Thomas F. Parkerton, Jon A. Arnot, Anne V. Weisbrod, Christine Russom, Robert A. Hoke, Kent Woodburn, Theo Traas, Mark Bonnell, Lawrence P. Burkhard, Mark A. Lampi
Integrated Environmental Assessment and Management 4 (2), 139-155, (11 November 2007) https://doi.org/10.1897/IEAM_2007-057.1
KEYWORDS: bioconcentration, Dietary biomagnification, data quality, anthracene, 2,3,7,8-Tetrachlorodibenzo-p-dioxin
Currently, the laboratory-derived fish bioconcentration factor (BCF) serves as one of the primary data sources used to assess the potential for a chemical to bioaccumulate. Consequently, fish BCF values serve a central role in decision making and provide the basis for development of quantitative structure–property relationships (QSPRs) used to predict the bioaccumulation potential of untested compounds. However, practical guidance for critically reviewing experimental BCF studies is limited. This lack of transparent guidance hinders improvement in predictive models and can lead to uninformed chemical management decisions. To address this concern, a multiple-stakeholder workshop of experts from government, industry, and academia was convened by the International Life Sciences Institute Health and Environmental Sciences Institute to examine the data availability and quality issues associated with in vivo fish bioconcentration and bioaccumulation data. This paper provides guidance for evaluating key aspects of study design and conduct that must be considered when judging the reliability and adequacy of reported laboratory bioaccumulation data. Key criteria identified for judging study reliability include 1) clear specification of test substance and fish species investigated, 2) analysis of test substance in both fish tissue and exposure medium, 3) no significant adverse effects on exposed test fish, and 4) a reported test BCF that reflects steady-state conditions with unambiguous units. This guidance is then applied to 2 data-rich chemicals (anthracene and 2,3,7,8-tetrachlorodibenzo-p-dioxin) to illustrate the critical need for applying a systematic data quality assessment process. Use of these guidelines will foster development of more accurate QSPR models, improve the performance and reporting of future laboratory studies, and strengthen the technical basis for bioaccumulation assessment in chemicals management.