BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Traits describe the physical characteristics, ecological niche, and functional role of species within ecosystems, and trait-based approaches are now being introduced into the field of Ecological Risk Assessment (ERA). The costs and benefits arising from the adoption of these approaches in the assessment of risks from toxic substances are described, and the path forward for this new frontier in risk assessment science is presented. In particular, the necessity for more open collaboration and web-based data-sharing to facilitate the development of these exciting new tools is stressed, and the role of scientific organizations such as SETAC as promoters of this ambitious program is highlighted.
This article describes a concept variously termed prospective environmental restoration, restoration up front, or restoration banking. Briefly, the concept centers on the ability of an entity, public or private, to gain durable credits for undertaking proactive restoration activities. Once obtained, these credits can be applied to an existing liability, held in the event of a future liability, or traded or sold to others that might have need for the credits. In the case of a natural resource damage claim or response action, possessing or applying the credits does not negate the need for responsible entities to clean up spills or releases of hazardous substances or oil or to address their clean-up requirements under applicable federal and state statutes. Concepts similar to prospective environmental restoration/restoration up front include wetlands mitigation banking, conservation habitat banking, and emissions trading. Much of the concept and details provided herein stem from the practice of natural resource damage assessment, although that is not the sole driver for the concept. The concept could also apply where the credits could be used to offset other environmental liabilities, for example, to provide habitat mitigation where development is being planned. The authors believe that the concept, if widely applied, could reduce the time and costs associated with restoration and perhaps lead to an increase in voluntary restoration and conservation nationally. Currently, there are no state or federal regulations or policies that directly provide for this approach.
Triclosan (TCS) is a broad-spectrum antimicrobial used in consumer products including toothpaste and hand soap. After being used, TCS is washed or rinsed off and residuals that are not biodegraded or otherwise removed during wastewater treatment can enter the aquatic environment in wastewater effluents and sludges. The environmental exposure and toxicity of TCS has been the subject of various scientific and regulatory discussions in recent years. There have been a number of publications in the past 5 y reporting toxicity, fate and transport, and in-stream monitoring data as well as predictions from aquatic risk assessments. State-of-the-science probabilistic exposure models, including Geography-referenced Regional Exposure Assessment Tool for European Rivers (GREAT-ER) for European surface waters and Pharmaceutical Assessment and Transport Evalutation (PhATE™) for US surface waters, have been used to predict in-stream concentrations (PECs). These models take into account spatial and temporal variability in river flows and wastewater emissions based on empirically derived estimates of chemical removal in wastewater treatment and in receiving waters. These model simulations (based on realistic use levels of TCS) have been validated with river monitoring data in areas known to be receiving high wastewater loads. The results suggest that 90th percentile (low flow) TCS concentrations are less than 200 ng/L for the Aire–Calder catchment in the United Kingdom and between 250 ng/L (with in-stream removal) and 850 ng/L (without in-stream removal) for a range of US surface waters. To better identify the aquatic risk of TCS, a species sensitivity distribution (SSD) was constructed based on chronic toxicity values, either no observed effect concentrations (NOECs) or various percentile adverse effect concentrations (EC10–25 values) for 14 aquatic species including fish, invertebrates, macrophytes, and algae. The SSD approach is believed to represent a more realistic threshold of effect than a predicted no effect concentration (PNEC) based on the data from the single most sensitive species tested. The log-logistic SSD was used to estimate a PNEC, based on an HC5,50 (the concentration estimated to affect the survival, reproduction and/or growth of 5% of species with a 50% confidence interval). The PNEC for TCS was 1,550 ng/L. Comparing the SSD-based PNEC with the PECs derived from GREAT-ER and PhATE modeling to simulate in-river conditions in Europe and the United States, the PEC to PNEC ratios are less than unity suggesting risks to pelagic species are low even under the highest likely exposures which would occur immediately downstream of wastewater treatment plant (WWTP) discharge points. In-stream sorption, biodegradation, and photodegradation will further reduce pelagic exposures of TCS. Monitoring data in Europe and the United States corroborate the modeled PEC estimates and reductions in TCS concentrations with distance downstream of WWTP discharges. Environmental metabolites, bioaccumulation, biochemical responses including endocrine-related effects, and community level effects are far less well studied for this chemical but are addressed in the discussion. The aquatic risk assessment for TCS should be refined as additional information becomes available.
Karl D. Strause, Matthew J. Zwiernik, John L. Newsted, Arianne M. Neigh, Stephanie D. Millsap, Cyrus S. Park, Pamela P. Moseley, Denise P. Kay, Patrick W. Bradley, Paul D. Jones, Alan L. Blankenship, James G. Sikarskie
Dietary exposures of great horned owls (GHO; Bubo virginianus) to polychlorinated biphenyls (PCBs) in the terrestrial food web at the Kalamazoo River, Michigan, USA, were examined. Average potential daily doses (APDD) in GHO diets were 7- to 10-fold and 3-fold greater at the more contaminated location versus a reference location for site-specific exposures quantified as total PCBs and 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQWHO-Avian), respectively. Wetland/aquatic prey contributed significantly to PCB exposure and APDD. Estimates of risk based on comparison of modeled dietary intake (e.g., APDD) to toxicity reference values (TRVs), using a hazard quotient (HQ) methodology, varied between diet composition methods (mass basis vs numeric basis). Mass-basis compositions yielded greater HQs at all sites. Potential risks associated with dietary exposures (“bottom-up” risk assessment methodology) were less than (HQ < 1) benchmarks for effects,. This result is consistent with risk estimates based on concentrations in tissues (“top-down” risk assessment methodology), and indicated PCBs posed no significant risk to terrestrial raptor species. Colocated and concurrent studies that evaluated GHO reproductive performance (nestling productivity) and relative abundance were consistent with results of the risk assessment. Measures of risk based on HQs were consistent with direct measures of ecologically relevant endpoints (reproductive fitness). Uncertainty in risk estimates is contributed during the selection of TRVs for effects in GHO based on TEQWHO-Avian because of the absence of species-specific, dose-response thresholds. This evaluation indicated that a multiple-lines-of-evidence approach provided the best estimate of risk.
We identify, categorize, and score sources of uncertainty in human health and ecological risk assessments conducted for several US Army sites to identify better analytical practices and opportunities for targeted research to improve risk estimates. The reviewed assessments are from reports completed within the past 8 y and were obtained from the US Army Environmental Technical Information Center (ETIC) at Aberdeen Proving Ground, Maryland, USA. Most of the risk assessments incorporated only qualitative uncertainty analysis to demonstrate the conservatism of selected data and predictive models. Food chain transfer (e.g., concentrations of contaminants across trophic levels) dominated quantifiable sources of uncertainty across the risk assessments evaluated. Factors related to dermal exposures ranked high for human health, and effects assessment for ecological endpoints.
There is a political demand on the efficiency of environmental policy. Cost–benefit analyses (CBAs) can play a role in answering that demand. This societal CBA for nationwide soil remediation operations in The Netherlands distinguishes 4 alternatives for future investments. In the zero alternative government funding will be terminated. Besides this, 3 policy alternatives are distinguished that are government financed. Soil remediation benefits human health, the drinking water supply, housing, perceptions, and the ecosystem. Soil remediation also answers the concerns of the Dutch population. The benefits to health (exposure to cadmium, lead, and carcinogens), drinking water supply, and housing are expressed in monetary terms. The extent that benefits equal the money spent depends partly on the value-loaded choice for the discount rate. Use of the current discount rate of 4% will mean a slightly negative balance whichever policy alternative is chosen. Focusing on nonmoneterized benefits, such as ecology, can cause the scales to tip in another direction. Using a lower discount rate will make future benefits, such as health and drinking water supply, more important. If the discount rate drops to 2% or less, all policy alternatives lead to a positive balance. Predominantly, the health benefits that are veiled in uncertainty can become a reason for applying a surcharge and, in turn, a higher discount rate. In that case, each of the alternatives will result in a net negative balance.
Most of the metals produced for commercial application enter into service as alloys which, together with metals and all other chemicals in commerce, are subject to a hazard identification and classification initiative now being implemented in a number of jurisdictions worldwide, including the European Union Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) initiative, effective 1 June 2007. This initiative has considerable implications for environmental protection and market access. While a method for the hazard identification and classification of metals is available in the recently developed United Nations (UN) guidance document on the Globally Harmonized System of Hazard Classification and Labelling (GHS), an approach for alloys has yet to be formulated. Within the GHS, a transformation/dissolution protocol (T/DP) for metals and sparingly soluble metal compounds is provided as a standard laboratory method for measuring the rate and extent of the release of metals into aqueous media from metal-bearing substances. By comparison with ecotoxicity reference data, T/D data can be used to derive UN GHS classification proposals. In this study we applied the T/DP for the 1st time to several economically important metals and alloys: iron powder, nickel powder, copper powder, and the alloys Fe–2Cu–0.6C (copper = 2%, carbon = 0.6%), Fe–2Ni–0.6C, Stainless Steel 304, Monel, brass, Inconel, and nickel–silver. The iron and copper powders and the iron and nickel powders had been sintered to produce the Fe–2Me–0.6C (Me = copper or nickel) alloys which made them essentially resistant to reaction with the aqueous media, so they would not classify under the GHS, although their component copper and nickel metal powders would. Forming a protective passivating film, chromium in the Stainless Steel 304 and Inconel alloys protected them from reaction with the aqueous media, so that their metal releases were minimal and would not result in GHS classification. For the other alloys, we developed a new critical surface area–toxic units (CSA-TU) approach to derive their GHS classification proposals. The CSA-TU approach can be readily applied to other multicomponent alloy systems, without the need to arbitrarily select a particular component among several as the determinant of toxicity. This paper shows how regulatory obligations, such as those mandated by REACH, can be met with a laboratory-based CSA-TU method for deriving hazard classification proposals for alloys, linking to attendant environmental protection management decisions. Drawing on T/D data derived from laboratory testing of the alloy itself, the CSA-TU approach can be applied to establish scientifically defensible decisions on hazard classification proposals for an alloy of interest. The resulting decisions can then be incorporated into environmental management measures in such jurisdictions as the European Union. Based on an approach developed specifically for alloys, the hazard classification decisions can be regarded as relevant, credible, and protective of the environment. Since alloys are usually more resistant to chemical attack than their components, this approach is a considerable improvement over the possibility provided for in the GHS of calculating a hazard classification level for an alloy from the classification levels of its components.
The risk of 11 pesticides to the soil environment was assessed in a 3-tiered approach at 4 sites located in Central Amazon, near Manaus, the capital of the Amazonas State in Brazil. Toxicity–exposure ratios (TERs), as routinely used for the registration of pesticides in the European Union, were calculated. First, the predicted environmental concentration (PEC) values in soil on the basis of real application rates and soil properties but temperate DT50 (degradation time of 50%) values were compared with temperate effect values (earthworm LC50s; median lethal concentrations), both gained from literature. Second, the risk assessment was refined by the use of DT50 values from tropical soils (measured for 7 compounds and estimated for 4) but still with temperate effect values because only a few results from tests performed under tropical conditions are available. Third, the outcome of this exercise was evaluated in a plausibility check with the use of the few results of effect tests, which were performed under tropical conditions. However, the lack of such data allowed this check only for 6 of 11 pesticides. The results are discussed in light of pesticide use in the Amazon in general, as well as compared with the registration status of these pesticides in other countries. Finally, suggestions are given for which kinds of studies are needed to improve the environmental risk assessment of pesticides in tropical regions.
In this study, we evaluated methodology to determine risks to terrestrial native plant species from potential herbicide drift, focusing on 1) selection of native species for testing, 2) growth of these species, and 3) variability in herbicide response among native species and compared with crop plants. Native plant species were selected for initial testing on the basis of spatial analysis, which indicated that species from Illinois, USA, were at potential risk for off-target effects of herbicide drift. On the basis of preliminary seed germination tests, 5 native plant species (Andropogon gerardi, Polygonum lapathifolium, Solidago canadensis, Symphyotrichum lateriflorum, and Tridens flavus) were selected for comparison with crops grown in Illinois, normally used in the US Environmental Protection Agency's (USEPA's) Vegetative Vigor Test (Avena sativa, Daucus carota, Glycine max, Solanum lycopersicon, and Zea mays), or both. When treated with low concentrations of a test herbicide, sulfometuron methyl, 2 native species, P. lapathifolium and S. canadensis, were as sensitive as the 5 crop species. The effective herbicide concentrations producing a 25% reduction in shoot dry weight (EC25) for these species, ranged from 0.00015 to 0.0014 times a field application concentration of 52 g/ha active ingredient of sulfometuron methyl. S. lateriflorum and T. flavus were less sensitive than the other native species, whereas A. gerardi was tolerant to sulfometuron methyl with no growth reduction at any herbicide concentration tested. This study indicated that native species can be successfully selected and grown, used in the suite of species used in the USEPA's phytotoxicity test to assess risks of chemical herbicides to nontarget plants. It also showed (with a limited number of species) that native species varied more in sensitivity to simulated herbicide drift than crop species often used in phytotoxicity testing and that a Weibull function was useful to calculate EC25 values when low concentrations of herbicides was used.
The Great Lakes Indian Fish and Wildlife Commission produces consumption advisories for methylmercury in walleye (Sander vitreus) harvested by its member tribes in the 1837 and 1842 ceded territories of Michigan, Minnesota, and Wisconsin, USA. Lake-specific advice is based primarily on regressions of methylmercury concentrations on walleye length and incorporates standard reference doses to generate recommended meal frequencies. The effects of variability and uncertainty are directly incorporated into the consumption advice through confidence bounds for the general population and prediction bounds for the sensitive population. Advice is tailored to the needs of the tribes because harvest and consumption of fish are culturally important. Data were sufficient to provide consumption advice for 293 of the 449 lakes assessed. Most of these carried a recommendation of no more than 4 meals per month for the general population and no more than 1 meal per month for the sensitive population.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere