Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The International Association for Plant Biotechnology (IAPB) was founded in 1963 at the first truly international conference on plant tissue culture, which was organized by Philip R. White. White was a devoted internationalist and was strongly committed to global scientific cooperation. He felt that the time had come for the international tissue culture community to organize so that it could meet regularly and provide a forum to its members for the exchange of ideas and information of mutual interest and use. The various activities of the IAPB since its founding—the publication of its newsletter, its journal, and the proceedings of its quadrennial congresses—faithfully document the remarkable advances in plant biotechnology that were made possible by the successful integration of tissue culture and molecular biology. In particular, the congress proceedings serve as time capsules, providing a wealth of information about the best of science and the most prominent scientists of the time. The history of the IAPB is indeed the history of plant biotechnology.
Salinity limits the production capabilities of agricultural soils in large areas of the world. Both breeding and screening germplasm for salt tolerance encounter the following limitations: (a) different phenotypic responses of plants at different growth stages, (b) different physiological mechanisms, (c) complicated genotype × environment interactions, and (d) variability of the salt-affected field in its chemical and physical soil composition. Plant molecular and physiological traits provide the bases for efficient germplasm screening procedures through traditional breeding, molecular breeding, and transgenic approaches. However, the quantitative nature of salinity stress tolerance and the problems associated with developing appropriate and replicable testing environments make it difficult to distinguish salt-tolerant lines from sensitive lines. In order to develop more efficient screening procedures for germplasm evaluation and improvement of salt tolerance, implementation of a rapid and reliable screening procedure is essential. Field selection for salinity tolerance is a laborious task; therefore, plant breeders are seeking reliable ways to assess the salt tolerance of plant germplasm. Salt tolerance in several plant species may operate at the cellular level, and glycophytes are believed to have special cellular mechanisms for salt tolerance. Ion exclusion, ion sequestration, osmotic adjustment, macromolecule protection, and membrane transport system adaptation to saline environments are important strategies that may confer salt tolerance to plants. Cell and tissue culture techniques have been used to obtain salt tolerant plants employing two in vitro culture approaches. The first approach is selection of mutant cell lines from cultured cells and plant regeneration from such cells (somaclones). In vitro screening of plant germplasm for salt tolerance is the second approach, and a successful employment of this method in durum wheat is presented here. Doubled haploid lines derived from pollen culture of F1 hybrids of salt-tolerant parents are promising tools to further improve salt tolerance of plant cultivars. Enhancement of resistance against both hyper-osmotic stress and ion toxicity may also be achieved via molecular breeding of salt-tolerant plants using either molecular markers or genetic engineering.
Polyamines are ubiquitous polycationic compounds that mediate fundamental aspects of cell growth, differentiation, and cell death in eukaryotic and prokaryotic organisms. In plants, polyamines are implicated in a variety of growth and developmental processes, in addition to abiotic and biotic stress responses. In the last decade, mutant studies conducted predominantly in Arabidopsis thaliana revealed an obligatory requirement for polyamines in zygotic and somatic embryogenesis. Moreover, our appreciation for the intricate spatial and temporal regulation of intracellular polyamine levels has advanced considerably. The exact molecular mechanism(s) through which polyamines exert their physiological response remains somewhat enigmatic and likely serves as a major area for future research efforts. In the following review, we discuss recent advances in the plant polyamine field, which range from metabolism and mutant characterization to molecular genetics and potential mode(s) of polyamine action during growth and development in vitro and in vivo. This review will also focus on the specific role of polyamines during embryogenesis and organogenesis.
This study describes a reliable protocol for callus induction and rapid mass propagation of the ecologically important plant, Zygophyllum xanthoxylon (Bunge) Maxim. The optimum callus induction medium was Murashige and Skoog (MS) supplemented with 4.4 μM 6-benzylamino-purine (BAP) and 2.7 μM α-naphthalene–acetic acid (NAA), on which the callus induction frequencies from different seedling explants were all 100%. However, seedling-derived callus did not form regenerated shoots. In order to achieve shoot multiplication, shoots were developed from cultured plumules, at an average of 3.1 shoots per explant, and the regenerated shoot tips were further multiplied by subculture. The best shoot multiplication from shoot tips was achieved on MS supplemented with 5.4 μM NAA and 22.2 μM BAP after 40 d of culture. Seventy-three percent of regenerated shoots formed roots when cultured on MS supplemented with 8.6 μM IAA after 4 wk of culture. The plants that acclimatized successfully in sand flourished the following year, with normal morphology and growth characteristics.
Leaf piece explants of five Brassica juncea (L.) Czern. cultivars were transformed with an Agrobacterium tumefaciens strain EHA105 harboring the plasmid pCAM-BIA1301, which contains the β-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes under the control of cauliflower mosaic virus 35S (CaMV35S) promoter. Transgenic plants were regenerated on Murashige and Skoog (MS) medium fortified with 8.87 μM 6-benzylaminopurine, 0.22 μM 2,4-dichlorophenoxyacetic acid, and 20 μM silver nitrate in the presence of 30 mg/l hygromycin. When co-culture took place in the presence of 100 μM acetosyringone, the efficiency of stable transformation was found to be approximately 19% in the T0 generation, with the transgenic plants and their progeny showing constitutive GUS expression in different plant organs. Southern blot hybridization of uidA and hpt genes confirmed transgene integration within the genome of transformed plants of each cultivar. Inheritance of hpt gene for single copy T-DNA inserts showed a 3:1 pattern of Mendelian segregation in progeny plants through germination of T1 seeds on MS medium containing 30 mg/l hygromycin. The protocol described here reports superior transformation efficiency over previously published protocols and should contribute to enhanced biotechnology applications in B. juncea.
Endogenous levels of indole-3-acetic acid (IAA), indole-3-acetylaspartic acid (IAAsp) and indole-3-butyric acid (IBA) were measured during the first 8 d of in vitro rooting of rootstock from the chestnut ′M3′ hybrid by high performance liquid chromatography (HPLC). Rooting was induced either by dipping the basal ends of the shoots into a 4.92-mM IBA solution for 1 min or by sub-culturing the shoots on solid rooting medium supplemented with 14.8-μM IBA for 5 d. For root development, the induced shoots were transferred to auxin-free solid medium. Auxins were measured in the apical and basal parts of the shoots by means of HPLC. Endogenous levels of IAA and IAAsp were found to be greater in IBA-treated shoots than in control shoots. In extracts of the basal parts of the shoots, the concentration of free IAA showed a significant peak 2 d after either root inductive method and a subsequent gradual decrease for the remainder of the time course. The concentration of IAAsp peaked at day 6 in extracts of the basal parts of shoots induced with 14.8-μM IBA for 5 d, whereas shoots induced by dipping showed an initial increase until day 2 and then remained stable. In extracts from basal shoot portions induced by dipping, IBA concentration showed a transient peak at day 1 and a plateau between day 2 and 4, in contrast to the profile of shoots induced on auxin-containing medium, which showed a significant reduction between 4 and 6 d after transferred to auxin-free medium. All quantified auxins remained at a relatively low level, virtually constant, in extracts from apical shoot portions, as well as in extracts from control non-rooting shoots. In conclusion, the natural auxin IAA is the signal responsible for root induction, although it is driven by exogenous IBA independently of the adding conditions.
Amplified fragment length polymorphism (AFLP) analysis of 24 in vitro regenerated rye plants was performed in order to evaluate the somaclonal variation rate in this species and to identify rye genomic regions where mutations are preferentially promoted by in vitro culture processes. Regenerated plants were obtained from cell lines derived from immature embryos and plants were regenerated by somatic embryogenesis. Twenty-three regenerants showed variation when compared against sibling plants obtained from the same cell line. A total number of 887 AFLP markers were scored, and 8.8% identified the same polymorphism in plants obtained independently from different cell lines, revealing putative mutational hot spots. Using controlled crossings and analysis of the corresponding progenies, we were able to verify the genetic stability in the next generation for only five of these polymorphisms. The nucleotide sequence of the AFLP amplicon of four of the polymorphic markers was obtained, but only the sequence of two markers was clearly identified in the databases. The sequence of marker A1-303 was identified as part of a tandemly repeated sequence, the 120-bp family, which is located at telomeric regions and is widely distributed among rye chromosomes. The marker A5-375 showed high similarity with regions of Angela retrotransposons.
An efficient somatic embryogenesis and plant regeneration system was developed from shoot apex explants of finger millet, Eleusine coracana. Eight genotypes, CO 7, CO 9, CO 13, CO 14, GPU 26, GPU 28, GPU 45, and GPU 48, were assessed in this study. The maximum somatic embryogenic induction, at 98.6%, was obtained from explants cultured on Murashige and Skoog medium supplemented with 18.0 μM dichlorophenoxyacetic acid and 2.3 μM kinetin. The highest number of shoot induction (26) was observed after transfer of embryonic callus to regeneration medium supplemented with 4.5 μM thidiazuran and 4.6 μM kinetin. Significant differences were observed between genotypes for somatic embryogenesis and plant regeneration. GPU 45 gave the best response, while CO 7 was the least responsive under the culture conditions tested in this study. Regenerated plants were successfully rooted and grown to maturity after hardening in soil.
This study describes in vitro shoot induction and plant regeneration from a mature apical meristem and nodal explants of the endangered medicinal shrub Vitex agnus-castus. Multiple shoots were induced directly from the axis of nodal and apical meristem explants on Murashige and Skoog (MS) medium containing 3% sucrose and different concentrations (1.0, 1.5, 2.0, and 2.5 mg/l) of 6-benzyl aminopurine (BAP) in combination with Kinetin (Kin) and α-naphthalene acetic acid (NAA), both at 0.1 mg/l. BAP and Kinetin were used as supplements to MS basal medium, either individually or in combination with auxins. The optimal concentration of BAP for inducing bud break was found to be 2.0 mg/l when Kinetin was at 0.1 mg/l. Regeneration frequency was highest for both apical meristem and nodal explants (94.5% and 90.3%, respectively) when explants were cultured on MS medium supplemented with BAP (2.0 mg/l) and Kin (0.1 mg/l). A maximum of 7.7±0.4 and 6.7±0.2 shoots were obtained per explant for apical meristem and nodal explants, respectively. Regenerated shoots, transferred to MS medium supplemented with either 1.0 or 1.5 mg/l BAP combined with 0.1 mg/l GA3, showed maximum elongation of 6.7±0.4 and 6.0±1.3 cm in apical meristem and nodal explants, respectively. In vitro regenerated shoots transferred to half-strength MS medium supplemented with 0.1 mg/l IBA induced 90.4% of the shoots to form roots after 30–35 d of culture. Up to 80% of the regenerated shoots were successfully established in soil in the greenhouse.
A rapid and efficient method for the large-scale propagation of a highly valuable medicinal plant, Andrographis paniculata Nees, through in vitro culture of nodal explants obtained from 15-d-old aseptic seedling has been developed. High frequency direct shoot proliferation was induced in nodal explants cultured on Murashige and Skoog′s medium supplemented with 6-benzylaminopurine (BAP). Amongst the various cytokinins tested (BAP, kinetin, thidiazuron and 2-isopentyl adenine), BAP proved to be the most effective. The shoot forming capacity of the nodal explants was influenced by the BAP concentration (1–12.5 μM), and the optimal response was observed at 10 μM BAP, which induced an average of 34 shoots in 94% of the cultures within 4 wk. Significant differences were recorded in terms of average number of shoots per explant (8.6–34.1) among the different concentrations of BAP investigated. Concentrations of all cytokinins tested reach a level that can be considered above the optimum level, as marked by a reduced frequency of shoot proliferation. The multiple shoots obtained on various concentrations of BAP failed to elongate even after transfer to hormone-free MS medium. Elongation of the induced shoots was achieved on MS basal medium supplemented with 1.0 μM GA3 within 2 wk. A proliferating shoot culture was established by repeatedly subculturing the original nodal explants on shoot multiplication medium after each harvest of the newly formed shoots. The explants retained their morphogenic potential even after three harvests. Therefore, in 90 d, about 60–70 shoots were obtained from a single nodal explant and the nodal explants from primary shoots further regenerated equivalent number of shoots, depicting their high frequency regeneration potential in A. paniculata. Rooting was best induced in 94% of shoots cultured on MS medium supplemented with 2.5 μM indole-3-butyric acid (IBA), within a wk. The plantlets were successfully transferred to soil after hardening with a 92% survival rate. The system is rapid: the initiation of shoot buds to the transplanting of regenerants to soil is completed in 8–9 wk.
Dioscorea zingiberensis is an important medicinal plant and a source of diosgenin in China. We report research on the induction, characteristics, and chemical assays of polyploid plants of D. zingiberensis. Immersing calli in 0.3% colchicine solution for 16 h prior to culture induced a high number of autotetraploid plants. The induction rate reached as high as 36.7% of treated calli. More than 50 lines of autotetraploid plants were obtained. All tetraploid plants showed typical polyploidy characteristics. Twenty selected tetraploid lines were transferred to the field for determination of morphological characteristics and for chemical assays. Six elite lines have been selected for further selection and breeding into new varieties for commercial production.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere