Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Marine leeches are sanguivorous parasites either on sea turtles (family Ozobranchidae) or on elasmobranch and teleost fishes (family Piscicolidae), with the exception of Mysidobdella, which may feed on mysid shrimp. The marine leeches of Australia and New Zealand are poorly known, especially those on teleost fishes. Collections of marine leeches from all major museums in Australia and New Zealand were examined, as well as many specimens sent to the author. Ozobranchus branchiatus and O. margoi were found on sea turtles in Australia. Seven genera and 14 species of fish leeches were found in Australia; 6 genera and 10 species of fish leeches were found in New Zealand. Two genera (Pontobdella and Branchellion) and four species (P. leucothela, P. moorei, B. australis and B. plicobranchus) occur in both Australia and New Zealand. No genus is endemic to Australia, but four species are endemic based on current records (Austrobdella bilobata, Austrobdella translucens, Trachelobdella leptocephali and Pterobdella platycephalus). Two genera (Bdellamaris and Leporinabdella) and three species (B. manteri, B. eptatreti, and L. digglesi) are endemic to New Zealand based on current records. The marine leeches of Australia and New Zealand are a mix of endemic species, those of tropical or subtropical origin, and those of subantarctic origin.
The New Zealand endemic beetle genus Saphydrus Sharp, 1884 (Coleoptera : Hydrophilidae : Cylominae) is studied in order to understand its phylogenetic position, species-level systematics, biology and distribution, and to reveal reasons for its rarity. The first complete genus-level phylogeny of Cylominae based on two mitochondrial (cox1, 16S) and two nuclear genes (18S, 28S) covering 18 of 19 genera of the subfamily reveals Saphydrus as an isolated lineage situated in a clade with Cylorygmus (South America), Relictorygmus (South Africa) and Eurygmus (Australia). DNA is used to associate two larval morphotypes with Saphydrus: one of them represents the larvae of S. suffusus Sharp, 1884; the other, characterised by unique characters of the head and prothorax morphology, is revealed as sister but not closely related to Saphydrus. It is described here as Enigmahydrus, gen. nov. with a single species, E. larvalis, sp. nov., whose adult stage remains unknown. Saphydrus includes five species, two of which (S. moeldnerae, sp. nov. and S. tanemahuta, sp. nov.) are described as new. Larvae of Enigmahydrus larvalis and Saphydrus suffusus are described and illustrated in detail based on DNA-identified specimens. Candidate larvae for Saphydrus obesus Sharp, 1884 and S. tanemahuta are illustrated and diagnosed. Specimen data are used to evaluate the range, altitudinal distribution, seasonality and population dynamics over time for all species. Strongly seasonal occurrence of adults combined with other factors (winter occurrence in S. obesus, occurrence at high altitudes in S. tanemahuta) is hypothesised as the primary reason of the rarity for Saphydrus species. By contrast, Enigmahydrus larvalis underwent a strong decline in population number and size since the 1970s and is currently known from a single, locally limited population; we propose the ‘nationally threatened’ status for this species.
Poecilogony is the intraspecific variation in developmental mode, with larvae of different types produced by the same individual, population or species. It is very rare among marine invertebrates, and in gastropods has long been described only in a few opisthobranchs. The physiological and regulatory mechanisms underlying larval evolutionary transitions, such as loss of planktotrophy that occurred repeatedly in many caenogastropod lineages, are still largely unknown. We have studied the inter- v. intraspecific variation in larval development in the north-east Atlantic neogastropod genus Raphitoma Bellardi, 1847, starting with an iterative taxonomy approach: 17 morphology-based Preliminary Species Hypotheses were tested against a COI molecular-distance-based method (ABGD), and the retained species hypotheses were eventually inspected for reciprocal monophyly on a multilocus dataset. We subsequently performed an ancestral state reconstruction on an ultrametric tree of the 10 Final Species Hypotheses, time-calibrated by fossils, revealing that the interspecific changes were planktotrophy > lecithotrophy, and all have occurred in the Pleistocene, after 2.5 million years ago. This is suggestive of a major role played by Pleistocene Mediterranean oceanographic conditions – enhanced oligotrophy, unpredictable availability of water column resources – likely to favour loss of planktotrophy. Within this group of species, which has diversified after the Miocene, we identified one pair of sibling species differing in their larval development, Raphitoma cordieri (Payraudeau, 1826) and R. horrida (Monterosato, 1884). However, we also identified two Final Species Hypotheses, each comprising individuals with both larval developmental types. Our working hypothesis is that they correspond to one or two poecilogonous species. If confirmed by other nuclear markers, this would be the first documentation of poecilogony in the Neogastropoda, and the second in the whole Caenogastropoda. Although sibling species with different developmental strategies may offer good models to study some evolutionary aspects, poecilogonous taxa are optimally suited for identifying regulatory and developmental mechanisms underlying evolutionary transitions.
The Gasteruptiidae are an easily recognised family of wasps whose larvae are considered predator-inquilines in the nests of solitary bees and wasps. There has been minimal molecular research on the family and as a result little understanding of the evolutionary relationships within the group. We present the first molecular phylogeny focused on Gasteruptiidae, generated using three molecular fragments (mitochondrial C01 and nuclear markers EF1-α and 28s) and estimate the divergence times of Evanioidea based on three secondary calibration points. The analyses included 142 specimens of Gasteruptiidae and 5 outgroup taxa from Aulacidae and Evaniidae. The monophyly of the Gasteruptiidae and its subfamilies Gasteruptiinae (Gasteruption) and Hyptiogastrinae (Hyptiogaster and Pseudofoenus) are confirmed. Our results indicate that Evanioidea diverged during the late Jurassic at 151.3 (171.99–136.15) Ma with Evaniidae during the early Cretaceous at 137.33 (140.86–133.67) Ma, and Gasteruptiidae during the Palaeocene at 60.23 (83.78–40.02) Ma. The crown age of Hyptiogastrinae was estimated to be during the mid-Eocene 40.72 (60.9–22.57) Ma and for Gasteruption during the early Eocene at 47.46 (64.7–31.75) Ma, which corresponded to their host divergence ages. We anticipate that more extensive taxon sampling combined with the use of phylogenomic data will help resolve low support within the Gasteruption clade.
Riethia Kieffer, a genus of the non-biting midge subfamily Chironominae (Diptera: Chironomidae) is distributed in Australia, New Zealand, New Caledonia and South America. This austral distribution could be due to earth history (vicariance) or from Southern Hemisphere dispersal(s). We obtained samples from each area, most intensively from throughout Australia. We included putative sister genus Pseudochironomus Malloch, many genera from tribe Tanytarsini, enigmatic taxa in Chironomini and conventional outgroups from other subfamilies. We assembled a multilocus molecular dataset for four genetic regions from 107 individuals to reconstruct the first dated molecular phylogeny for the group. Four terminal clusters corresponded to unreared (thus unassociated) larvae. Monophyly was supported for ‘core’ Riethia, Pseudochironomus, putative tribe Pseudochironomini, tribe Tanytarsini (including enigmatic Nandeva Wiedenbrug, Reiss & Fittkau) and subfamily Chironominae. All species are monophyletic except for R. cinctipes Freeman, which includes R. neocaledonica Cranston. Riethia zeylandica Freeman, previously thought to be widespread in eastern Australia, now is a New Zealand endemic with Australian specimens allocated now to several regionally restricted species. The origin of Riethia was at 60.6 Ma (‘core’) or 52.1 Ma depending on the relationship of two South American species. Both dates are before the break-up of South America and Australia. Diversification within crown group Riethia started before the Cretaceous–Paleogene boundary, with subsequent separation at 52 Ma of an Australian ‘clade I’ from its sister ‘clade II’, which comprises Australian, New Zealand and New Caledonian species. Inferred dates for species origins of New Caledonia and New Zealand taxa imply transoceanic dispersals from eastern Australia. Western Australian species diverged during the mid to late Miocene from their eastern Australian sister taxa. This correlates with the onset of drying of Australia and the separation of mesic east from west by the formation of an arid proto-Nullarbor. Taken together, the inferred tempo of diversification in the group included both older ages reflecting earth history, yet with suggested recent intra-Pacific separations due to transoceanic dispersals.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere