Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In eastern deciduous forests of North America, invasive shrubs are increasing in richness and abundance at the expense of native species across taxa. Invasive shrubs create an understory that is more dense than both recent and historical preinvasion conditions. Interest in invasive shrub removal to restore native habitat is growing, but our understanding of natural regeneration following treatment of a diverse invasive shrub community is lagging. Using an invasive shrub removal experiment, we provide insight into the effect of repeated removal of a suite of 18 invasive shrub species dominated by border privet (Ligustrum obtusifolium Siebold & Zucc.). In 2009, invasive shrubs were removed from five 20-m-diameter treatment plots, each with a paired control plot. Seven years later, we find an increase in plant diversity, native understory species abundance, and overstory tree species regeneration for individuals under a meter in height. For plants 1 to 4 m in height, the removal treatment has a positive effect on understory woody species, but there has been no change in regenerating overstory trees. A lack of overstory tree regeneration to greater heights is not surprising, given the time frame and the closed-canopy conditions. However, other factors, such as white-tailed deer (Odocoileus virginianus Zimmermann) browse, could be serving as an impediment to taller tree regeneration in the forest understory. An ambient sampling approach in unmanaged, invaded, and uninvaded forest has been used in other studies to estimate the potential impacts of invasive shrub species to native plant communities. However, in this study the ambient sampling approach underestimated the impacts of invasive shrubs compared to their experimental removal. Overall, invasive shrub removal increased plant diversity and allowed passive natural regeneration of native plants that exceeded native cover in the unmanaged, ambient forest under minimal invasive shrub abundance.
Selective browsing by abundant, generalist herbivores on preferred species could allow less-preferred invasive species to flourish. We tested such an effect by examining rates at which white-tailed deer (Odocoileus virginianus Zimmermann) consume Amur honeysuckle [Lonicera maackii (Rupr.) Herder], an invasive shrub, relative to native woody species across eight forested sites in southwestern Ohio. We tested three hypotheses: (1) deer prefer to browse on L. maackii versus other woody plants; (2) L. maackii is not a preferred source of browse, but is consumed where preferred foods are scarce; and (3) L. maackii provides an important food resource for deer in early spring when other foods are scarce. We used counts of browsed and unbrowsed twigs of each species to calculate, for each site, both the proportion of each species' twigs browsed and the degree to which deer selectively favor each species (“electivity”) during early to mid-growing season. Across the eight sites, electivity of L. maackii correlated with the proportion of its twigs browsed, and both measures were negatively associated with the density of L. maackii twigs. Lonicera maackii electivity was negative at most sites, indicating it is generally not preferred, undermining hypothesis 1. The hypothesis that deer consume L. maackii when more-preferred foods are depleted was not supported, as there was no negative relationship between L. maackii browse and the density of twigs of more-preferred species. We found a negative relationship between the proportion of L. maackii twigs browsed and the density of L. maackii among sites, which supports the third hypothesis. This finding, combined with seasonal patterns of deer browse on L. maackii, indicates that this invasive shrub is an important source of browse for deer during early spring, regardless of its abundance.
In California, invasive grasses have displaced native plants, transforming much of the endemic coastal sage scrub (CSS) to nonnative grasslands. This has occurred for several reasons, including increased competitive ability of invasive grasses and long-term alterations to the soil environment, called legacy effects. Despite the magnitude of this problem, however, it is not well understood how these legacy effects have altered the soil microbial community and, indirectly, native plant restoration. We assessed the microbial composition of soils collected from an uninvaded CSS community (uninvaded soil) and a nearby 10-ha site from which the invasive grass Harding grass (Phalaris aquatica L.) was removed after 11 yr of growth (postinvasive soil). We also measured the survival rate, biomass, and length of three CSS species and P. aquatica grown in both soil types (uninvaded and postinvasive). Our findings indicate that P. aquatica may create microbial legacy effects in the soil that likely cause soil conditions inhibitory to the survival rate, biomass, and length of coastal sagebrush, but not the other two native plant species. Specifically, coastal sagebrush growth was lower in the postinvasive soil, which had more Bacteroidetes, Proteobacteria, Agrobacterium, Bradyrhizobium, Rhizobium (R. leguminosarum), Candidatus koribacter, Candidatus solibacter, and rhizophilic arbuscular mycorrhizal fungi, and fewer Planctomycetes, Acidobacteria, Nitrospira, and Rubrobacter compared with the uninvaded soil. Shifts in soil microbial community composition such as these can have important implications for restoration strategies in postinvasive sites.
Essential variables to consider for an efficient control strategy for invasive plants include dispersion pattern (i.e., satellite or invasion front) and patch expansion rate. These variables were demonstrated for buffelgrass [Pennisetum ciliare (L.) Link], a C4 perennial grass introduced from Africa, which has invaded broadly around the world. The study site was along a roadway in southern Arizona (USA). The P. ciliare plant distributions show the pattern of clumping associated with the satellite (nascent foci) colonization pattern (average nearest neighbor test, z-score –47.2, P < 0.01). The distance between patches ranged from 0.743 to 12.8 km, with an average distance between patches of 5.6 km. Median patch expansion rate was 271% over the 3-yr monitoring period versus 136% found in other studies of established P. ciliare patches. Targeting P. ciliare satellite patches as a control strategy may exponentially reduce the areal doubling time, while targeting the largest patches may have less effect on the invasion speed.
Giant reed (Arundo donax L.) has recently shown great potential as a feedstock for the bioenergy industry. However, before A. donax can be grown commercially, due to its invasive nature, management strategies must be developed to reduce the risk of unintended spread. This research was conducted in northeastern Oregon (USA) during two growing seasons. Nine control strategies were evaluated in a field that previously had A. donax as a crop. The control strategies included mechanical practices (stem cutting and rhizome digging), physical practices (covering with an opaque tarp), chemical practices (glyphosate applications at different rates and timings), and a combination of these practices. Spring samplings of A. donax regrowth in the season following treatments indicated that stem cutting in the spring without follow-up control practices provided no control. Covering plants with a tarp after cutting them (either with or without a glyphosate treatment after cutting) resulted in 96% control. Application of glyphosate alone also resulted in excellent control, although timing of application was an important factor for maximizing efficacy. The best results were found when the maximum dose (10.2 L ai ha – 1) was split among two or three applications (>99% of control) compared with the maximum dose applied once (75% to 94%). Control was lower (73% to 89%) for two of the strategies that included mechanical practices, stem cutting + glyphosate and rhizome digging, in comparison to other strategies involving tarps and/or glyphosate applications (88% to 100%). Results indicated that it is very difficult to eradicate volunteer A. donax in 1 yr, but very good control can be achieved with several of the strategies tested.
Skunk-vine (Paederia foetida L.) is an invasive vine native to eastern and southern Asia and is widely distributed in Florida, Hawaii, and other southeastern U.S. states; however, little research has focused on herbicide control. Greenhouse and field experiments were conducted to determine efficacy of aminocyclopyrachlor, aminopyralid, fluroxypyr, glyphosate, imazapic, triclopyr amine, and triclopyr ester at low and high labeled rates when foliar applied to P. foetida at various growth stages in greenhouse experiments. Longer-term control was evaluated in field experiments in central Florida using the same herbicides. PRE herbicides labeled for use in landscape plantings, including dimethenamid-P, flumioxazin, indaziflam, isoxaben, and prodiamine, were also evaluated in greenhouse trials by seeding containers with P. foetida seed. In greenhouse experiments, POST herbicides, including aminocyclopyrachlor, aminopyralid, glyphosate, both triclopyr formulations, and the high rate of fluroxypyr (0.24 kg ae ha-1), provided >90% control across all growth stages at 4 mo after treatment with no regrowth observed. Imazapic provided 49% to 89% control, with efficacy decreasing with P. foetida size, and generally provided less control than other treatments. Field experiments confirmed results from greenhouse studies. In PRE trials, flumioxazin and prodiamine provided better control than all other PRE herbicides evaluated, reducing shoot weights by 99% and 84%, respectively, compared with nontreated controls. Our data suggest all herbicides evaluated POST could potentially be used to manage P. foetida, although less control was achieved with imazapic compared with other herbicides. Further research is needed to determine herbicide efficacy on more mature plants and to develop application methods that would be less injurious to non-target vegetation. In landscapes, flumioxazin or prodiamine could be used for PRE control, but POST options that are labeled for landscape use should be identified in future research.
Minimizing the negative ecological impacts of exotic plant invasions is one goal of land management. Using selective herbicides is one strategy to achieve this goal; however, the unintended consequences of this strategy are not always fully understood. The recently introduced herbicide indaziflam has a mode of action not previously used in non-crop weed management. Thus, there is limited information about the impacts of this active ingredient when applied alone or in combination with other non-crop herbicides. The objective of this research was to evaluate native species tolerance to indaziflam and imazapic applied alone and with other broadleaf herbicides. Replicated field plots were established at two locations in Colorado with a diverse mix of native forbs and grasses. Species richness and abundance were compared between the nontreated control plots and plots where indaziflam and imazapic were applied alone and in combination with picloram and aminocyclopyrachlor. Species richness and abundance did not decrease when indaziflam or imazapic were applied alone; however, species abundance was reduced by treatments containing picloram and aminocyclopyrachlor. Species richness was only impacted at one site 1 yr after treatment (YAT) by these broadleaf herbicides. Decreases in abundance were mainly due to reductions in forbs that resulted in a corresponding increase in grass cover. Our data suggest that indaziflam will control downy brome (Bromus tectorum L.) for multiple years without reduction in perennial species richness or abundance. If B. tectorum is present with perennial broadleaf weeds requiring the addition of herbicides like picloram or aminocyclopyrachlor, forb abundance could be reduced, and in some cases there could be a temporary reduction in perennial species richness.
Radnor Lake State Natural Area in Nashville, TN, has cedar glades that contain the endangered perennial herb wild dill [Perideridia americana (Nutt. ex DC.) Rchb.] and the invasive shrub Amur honeysuckle [Lonicera maackii (Rupr.) Herder]. This research examined whether L. maackii treatment in the Radnor Lake State Natural Area cedar glades is followed by an increase in P. americana plants. A grid of 60 adjacent 2 m by 4 m plots was placed in five cedar glades to encompass the P. americana population. With great care to protect P. americana, the annual treatment for L. maackii was to pull plants ≤1-m tall from the ground; and to cut stems >1-m tall and then treat the stumps with glyphosate. The t-tests of means for the log natural of the number of plants in the 60 plots (significance level of P-value = 0.05) were used to compare pretreatment L. maackii and P. americana counts with posttreatment counts in 2018 and P. americana counts at leaf out and flowering in 2018. The L. maackii population was significantly smaller (P-value < 0.001) in 2018 than pretreatment at all five sites. When pretreatment in 2014 and 2015 was compared with posttreatment in 2018 for the P. americana populations, the increases were significant at the Cheek, Harris 2, Hideaway, and Norfleet sites, but the increase at East Hall Farm was not significant. White-tailed deer (Odocoileus virginianus Zimmermann) trampling was the explanation given for the decreases in P. americana from leaf out to flowering at all five sites in 2018. Browsing was evident only at Hideaway, which had a greater loss for P. americana from leaf out to flowering in 2018 than the combined losses for the Cheek, East Hall Farm, Harris 2, and Norfleet sites. The research informed the creation of adaptive management decisions regarding monitoring and treatment of the invasive species L. maackii for an endangered species.
Biological invasions are one of the grand challenges facing society, as exotic species introductions continue to rise and can result in dramatic changes to native ecosystems and economies. The scale of the “biological invasions crisis” spans from hyperlocal to international, involving a myriad of actors focused on mitigating and preventing biological invasions. However, the level of engagement among stakeholders and opportunities to collaboratively solve invasives issues in transdisciplinary ways is poorly understood. The Biological Invasions: Confronting a Crisis workshop engaged a broad group of actors working on various aspects of biological invasions in Virginia, USA—researchers, Extension personnel, educators, local, state, and federal agencies, nongovernmental organizations, and land managers—to discuss their respective roles and how they interact with other groups. Through a series of activities, it became clear that despite shared goals, most groups are not engaging with one another, and that enhanced communication and collaboration among groups is key to designing effective solutions. There is strong support for a multistakeholder coalition to affect change in policy, public education/engagement, and solution design. Confronting the biological invasions crisis will increasingly require engagement among stakeholders.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere