Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
An important tenet of evolutionary developmental biology (“evo devo”) is that adaptive mutations affecting morphology are more likely to occur in the cis-regulatory regions than in the protein-coding regions of genes. This argument rests on two claims: (1) the modular nature of cis-regulatory elements largely frees them from deleterious pleiotropic effects, and (2) a growing body of empirical evidence appears to support the predominant role of gene regulatory change in adaptation, especially morphological adaptation. Here we discuss and critique these assertions. We first show that there is no theoretical or empirical basis for the evo devo contention that adaptations involving morphology evolve by genetic mechanisms different from those involving physiology and other traits. In addition, some forms of protein evolution can avoid the negative consequences of pleiotropy, most notably via gene duplication. In light of evo devo claims, we then examine the substantial data on the genetic basis of adaptation from both genome-wide surveys and single-locus studies. Genomic studies lend little support to the cis-regulatory theory: many of these have detected adaptation in protein-coding regions, including transcription factors, whereas few have examined regulatory regions. Turning to single-locus studies, we note that the most widely cited examples of adaptive cis-regulatory mutations focus on trait loss rather than gain, and none have yet pinpointed an evolved regulatory site. In contrast, there are many studies that have both identified structural mutations and functionally verified their contribution to adaptation and speciation. Neither the theoretical arguments nor the data from nature, then, support the claim for a predominance of cis-regulatory mutations in evolution. Although this claim may be true, it is at best premature. Adaptation and speciation probably proceed through a combination of cis-regulatory and structural mutations, with a substantial contribution of the latter.
Quantitative genetics is at or is fast approaching its centennial. In this perspective I consider five current issues pertinent to the application of quantitative genetics to evolutionary theory. First, I discuss the utility of a quantitative genetic perspective in describing genetic variation at two very different levels of resolution, (1) in natural, free-ranging populations and (2) to describe variation at the level of DNA transcription. Whereas quantitative genetics can serve as a very useful descriptor of genetic variation, its greater usefulness is in predicting evolutionary change, particularly when used in the first instance (wild populations). Second, I review the contributions of Quantitative trait loci (QLT) analysis in determining the number of loci and distribution of their genetic effects, the possible importance of identifying specific genes, and the ability of the multivariate breeder's equation to predict the results of bivariate selection experiments. QLT analyses appear to indicate that genetic effects are skewed, that at least 20 loci are generally involved, with an unknown number of alleles, and that a few loci have major effects. However, epistatic effects are common, which means that such loci might not have population-wide major effects: this question waits upon (QTL) analyses conducted on more than a few inbred lines. Third, I examine the importance of research into the action of specific genes on traits. Although great progress has been made in identifying specific genes contributing to trait variation, the high level of gene interactions underlying quantitative traits makes it unlikely that in the near future we will have mechanistic models for such traits, or that these would have greater predictive power than quantitative genetic models. In the fourth section I present evidence that the results of bivariate selection experiments when selection is antagonistic to the genetic covariance are frequently not well predicted by the multivariate breeder's equation. Bivariate experiments that combine both selection and functional analyses are urgently needed. Finally, I discuss the importance of gaining more insight, both theoretical and empirical, on the evolution of the G and P matrices.
In spite of over half a century of research, little is known about the genetic basis of developmental instability (DI). The estimation of the heritability of DI is seriously hampered by the fact that fluctuating asymmetry—FA, that is, the observable outcome of DI—only poorly reflects DI. This results in an underestimation of the heritability of DI. Current methods transforming heritabilities in FA into those of DI fail to take all sources of variation into account and yield incorrect confidence bands that are usually based on unrealistic assumptions. Therefore, a Bayesian latent variable model is developed and explored. Simulations show that with sample sizes currently applied in empirical studies, extremely wide posterior distributions are obtained and data do not allow to distinguish between high (0.5) and low (0.1) heritabilities of DI at all. Even sample sizes of 5000 result in very wide posteriors in many cases. Furthermore, for smaller samples (250 and 1250), up to 70% of the estimates of the heritability of DI were below the mean expected value because of the high skewness of its distribution. Knowing that in only one study, sample sizes were above 5000, there is a need for larger studies to evaluate the evolutionary potential of DI. Designs with relatively low numbers of sires (1–2% of total number of offspring) appear most efficient. Because such high sample sizes are hard to obtain for many study organisms, more insights are required about how data from different traits can be combined in a single analysis. In addition, new designs and methods, such as QTL analyses and micro-array techniques, should be applied to gain a better understanding of the genetic basis of DI.
The harmful effects of inbreeding can be reduced if deleterious recessive alleles were removed (purged) by selection against homozygotes in earlier generations. If only a few generations are involved, purging is due almost entirely to recessive alleles that reduce fitness to near zero. In this case the amount of purging and allele frequency change can be inferred approximately from pedigree data alone and are independent of the allele frequency. We examined pedigrees of 59,778 U.S. Jersey cows. Most of the pedigrees were for six generations, but a few went back slightly farther. Assuming recessive homozygotes have fitness 0, the reduction of total genetic load due to purging is estimated at 17%, but most of this is not expressed, being concealed by dominant alleles. Considering those alleles that are currently expressed due to inbreeding, the estimated amount of purging is such as to reduce the expressed load (inbreeding depression) in the current generation by 12.6%. That the reduction is not greater is due mainly to (1) generally low inbreeding levels because breeders in the past have tended to avoid consanguineous matings, and (2) there is essentially no information more than six generations back. The methods used here should be applicable to other populations for which there is pedigree information.
Anolis lizards in the Greater Antilles are thought to have diversified through natural selection on body size and shape, presumably due to interspecific competition and variation in locomotor performance. Here we measure natural selection on body size over three years and across seven replicate populations of the brown anole, A. sagrei. We experimentally manipulated an important component of the environment (population density) on several small islands to test the role of density in driving natural selection. Results indicate that the strength of natural selection was proportional to population density (r2 = 0.81), and favored larger body sizes at higher density, presumably owing to the enhanced competitive ability afforded by large size. Changes in the distribution of body size by selective releases of lizards to islands show that this effect did not arise by pure density dependence, since smaller individuals were disproportionately selected against at higher densities. We measured significant broad sense heritability for body size in the laboratory (h2 = 0.55) indicating that selection in the wild could have an evolutionary response. Our results suggest an important effect of population density on natural selection in Anolis lizards.
Transposable element activity is thought to be responsible for a large portion of all mutations, but its influence on the evolution of populations has not been well studied. Using mutation accumulation experiments with the nematode Caenorhabditis elegans, we investigated the impact of transposable element activity on the production of mutational variances and covariances. The experiments involved the use of two mutator strains (RNAi-deficient mutants) that are characterized by high levels of germline transposition, as well as the Bristol N2 strain, which lacks germline transposition. We found that transposition led to an increase in mutational heritabilities, as well as to the intensification of correlation patterns observed in the absence of transposition. No mutational trade-offs were detected and mutations generally had a deleterious effect on components of fitness. We also tested whether the pattern of mutational covariation could be used to predict observed patterns of population divergence in this species. Using 15 natural populations, we found that population divergence of C. elegans in multivariate phenotypic space occurred in directions only partially concordant with mutation, and thus other evolutionary factors, such as natural selection and genetic drift, must be acting to produce divergence within this species. Our results suggest that mutations induced by mobile elements in C. elegans are similar to other spontaneous mutations with respect to their contribution to the microevolution of quantitative traits.
Abundant evidence suggests that females may engage in mate choice to gain nongenetic (material) benefits from high-quality territories; however, the selective consequences that influence those choices are not well understood. We studied the fitness effects of territory quality and incubation temperature on juvenile lizards in nature. We manipulated territory quality by redistributing rocks between pairs of neighboring home ranges. Rock manipulations set up adjacent plots that were either experimentally improved or reduced in quality. We incubated eggs from field-caught gravid females in each of three temperature treatments in the laboratory (low, medium, and high temperature). Progeny were released in either experimentally improved or reduced-quality plots upon hatching, and the following spring we measured survival as a function of egg size and laying date. We conducted concurrent studies of the thermal environment on experimental territories. Improved territories provided significantly more hours for lizards to behaviorally thermoregulate at their preferred body temperature and also provided nest sites with incubation conditions that were closer to optimal compared with reduced-quality plots. Reduced-quality plots were significantly more variable in quality. Finally, we measured significant correlational selection between egg mass and laying date on manipulated plots in two separate years. Results indicate the influence of environmental variation on correlational selection on life-history traits.
Recent work has revealed the molecular mechanisms governing one of the most dramatic examples of parallel evolution in nature: the repeated loss of lateral plate armor in freshwater populations of threespine stickleback. Yet, the ecological mechanisms responsible for armor loss remain unclear. Using a balanced experimental design, we examined Heuts' (1947) hypothesis that selection due to differences in salinity indirectly drive the reduction of lateral plate armor in fresh water while maintaining armor in the sea. We measured two fitness-related traits, hatching success and juvenile growth rate, in offspring of reduced (low and partial) and complete lateral plate morphs from two polymorphic populations when raised in either fresh water or salt water. In contrast to Heuts' results, there was little difference among morphs in hatching success. However, salinity strongly influenced juvenile growth: offspring of reduced lateral plate morphs grew substantially faster (up to 65%) than offspring of completely plated morphs in fresh water, but there was little difference in salt water. We suggest that the parallel loss of lateral plates in fresh water has arisen through a correlated response to selection for faster growth during lateral plate development, but the effect of salinity on hatching success and juvenile growth rate cannot explain the predominance of completely plated morphs in marine populations.
Categorizing speciation into dichotomous allopatric versus nonallopatric modes may not always adequately describe the geographic context of divergence for taxa. If some of the genetic changes generating inherent barriers to gene flow between populations evolved in geographic isolation, whereas others arose in sympatry, then the mode of divergence would be mixed. The apple maggot fly, Rhagoletis pomonella, has contributed to this emerging concept of a mixed speciation mode “plurality.” Genetic studies have implied that a source of diapause life-history variation associated with inversions and contributing to sympatric host race formation and speciation for R. pomonella in the United States may have introgressed from the Eje Volcanico Trans Mexicano (EVTM; a.k.a. the Altiplano) in the past. A critical unresolved issue concerning the introgression hypothesis is how past gene flow occurred given the current 1200-km disjunction in the ranges of hawthorn-infesting flies in the EVTM region of Mexico and the southern extreme of the U.S. population in Texas. Here, we report the discovery of a hawthorn-infesting population of R. pomonella in the Sierra Madre Oriental Mountains (SMO) of Mexico. Sequence data from 15 nuclear loci and mitochondrial DNA imply that the SMO flies are related to, but still different from, U.S. and EVTM flies. The host affiliations, diapause characteristics, and phylogeography of the SMO population are consistent with it having served as a conduit for gene flow between Mexico and the United States. We also present evidence suggesting greater permeability of collinear versus rearranged regions of the genome to introgression, in accord with recent models of chromosomal speciation. We discuss the implications of the results in the context of speciation mode plurality. We do not argue for abandoning the terms sympatry or allopatry, but caution that categorizing divergence into either/or geographic modes may not describe the genetic origins of all species. For R. pomonella in the United States, the proximate selection pressures triggering race formation and speciation stem from sympatric host shifts. However, some of the phenological variation contributing to host-related ecological adaptation and reproductive isolation in sympatry at the present time appears to have an older history, having originated and become packaged into inversion polymorphism in allopatry.
Few studies have examined genotype by environment (GxE) effects on premating reproductive isolation and associated behaviors, even though such effects may be common when speciation is driven by adaptation to different environments. In this study, mating success and courtship song differences among diverging populations of Drosophila mojavensis were investigated in a two-environment quantitative trait locus (QTL) analysis. Baja California and mainland Mexico populations of D. mojavensis feed and breed on different host cacti, so these host plants were used to culture F2 males to examine host-specific QTL effects and GxE interactions influencing mating success and courtship songs. Linear selection gradient analysis showed that mainland females mated with males that produced songs with significantly shorter L(long)-IPIs, burst durations, and interburst intervals. Twenty-one microsatellite loci distributed across all five major chromosomes were used to localize effects of mating success, time to copulation, and courtship song components. Male courtship success was influenced by a single detected QTL, the main effect of cactus, and four GxE interactions, whereas time to copulation was influenced by three different QTLs on the fourth chromosome. Multiple-locus restricted maximum likelihood (REML) analysis of courtship song revealed consistent effects linked with the same fourth chromosome markers that influenced time to copulation, a number of GxE interactions, and few possible cases of epistasis. GxE interactions for mate choice and song can maintain genetic variation in populations, but alter outcomes of sexual selection and isolation, so signal evolution and reproductive isolation may be slowed in diverging populations. Understanding the genetics of incipient speciation in D. mojavensis clearly depends on cactus-specific expression of traits associated with courtship behavior and sexual isolation.
Interspecific competition might drive the evolution of ecological niches and result in pairs of formerly competing species segregating along ecological gradients following a process of character displacement. This mechanism has been proposed to account for replacement of related species along gradients of elevation in many areas of the world, but the fundamental issue of whether competition is responsible for the origin of elevational replacements has not been tested. To test hypotheses about the role of interspecific competition in the origin of complementary elevational ranges, I combined molecular phylogenetics, phylogeography, and population genetic analyses on Buarremon torquatus and B. brunneinucha (Aves, Emberizidae), whose patterns of elevational distribution suggest character displacement or ecological release. The hypothesis that elevational distributions in these species changed in opposite directions as a result of competition is untenable because: (1) a historical expansion of the range of B. brunneinucha into areas occupied by B. torquatus was not accompanied by a shift in the elevational range of the former species; (2) when B. brunneinucha colonized the range of B. torquatus, lineages of the latter distributions had already diverged; and (3) historical trends in effective population size do not suggest populations with elevational ranges abutting those of putative competitors have declined as would be expected if competition caused range contractions. However, owing to uncertainty in coalescent estimates of historical population sizes, the hypothesis that some populations of B. torquatus have declined cannot be confidently rejected, which suggests asymmetric character displacement might have occurred. I suggest that the main role of competition in elevational zonation may be to act as a sorting mechanism that allows the coexistence along mountain slopes only of ecologically similar species that differ in elevational distributions prior to attaining sympatry. The contrasting biogeographic histories of B. brunneinucha and B. torquatus illustrate how present-day ecological interactions can have recent origins, and highlights important challenges for testing the hypothesis of character displacement in the absence of data on population history and robust reconstructions of the evolution of traits and geographic ranges.
The geographic mosaic theory of coevolution predicts that geographic variation in species interactions will lead to differing selective pressures on interacting species, producing geographic variation in the traits of interacting species (Thompson 2005). We supported this hypothesis in a study of the geographic variation in the interactions among Eurosta solidaginis and its natural enemies. Eurosta solidaginis is a fly (Diptera: Tephritidae) that induces galls on subspecies of tall goldenrod, Solidago altissima altissima and S. a. gilvocanescens. We measured selection on E. solidaginis gall size and shape in the prairie and forest biomes in Minnesota and North Dakota over an 11-year period. Galls were larger and more spherical in the prairie than in the forest. We supported the hypothesis that the divergence in gall morphology in the two biomes is due to different selection regimes exerted by natural enemies of E. solidaginis. Each natural enemy exerted similar selection on gall diameter in both biomes, but differences in the frequency of natural enemy attack created strong differences in overall selection between the prairie and forest. Bird predation increased with gall diameter, creating selection for smaller-diameter galls. A parasitic wasp, Eurytoma gigantea, and Mordellistena convicta, an inquiline beetle, both caused higher E. solidaginis mortality in smaller galls, exerting selection for increased gall diameter. In the forest there was stabilizing selection on gall diameter due to a combination of bird predation on larvae in large galls, and M. convicta- and E. gigantea-induced mortality on larvae in small galls. In the prairie there was directional selection for larger galls due to M. convicta and E. gigantea mortality on larvae in small galls. Mordellistena convicta-induced mortality was consistently higher in the prairie than in the forest, whereas there was no significant difference in E. gigantea-induced mortality between biomes. Bird predation was nonexistent in the prairie so the selection against large galls found in the forest was absent. We supported the hypothesis that natural enemies of E. solidaginis exerted selection for spherical galls in both biomes. In the prairie M. convicta exerts stabilizing selection to maintain spherical galls. In the forest there was directional selection for more spherical galls. Eurytoma gigantea exerted selection on gall shape in the forest in a complex manner that varied among years. We also supported the hypothesis that E. gigantea is coevolving with E. solidaginis. The parasitoid had significantly longer ovipositors in the prairie than in the forest, indicating the possibility that it has evolved in response to selection to reach larvae in the larger-diameter prairie galls.
Models of population dynamics generally assume that child survival is independent of maternal survival. However, in humans, the death of a mother compromises her immature children's survival because children require postnatal care. A child's survival therefore depends on her mother's survival in years following her birth. Here, we provide a model incorporating this relationship and providing the number of children surviving until maturity achieved by females at each age. Using estimates of the effect that a mother's death has on her child's survival until maturity, we explore the effect of the model on population dynamics. Compared to a model that includes a uniform child survival probability, our model slightly raises the finite rate of increase λ and modifies generation time and the stable age structure. We also provide estimates of selection on alleles that change the survival of females. Selection is higher at all adult ages in our model and remains significant after menopause (at ages for which the usual models predict neutrality of such alleles). Finally, the effect of secondary caregivers who compensate maternal care after the death of a mother is also emphasized. We show that allocare (as an alternative to maternal care) can have a major effect on population dynamics and is likely to have played an important role during human evolution.
In a seminal paper, Hammerstein and Parker (1987) described how sex roles in mate searching can be frequency dependent: the need for one sex to perform mate searching is diminished when the opposite sex takes on the greater searching effort. Intriguingly, this predicts that females are just as likely to search as males, despite a higher potential reproductive rate by the latter sex. This prediction, however, is not supported by data: male mate searching prevails in nature. Counterexamples also exist in the empirical literature. Depending on the taxon studied, female mate searching can arise in either low- or high-density conditions, and suggested explanations differ accordingly. We examine these puzzling observations by building two models (with and without sperm competition). When sperm competition is explicitly included, male mate searching becomes the dominant pattern; when it is excluded, male mate searching predominates only if we assume that costs of searching are higher for females. Consequently, two hypotheses emerge from our models. The multiple-mating hypothesis explains male searching on the basis of the ubiquity of sperm competition, and predicts that female searching can arise in low-density situations in which sperm can become limiting. It can also explain cases of female pheromone production, where males pay the majority of search costs. The sex-specific cost hypothesis predicts the opposite pattern of female searching in high-density conditions, and it potentially applies to some species in which sperm limitation is unlikely.
The mass-specific metabolic rate hypothesis of Gillooly and others predicts that DNA mutation and substitution rates are a function of body mass and temperature. We tested this hypothesis with sequence divergences estimated from mtDNA cytochrome b sequences of 54 taxa of cyprinid fish. Branch lengths estimated from a likelihood tree were compared with metabolic rates calculated from body mass and environmental temperatures experienced by those taxa. The problem of unknown age estimates of lineage splitting was avoided by comparing estimated amounts of metabolic activity along phyletic lines leading to pairs of modern taxa from their most recent common ancestor with sequence divergences along those same pairs of phyletic lines. There were significantly more pairs for which the phyletic line with greater genetic change also had the higher metabolic activity, when compared to the prediction of a hypothesis that body mass and temperature are not related to substitution rate.
Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a “hump-shaped” pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This “time-for-speciation” effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome.
The Pacific rockfishes (Sebastes spp) are remarkable for both their diversity (on the order of 100 species) and range of maximum life span (∼10 years for Calico rockfish to ∼200 years for Rougheye rockfish). We describe the natural history and patterns of diversity and life span in these species and then use independent contrasts to explore correlates of these. When phylogenetic history is taken into account, maximum life span is explained by age at maturity, size at maturity, and the interaction of these two. We introduce a life-history model that allows insight into the origin of these correlations. We then describe a variety of mechanisms that may increase lifepans and diversity. These include fluctuating environments (in which organisms basically have to “wait out” bad periods to reproduce successfully), diversity, and longevity inspired by interspecific competition and physiological complexity in growth and accumulation of cellular damage. All of the results point toward the importance of flat or “indifferent” fitness surfaces as a key element in the evolution of diversity. We conclude that further development of the theory of flat or indifferent fitness surfaces as applied to diversity and life span is clearly warranted.
The purpose of this study was to examine, using a rainbow trout (Oncorhynchus mykiss) model system, the fitness consequences of three generations of introgression of genotypes adapted to two different environments (culture and nature). The experiments also isolated the influence of competitive interactions and risk of predation on the relative growth and survival of the wild and backcrossed lines. Line crosses representing fast-growing pure domestic (D), slow-growing pure wild (W), domestic × wild hybrids (F1), F1 × wild backcrosses (B1), and B1 × wild backcrosses (B2) were generated and reared under (1) culture conditions, (2) seminatural conditions with competition among genotypes, and (3) seminatural conditions under risk of predation. Survival of the fry in a seminatural environment with competition fit an additive model of gene action with the domestic fish having the highest survival and the wild fish the lowest, but under risk of predation outbreeding depression was suggested by low survival of the B2 lines. Evidence of a trade-off in growth and survival under risk of predation along with observations of genetically determined behavioral differences among the strains may provide some explanation for the observed differences in survival among the strains. This information is relevant to improving our evolutionary understanding of the interaction among genomes, and the influence of environment, during hybridization events. Results from this experiment indicate that alteration of phenotype likely played a prominent role in the reduced fitness experienced by progeny produced after three generations of introgression, supporting the theory that disruption of genotypes selected for adaptation to local conditions may be a primary cause of outbreeding depression in species such as salmon.
Natural populations of hosts and parasites are often subdivided and patchily distributed such that some regions of a host species' range will be free from a given parasite. Host migration from parasite-free to parasite-containing patches is expected to alter coevolutionary dynamics by changing the evolutionary potential of antagonists. Specifically, host immigration can favor parasites by increasing transmission opportunities, or hosts by introducing genetic variation. We tested these predictions in coevolving populations of Pseudomonas fluorescens and phage Φ2 that received immigrants from phage-free populations. We observed a negative quadratic relationship between sympatric resistance to phage and host immigration rate (highest at intermediate immigration) but a positive quadratic relationship between coevolution rate and host immigration rate (lowest at intermediate immigration). These results indicate that for a wide range of rates, host immigration from parasite-free patches can increase the evolutionary potential of parasites, and increase the coevolutionary rate if parasite adaptation is limiting in the absence of immigration.
Cooperative breeding often results in unequal reproduction between dominant and subordinate group members. Transactional skew models attempt to predict how unequal reproduction can be before the groups themselves become unstable. A number of variants of transactional models have been developed, with a key difference being whether reproduction is controlled by one party or contested by all. It is shown here that ESS solutions for all situations of contested control over reproduction are given by the original tug-of-war model (TOW). Several interesting results follow. First, TOW can escalate enough to destabilize some types of groups. Particularly vulnerable are those that have low relatedness and gain little from cooperative breeding relative to solitary reproduction. Second, TOW can drastically reduce group productivity and especially the inclusive fitness of dominant individuals. Third, these results contrast strongly with those from variants of TOW models that include concessions to maintain group stability. Such models are shown to be special cases of the general and simpler TOW framework, and to have assumptions that may be biologically suspect. Finally, the overall analysis suggests that there is no mechanism within existing TOW framework that will prevent a costly struggle for reproductive control. Because social species rarely exhibit the high levels of aggression predicted by TOW models, alternative evolutionary mechanisms are considered that can limit conflict and produce more mutually beneficial outcomes. The further development of alternative models to predict patterns of reproductive skew are highly recommended.
Phenotypic similarities between distantly related marsupials and placentals are commonly presented as examples of convergence and support for the role of adaptive evolution in shaping morphological and ecological diversity. Here we compare skull shape in a wide range of carnivoran placentals (Carnivora) and nonherbivorous marsupials using a three-dimensional (3-D) geometric morphometric approach. Morphological and ecological diversity among extant carnivorans is considerably greater than is evident in the marsupial order Dasyuromorphia with which they have most commonly been compared. To examine convergence across a wider, but broadly comparable range of feeding ecologies, a dataset inclusive of nondasyuromorphian marsupials and extinct taxa representing morphotypes no longer present was assembled. We found support for the adaptive paradigm, with correlations between morphology, feeding behavior, and bite force, although skull shape better predicted feeding ecology in the phylogenetically diverse marsupial sample than in carnivorans. However, we also show that remarkably consistent but differing constraints have influenced the evolution of cranial shape in both groups. These differences between carnivorans and marsupials, which correlate with brain size and bite force, are maintained across the full gamut of morphologies and feeding categories, from small insectivores and omnivores to large meat-specialists.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere