applied a diversity of species delimitation methods, including distance-based, topology-based and unsupervised machine learning to evaluate previous species designations. Finally, we used a combination of genetic and morphological information to describe four new species – T. dogny sp. nov., T. pin sp. nov., T. pseudojuberthiei sp. nov. and T. sharmai sp. nov. – and discuss them in the broader context of the phylogeny and biogeographic history of the family. A key to the species of Troglosiro is also provided.
The Lygus-complex is one of the most taxonomically challenging groups of Miridae (Heteroptera), and its Australian fauna is poorly studied. Here we examine the Australian taxa of the Lygus-complex using morphological and molecular methods. After a detailed morphological study of the material collected throughout Australia, Taylorilygus nebulosus is transferred to Diomocoris, with the genus recorded for the first time in this country. Taylorilygus apicalis, also widely distributed in Australia, is redescribed on the basis of Australian material. The genus Micromimetus is recorded for the first time in Australia, with M. celiae, sp. nov., M. hannahae, sp. nov., M. nikolai, sp. nov. and M. shofneri, sp. nov. described as new to science. Micromimetus pictipes is redescribed and its distributional range is increased. The monophyly of the Lygus-complex and relationships within this group were tested using cytochrome c oxidase subunit I (COI), 16S rRNA, 18S rRNA and 28S rRNA markers. The Lygus-complex has been found to be non-monophyletic. Phylogeny confirmed the monophyly of Micromimetus, and it has shown that Taylorilygus apicalis is closer to Micromimetus species than to Diomocoris nebulosus. This study is the initial step in understanding the Lygus-complex phylogeny; analyses with more taxa, more genes and morphology are needed to reveal the interrelationships within this group, and sister-group relationships of Australian taxa.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere