Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Eastern redcedar (Juniperus virginiana L. var. virginiana; hereafter ERC) is a native species currently invading open areas and grasslands outside of its original range in the United States. We studied ERC's invasion patterns in the Lakeside Daisy State Nature Preserve (LDSNP), a short grass prairie located on the Marblehead Peninsula in Ohio, examining the changes in the genetic diversity and structure of the encroaching population. We investigated the relative importance of long-distance dispersal versus diffusion in the invasion of this short grass prairie by ERC. We use eight microsatellite marker loci to infer gene flow from external sources versus within-population recruitment. We found that the older trees in this preserve were less than 50 yr old, indicating that the population was established between 1970 and 1980. When we grouped trees into five age categories of 10-yr increments, we found that the allelic diversity, as indicated by the average number of alleles per locus, increased as the age of the trees decreased. We also found that not all loci were in Hardy-Weinberg equilibrium, probably due to the arrival of new variants in the preserve. Moreover, heterozygosity remained high, with an excess of heterozygotes in all age groups (F = –0.163 ± 0.046). Principal coordinate analysis showed two distinct groups of trees in the LDSNP. Analysis of the cryptic population structure of the ERC trees using STRUCTURE revealed four ancestral clusters in the ERC population. All ancestral clusters are present in all age groups, suggesting that all trees sampled are derived from an admixed population. Furthermore, the high observed heterozygosity and lack of inbreeding in this dioecious species maintained all ancestral clusters over time. Overall, our findings indicate that ERC encroachment of the LDSNP results from multiple and reiterated gene flow events from the edge of the range through animal-mediated seed dispersal.
Brazilian peppertree (Schinus terebinthifolia Raddi) is a multistemmed shrub or small tree from South America that is invasive in Florida, Texas, Hawaii, and Australia. It forms multistemmed trunks with spreading branches that create dense thickets. State agencies in Florida manage it at annual costs of over $3 million, and individual plant treatment (IPT) techniques are widely used for control. Recent research testing novel hack and squirt approaches with aminopyralid and aminocyclopyrachlor and basal bark treatment with a new triclopyr formulation has shown these treatments are highly effective. However, they have not been evaluated at larger scales, which would be useful to land managers. Therefore, our objective was to compare the reduced hack and squirt technique using aminopyralid and aminocyclopyrachlor herbicides to basal bark treatment with triclopyr on a field scale. We used two contractor crews to apply treatments to twenty-four 0.2-ha plots. Treatments included aminocyclopyrachlor (120 g L–1) or aminopyralid (120 g L–1) applied with the reduced hack and squirt technique and triclopyr ester (108 g L–1) and triclopyr acid (34 g L–1) formulations applied with two basal bark treatment techniques. We confirmed that reduced hack and squirt significantly reduced the amount of herbicide and carrier applied compared with the basal bark treatments. By 540 d after treatment, aminocyclopyrachlor more effectively controlled S. terebinthifolia than aminopyralid with reduced hack and squirt and resulted in control comparable to that seen with either triclopyr basal bark treatment. These results verify reduced hack and squirt treatment with aminocyclopyrachlor and basal bark treatment with triclopyr acid as alternatives to basal bark treatment with triclopyr ester. Both resulted in significantly less herbicide use with comparable efficacy. This operational research approach has accelerated our understanding of novel IPT strategies and their implementation in the field.
Aerial application of an herbicide mixture of triclopyr, dicamba, picloram, and aminopyralid is used to control dense infestations of exotic conifers, notably lodgepole pine (Pinus contorta Douglas ex Loudon), in New Zealand. The rates of herbicide applied to control these tree weeds has the potential for off-target impacts through persistence in the forest floor, soil, and water. Persistence of three of these herbicides was investigated in cast needles, forest floor (litter, fermented humic layer [LFH]), and soil following their operational aerial application (triclopyr: 18 kg ai ha–1; dicamba: 5 kg ai ha–1; picloram: 2 kg ai ha–1) at three sites across New Zealand (KF, MD, GE) with dense invasions of P. contorta. Water was collected from a local stream at two sites (KF, MD) in the days/months after spraying. Active ingredients detected across all sites in cast needles, LFH, and mineral soil generally reflected their application rates, with total amounts comprising 81% triclopyr, 14% dicamba, and 5% picloram. Most of the active ingredients were detected in the LFH (59%), a heavy lignin-rich layer of dead needles overlaying the soil. All three herbicides persisted in this layer, at all sites, for up to 2 yr (at study termination). Only triclopyr was detected in mineral soil, where it declined to below detection levels (0.2 mg kg–1) within 1 yr. All three herbicides were detected in stream water on the day of spray application at KF, and during a rainfall event 1 mo later. However, amounts did not exceed New Zealand environmental and drinking water standards, an outcome attributed to a 30-m no-spray buffer zone used at this site. At MD, herbicides were detectable in water up to 4 mo after spraying, with amounts exceeding New Zealand drinking water standards on one occasion, 1 mo after spray application. No spray buffer zones were used at the MD site.
Management efforts to control starry stonewort [Nitellopsis obtusa (Desvaux in Loiseleur) J. Groves] have been limited to stressing the thalli and have not been able to directly target the reproductive bulbils. Smaller-scale efforts such as the use of hand pulling can be employed, but hand pulling is not realistic for larger infestations. This research was conducted to test the effects of clipping stress on N. obtusa to provide a baseline for the effect of stress on the production of bulbils and the regrowth of thalli. Mesocosms were set up under greenhouse conditions to test the effects on N. obtusa of simulated mechanical harvesting once, twice, and four times per growing season. Different seasonal timing and frequency of clipping treatments will remove different amounts of thalli biomass. The four-clipping treatment always reduced thalli biomass in this study at both 16 and 52 wk after treatment (WAT) compared with the nontreated reference, but there was no difference among clipping treatments at 52 WAT. At 16 WAT, one clipping reduced bulbil density by 44% (Trial 1) to 50% (Trial 2), two clippings reduced bulbil density by 28% (Trial 2) to 52% (Trial 1), and four clippings reduced bulbil density by 22% (Trial 2) to 88% (Trial 1). At 52 WAT, bulbil densities were 69% and 93% lower than those of the nontreated reference Trials 2 and 1, respectively. Results from this study indicate that clipping may be effective for N. obtusa control and could impact bulbil production.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere