Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
As researchers and land managers increasingly seek to understand plant invasions and the external (climate) and internal (plant genetics) conditions that govern the process, new insight is helping to answer the elusive question of what makes some invasions successful and others not. Plant invasion success or failure is based on a combination of evolutionary and ecological processes. Abiotic (e.g., climate) and biotic (e.g., plant competition) conditions in the environment and plant genetics (e.g., fitness) combine in either decreasing or increasing invasion, yet it has proven challenging to know exactly which of these conditions leads to success for a given species, even when a wealth of empirical data is available. Further, current regional distribution models for invasive plant species rarely consider biotic and fitness interactions, instead focusing primarily on abiotic conditions. The crucial role of all three factors (climate dynamics, invader fitness, and ecosystem resistance) must not be ignored. Here we construct a three-factor invasion framework from which we develop conceptual models using empirical studies for yellow starthistle, nonnative common reed, and musk thistle, three dissimilar but commonly occurring invasive plant species in North America. We identify how components of the invasion process—rapid population increase, established local dominance, and rapid range expansion—are influenced by ecosystem resistance, invader fitness, and/or climate dynamics, a set of broadly defined factors for each of the three invasive plant species. Our framework can be used to (1) establish research priorities, (2) address gaps in theoretical understanding, and (3) identify invasion process components that can be targeted to improve management. Building on previous models, our unifying framework, which can be used for assessing any invasive plant species having sufficient empirical data, simultaneously shows the influence of ecosystem resistance, invader fitness, and climate dynamics factors on the invasion process.
Nomenclature: Common reed, Phragmites australis (Cav.) Trin. ex Steud.; musk thistle, Carduus nutans L.; yellow starthistle, Centaurea solstitialis L.
Riparian plant invasions can result in near-monocultures along stream and river systems, prompting management agencies to target invasive species for removal as an ecological restoration strategy. Riparian plant invaders can alter resource conditions in the benthos and drive bottom-up shifts in aquatic biota. However, the influence of management activities on the structure and function of aquatic communities is not well understood. We investigated how removal of a riparian invader, Lonicera maackii (Amur honeysuckle), influenced aquatic macroinvertebrate community functional and taxonomic diversity in a headwater stream. We hypothesized that removal of L. maackii from invaded riparia would result in (H1) increased aquatic macroinvertebrate abundance, density, and diversity; (H2) a taxonomic and functional shift in community composition; and, in particular, (H3) increased functional diversity. Aquatic macroinvertebrates were sampled monthly from autumn 2010 to winter 2013 in headwater stream riffles with a dense riparian L. maackii invasion and those where L. maackii had been experimentally removed. We found macroinvertebrate density was significantly higher in the L. maackii removal reach (P<0.05) and that macroinvertebrate community structure and functional trait presence was distinct between stream reaches and across seasons (P<0.05). The removal reach exhibited greater functional richness during spring and summer and had more unique functionally relevant taxa (20% and 85%) compared with the L. maackii reach (5% and 75%) during summer and autumn seasons. Our results suggest bottom-up processes link restoration activities in the riparian corridor and aquatic biota through alterations of functional composition in the benthic community.
Multiple introductions of an exotic species can facilitate invasion success by allowing for a wider range of expressed trait values in the adventive range. Schinus terebinthifolius (Brazilian peppertree) is an invasive shrub that was introduced into Florida in two separate introductions and has subsequently hybridized, resulting in three distinct lineages (eastern, western, and hybrid). To determine whether allocation of aboveground biomass differed by introduction history, we destructively sampled 257 stems from each of six populations with differing introduction histories. The proportion of aboveground biomass allocated to fruit, wood, and leaves differed among the three populations. To determine whether the relationship between stem size and several dependent variables that measure plant performance (total dry weight, wood dry weight, number of fruits, fruit dry weight, leaf dry weight, and number of leaves) differed quantitatively by introduction history, we performed analyses of covariance. Slopes of these relationships (dependent variable vs. stem size) varied by lineage. Hybrid populations had the steepest slopes for one set of dependent variables (total dry weight, wood dry weight, and leaf dry weight), while western populations had the steepest slopes for a different set of dependent variables (number of fruits, fruit dry weight, and number of leaves). The parameterized regression equations for each dependent variable and lineage were used to nondestructively estimate different kinds of production by individuals that are part of long-term longitudinal studies to understand the demographic consequences of these different biomass allocation strategies for the performance of S. terebinthifolius individuals across the invaded range in Florida.
We experimentally tested the feasibility of a control campaign of purple jewelweed (Impatiens glandulifera), an exotic invasive species in Europe and North America. We evaluated the amount of time and money required to control the plant along riverbanks, with particular attention paid to the recovery of riparian vegetation following hand pulling and bagging. Work time was directly and significantly related to stem density and fresh biomass of the invader, but the relationship was stronger for density. Density and biomass were strongly reduced by the first hand-pulling operation from a mean of 45 to 2 stems m-2 and from a mean of 0.95 kg m-2 to nearly zero, a good performance but not enough to negate the need for a second hand pulling later in the summer. A single hand pulling significantly reduced the cover of purple jewelweed from to 30% to 7%. Riparian vegetation disturbed by the first hand pulling largely recovered during the following 30 d. Expressed over an area of 1 ha, the total amount of time required to control purple jewelweed is 1,400 work hours over 2 yr, or a minimum investment of Can$21,000 (US$17,000). Although controlling a well-established purple jewelweed population is expensive, to properly evaluate the benefits, we must also consider the costs of soil erosion caused by this species.
Successful invasive plant eradication is rare, because the methods used target the adult stage, not taking into account the development capacity of a large seedbank. Heating by microwave was considered, because it offers a means to quickly reach the temperature required for loss of seed viability and inhibition of germination. Previous results were not encouraging, because homogeneous and deep-wave penetration was not achieved, and the various parameters that can affect treatment effectiveness were incompletely addressed. This study aimed to determine, under experimental conditions, the best microwave treatment to inhibit invasive species seed germination in terms of power (2, 4, 6 kW) and duration (2, 4, 8 min) of treatments and depending on soil moisture (10%, 13%, 20%, 30%) and seed burial depth (2, 12 cm). Three invasive species were tested: Bohemian knotweed, giant goldenrod, and jimsonweed. The most effective treatments required relatively high power and duration (2kW8min, 4kW4min, 6kW2min, and 6kW4min; 4kW8min and 6kW8min were not tested for technical reasons), and their effectiveness diminished with increasing soil moisture with germination percentage between 0% and 2% for the lowest soil moisture, 0% and 56% for intermediate soil moisture, and 27% and 68% in control treatments. For the highest soil moisture, only 2kW8min and 4kW4min reduced germination percentage between 2% and 19%. Occasionally, germination of seeds located at the 12-cm depth was more strongly affected. Giant goldenrod seeds were the most sensitive, probably due to their small size. Results are promising and justify further experiments before developing a field microwave device to treat large volumes of soil infested by invasive seed efficiently and with reasonable energy requirements. Other types of soil, in terms of texture and organic matter content, should be tested in future experiments, because these factors influence soil water content and, consequently, microwave heating.
Classical biological control of waterhyacinth is difficult to evaluate against the backdrop of active herbicide programs. Two experiments evaluated the additive impact of herbivory by two biological control agents with three different rates of 2,4-D on waterhyacinth growth and development in outdoor concrete mesocosms. The herbicide 2,4-D was applied at three rates: (1) control (no herbicide), (2) reduced (2.1 kg ai ha-1), and (3) operational (4.3 kg ai ha-1). Biomass of waterhyacinth populations was reduced by 16.9% by biological control only, 10.5% by the reduced rate of herbicide alone, 44.6% by the operational rate, and 97.3% and 99.9% by the combination of biological control and the reduced and operational rates of herbicides, respectively. These results quantified the relative contributions of both tactics to waterhyacinth management and posit the question of whether further reductions in 2,4-D rates are possible without sacrificing efficacy.
Japanese knotweed is an invasive plant that occurs along waterways, highways, abandoned agricultural land, and other disturbed areas. It reduces plant diversity and can increase shoreline erosion. An experiment was conducted in Bible Hill and Antigonish, NS, Canada to evaluate early POST aminopyralid at 120 g ae ha-1 and POST imazapyr applications at 720 g ae ha-1 at maximum shoot height, flowering, senescence, maximum height flowering, maximum height senescence, flowering senescence, and maximum height flowering senescence. Early POST aminopyralid only provided 10% to 15% control at 52 wk after treatment (WAT) whereas 83% to 100% control occurred following imazapyr applications at all application timings. Percent control at 2, 4, and 8 WAT tended to be higher where imazapyr followed aminopyralid. By 52 WAT, equivalent damage ratings and reductions in stem density occurred at both sites in all plots where imazapyr was applied. The use of aminopyralid or multiple imazapyr applications provided no additional benefit over a single imazapyr application. We conclude that early POST aminopyralid suppresses knotweed growth, which should facilitate late-season imazapyr applications, especially in large stands.
The grass species Spartina alterniflora (smooth cordgrass) is an invasive ecosystem engineer with serious ecological consequences to intertidal mudflats and saltmarshes. The largest infestation in North America was in Willapa Bay, WA, where it occupied ∼3,600 solid ha, covering ∼27,000 ha of intertidal habitat. An extensive effort by land managers to eradicate S. alterniflora has been in place for over two decades. This article discusses (1) the success of the control and issues that will need to be resolved in order to achieve eradication; (2) post-control succession of affected tidelands to native marsh species, and (3) the impact that S. alterniflora removal has had on shorebird usage of affected tidelands.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere