Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Fisher's fundamental theorem of natural selection, that the rate of change of fitness is given by the additive genetic variance of fitness, has generated much discussion since its appearance in 1930. Fisher tried to capture in the formula the change in population fitness attributable to changes of allele frequencies, when all else is not included. Lessard's formulation comes closest to Fisher's intention, as well as this can be judged. Additional terms can be added to account for other changes. The “theorem” as stated by Fisher is not exact, and therefore not a theorem, but it does encapsulate a great deal of evolutionary meaning in a simple statement. I also discuss the effectiveness of reproductive-value weighting and the theorem in integrated form. Finally, an optimum principle, analogous to least action and Hamilton's principle in physics, is discussed.
I describe several patterns characterizing the genetics of adaptation at the DNA level. Following Gillespie (1983, 1984, 1991), I consider a population presently fixed for the ith best allele at a locus and study the sequential substitution of favorable mutations that results in fixation of the fittest DNA sequence locally available. Given a wild type sequence that is less than optimal, I derive the fitness rank of the next allele typically fixed by natural selection as well as the mean and variance of the jump in fitness that results when natural selection drives a substitution. Looking over the whole series of substitutions required to reach the best allele, I show that the mean fitness jumps occurring throughout an adaptive walk are constrained to a twofold window of values, assuming only that adaptation begins from a reasonably fit allele. I also show that the first substitution and the substitution of largest effect account for a large share of the total fitness increase during adaptation. I further show that the distribution of selection coefficients fixed throughout such an adaptive walk is exponential (ignoring mutations of small effect), a finding reminiscent of that seen in Fisher's geometric model of adaptation. Last, I show that adaptation by natural selection behaves in several respects as the average of two idealized forms of adaptation, perfect and random.
Wolbachia pipientis is a bacterium that induces cytoplasmic incompatibility (CI), the phenomenon in which infected males are reproductively incompatible with uninfected females. CI spreads in a population of hosts because it reduces the fitness of uninfected females relative to infected females. CI encompasses two steps: modification (mod) of sperm of infected males and rescuing (resc) of these chromosomes by Wolbachia in the egg. Infections associated with CI have modresc phenotypes. However, mod−resc phenotypes also exist; these do not result in CI. Assuming mod/resc phenotypes are properties of the symbiont, theory predicts that mod−resc infections can only spread in a host population where a modresc infection already occurs. A mod−resc infection spreads if the cost it imposes on the infected females is lower than the cost inflicted by the resident (modresc) infection. Furthermore, introduction of a mod−Wolbachia eventually drives infection to extinction. The uninfected population that results can be recolonized by a CI-causing Wolbachia. Here, we investigated whether variability for induction of CI was present in two Tetranychus urticae populations. In one population all isofemale lines tested were mod−. In the other, modresc and mod−resc isofemale lines coexisted. We found no evidence for a cost difference to females expressing either type (mod/−). Infections in the two populations could not be distinguished based on sequences of two Wolbachia genes. We consider the possibility that mod− is a host effect through a population dynamics model. A mod− host allele leads to infection extinction in the absence of fecundity differences. Furthermore, the uninfected population that results is immune to reestablishment of the (same) CI-causing Wolbachia.
The potential for local adaptation between pathogens and their hosts has generated strong theoretical and empirical interest with evidence both for and against local adaptation reported for a range of systems. We use the Linum marginale–Melampsora lini plant-pathogen system and a hierarchical spatial structure to investigate patterns of local adaptation within a metapopulation characterised by epidemic dynamics and frequent extinction of pathogen populations. Based on large sample sizes and comprehensive cross-inoculation trials, our analyses demonstrate strong local adaptation by Melampsora to its host populations, with this effect being greatest at regional scales, as predicted from the broader spatial scales at which M. lini disperses relative to L. marginale. However, there was no consistent trend for more distant pathogen populations to perform more poorly. Our results further show how the coevolutionary interaction between hosts and pathogens can be influenced by local structure such that resistant hosts select for generally virulent pathogens, while susceptible hosts select for more avirulent pathogens. Empirically, local adaptation has generally been tested in two contrasting ways: (1) pathogen performance on sympatric versus allopatric hosts; and (2) sympatric versus allopatric pathogens on a given host population. In situations where no host population is more resistant or susceptible than others when averaged across pathogen populations (and likewise, no pathogen population is more virulent or avirulent than others), results from these tests should generally be congruent. We argue that this is unlikely to be the case in the metapopulation situations that predominate in natural host-pathogen interactions, thus requiring tests that control simultaneously for variation in plant and pathogen populations.
Angiosperm diversification has been associated with plant-animal interactions such as seed dispersal and pollination and life-history characters such as rapid growth and fast reproduction. This paper relates a life-history character (age at maturity) to woody angiosperm diversification. Here I present a comparative analysis of data drawn from the literature, indicating that time to first reproduction is shorter in woody angiosperms than in gymnosperms. In addition, age at maturity is negatively correlated with the rate of diversification (measured as the number of species per genus) at all the taxonomic levels analyzed and also when phylogenetically independent contrasts were conducted. This correlation suggests that early reproduction promotes diversification in woody angiosperms. Furthermore, this correlation is not a confounding effect of the association between age at maturity and other ecological factors that promote angiosperm diversification, such as pollination and seed dispersal systems.
Androdioecy, the coexistence of males and hermaphrodites within a population, is a rare breeding system, often considered as unlikely to evolve because of restrictive conditions for its maintenance. Phillyrea angustifolia, a wind-pollinated shrub, is one of the handful species reported to be androdioecious. Our previous studies have shown that natural populations of this species in southern France exhibit higher male frequencies (∼50%) than predicted on theoretical grounds. Thus, the male functionality of hermaphrodites is still debated. To assess the functional breeding system of this species in the wild, a paternity analysis was performed with two highly polymorphic microsatellite loci on 729 seeds collected on 10 maternal shrubs in a natural population of 24 mature individuals of P. angustifolia. A large proportion of seeds were found to have been sired by pollen from outside the population. Analysis of seeds sired by individuals within the study population revealed a high male fertility of hermaphrodites resulting in a low male advantage in fertility for male plants. Intermate distances were found to have a strong impact on male reproductive success, whereas sexual morph had no effect, with males and hermaphrodites performing equivalently. This study is the first to unequivocally document the occurrence of a male function of hermaphrodites in a natural population of an androdioecious species.
Phylogenetic interrelationships among all 18 families of Poales were assessed by cladistic analysis of chloroplast DNA rbcL and atpB sequences from 65 species. There are two well-supported main clades; the graminoid clade with Poaceae (grasses), Anarthriaceae, Centrolepidaceae, Ecdeiocoleaceae, Flagellariaceae, Joinvilleaceae, and Restionaceae; and the cyperoid clade with Cyperaceae, Juncaceae, and Thurniaceae. A sister group relationship between Poaceae and Ecdeiocoleaceae is identified with strong support. The sister group of this pair is Joinvilleaceae. These relationships help in elucidating the evolution of grasses and the grass spikelet. Dating of the tree was done by nonparametric rate smoothing of rbcL molecular evolution. Most Poales families date back to the Cretaceous >65 million years ago (mya). Dispersal-vicariance analysis indicates that the Poales originated in South America, the cyperoid clade in West Gondwana (South America or Africa), and the graminoid clade in East Gondwana (Australia). The Trans-Antarctic connection between South America and Australia, and its breakup about 35 mya, probably influenced the evolution of the Poales and the graminoid clade in particular, leading to vicariance between the continents, but the separation of Africa from the other Gondwanan areas, completed about 105 mya, is too old for such a relation.
Relationships among the various diploid and polyploid taxa that comprise Glycine tomentella have been hypothesized from crossing studies, isozyme data, and repeat length variation for the 5S nuclear ribosomal gene loci. However, several key questions have persisted, and detailed phylogenetic evidence from homoeologous nuclear genes has been lacking. The histone H3-D locus is single copy in diploid Glycine species and has been used to elucidate relationships among diploid races of G. tomentella, providing a framework for testing genome origins in the polyploid complex. For all six G. tomentella polyploid races (T1–T6), alleles at two homoeologous histone H3-D loci were isolated and analyzed phylogenetically with alleles from diploid Glycine species, permitting the identification of all of the homoeologous genomes of the complex. Allele networks were constructed to subdivide groups of homoeologous alleles further, and two-locus genotypes were constructed using these allele classes. Results suggest that some races have more than one origin and that interfertility within races has led to lineage recombination. Most alleles in polyploids are identical or closely related to alleles in diploids, suggesting recency of polyploid origins and spread beyond Australia. These features parallel the other component of the Glycine subgenus Glycine polyploid complex, G. tabacina, one of whose races shares a diploid genome with a G. tomentella polyploid race.
Populations of wild barley, Hordeum spontaneum Koch, were collected in two distinct climatic regions, desert and Mediterranean. Plants from five desert and five Mediterranean populations were compared and contrasted for extent and structure of phenotypic variation. These same 10 and one other population from each region were analyzed for allozyme variation. In a field trial of phenotypic diversity, two phenological and 14 morphological traits were examined. Study of allozyme variation was performed using eight enzyme systems encoding for 13 loci. Plants from the desert and Mediterranean regions were significantly different in seven of 16 phenotypic traits, exhibited a high (30%) interregional component of phenotypic variation, and showed a high degree of segregation on a principal component scattergram indicating ecotypic differentiation. Mediterranean populations were twice as variable as desert populations in reproductive growth parameters (stem and spike length) and grain filling (spikelet weight), but half as variable for onset of reproduction. The extent and structure of phenotypic and allozyme variation did not match. The Mediterranean and desert populations did not differ in amount of allozyme variation as estimated by mean number of alleles per locus, effective number of alleles, polymorphism, and gene diversity (na, ne, P, and He), did not segregate on the basis of population genetic distances, and exhibited a low proportion of interregion allozyme diversity (2%). No effect of selection on allozyme distribution was detected. Our results suggest that the adaptation of plants originating from desert and Mediterranean environments is reflected in phenotypic but not in allozyme variation.
Empirical studies of life histories often ignore stochastic variation, despite theoretical demonstrations of its potential impact on life-history evolution. Here we use a novel approach to explore the effects of stochastic variation on life-history evolution and estimate the selection pressures operating on the monocarpic perennial Carlina vulgaris, in which flowering may be delayed by up to eight years. The approach is novel in that we use modern theoretical techniques to estimate selection pressures and the fitness landscape from a fully parameterised individual-based model. These approaches take into account temporal variation in demographic rates and density dependence. Analysis of 16 years' data revealed significant temporal variation in growth, mortality, and recruitment in our study population. Flowering was strongly size dependent and, unusually for such a species, also age dependent. Individual-based models of the flowering strategy, parameterized using field data, consistently underestimated the size at flowering, when temporal variation in demographic rates was ignored. In contrast, models that incorporated temporal variation in growth, mortality, and recruitment predicted sizes at flowering not significantly different from those observed in the field. Temporal variation in mortality, which had the largest effect on the flowering strategy, selected for increased size at flowering. An analytical approximation is presented to explain this result, extending the “1-year look-ahead criterion” presented in Rees et al. (2000). A fitness landscape generated by following the fate of rare mutant invaders with a broad range of alternative flowering strategies demonstrated that the observed parameters were adaptive. However, the fitness landscape reveals that approximately equal fitness is achieved by a broad range of strategies, providing a mechanism for the maintenance of genetic variation. To understand how the different parameters that defined our models determine the fitness of rare mutants, we numerically estimated the elasticities and sensitivities of mutant fitness. This demonstrated strong selection on a number of the parameters. Elasticities and sensitivities estimated in constant and random environments were significantly positively correlated, and both were negatively related to the standard error of the parameter. This last result is surprising and, we argue, reflects the genetic and phenotypic responses to selection.
Continental lake-dwelling zooplanktonic organisms have long been considered cosmopolitan species with little geographic variation in spite of the isolation of their habitats. Evidence of morphological cohesiveness and high dispersal capabilities support this interpretation. However, this view has been challenged recently as many such species have been shown either to comprise cryptic species complexes or to exhibit marked population genetic differentiation and strong phylogeographic structuring at a regional scale. Here we investigate the molecular phylogeny of the cosmopolitan passively dispersing rotifer Brachionus plicatilis (Rotifera: Monogononta) species complex using nucleotide sequence variation from both nuclear (ribosomal internal transcribed spacer 1, ITS1) and mitochondrial (cytochrome c oxidase subunit I, COI) genes. Analysis of rotifer resting eggs from 27 salt lakes in the Iberian Peninsula plus lakes from four continents revealed nine genetically divergent lineages. The high level of sequence divergence, absence of hybridization, and extensive sympatry observed support the specific status of these lineages. Sequence divergence estimates indicate that the B. plicatilis complex began diversifying many millions of years ago, yet has showed relatively high levels of morphological stasis. We discuss these results in relation to the ecology and genetics of aquatic invertebrates possessing dispersive resting propagules and address the apparent contradiction between zooplanktonic population structure and their morphological stasis.
As a consequence of free spawning in the unpredictable nearshore environment, marine species with large fecundities and high pre-reproductive mortality may be subject to extreme variance in reproductive success. If the unpredictability of the ocean results in only a small subset of the adult population contributing to each larval cohort, then reproduction may be viewed as a sweepstakes, with chance events determining which adults are successful each spawning season. Such a reproductive sweepstakes scenario may partially account for large reductions in effective population sizes relative to census population sizes in marine species. We evaluated two predictions of the sweepstakes reproductive success hypothesis by testing: (1) whether sea urchin recruits contain reduced genetic variation relative to the adult population; and (2) whether cohorts of sea urchin recruits are genetically differentiated. Mitochondrial DNA sequences were collected from 283 recently settled Strongylocentrotus purpuratus recruits from four annual cohorts spanning seven years in locations throughout California. Observed haplotype numbers and haplotype diversities showed little evidence of reduced genetic variation in the recruits relative to the diversity estimated from a previously reported sample of 145 S. purpuratus adults. Different cohorts of recruits were in some cases mildly differentiated from each other. A computer simulation of sweepstakes recruitment indicates that our sampling strategy had sufficient statistical power to detect large variances in reproductive success.
Genetic compatibility, nonspecific defenses, and environmental effects determine parasite resistance. Host mating system (selfing vs. outcrossing) should be important for parasite resistance because it determines the segregation of alleles at the resistance loci and because inbreeding depression may hamper immune defenses. Individuals of a mixed mating hermaphroditic freshwater snail, Lymnaea ovata, are commonly infected by a digenetic trematode parasite, Echinoparyphium recurvatum. We examined covariation between quantitative resistance to novel parasites and mating system by exposing snail families from four populations that differed by their inbreeding coefficients. We found that resistance was unrelated to inbreeding coefficient of the population, suggesting that the more inbred populations did not carry higher susceptibility load than the less inbred populations. Most of the variation in resistance was expressed among the families within the populations. In the population with the lowest inbreeding coefficient, resistance increased with outcrossing rate of the family, as predicted if selfing had led to inbreeding depression. In the other three populations with higher inbreeding coefficients, resistance was unrelated to outcrossing rate. The results suggest that in populations with higher inbreeding some of the genetic load has been purged, uncoupling the predicted relationship between outcrossing rate and resistance. Snail families also displayed crossing reaction norms for resistance when tested in two environments that presented low and high immune challenge, suggesting that genotype-by-environment interactions are important for parasite resistance.
Until recently, African and European subspecies of the honeybee (Apis mellifera L.) had been geographically separated for around 10,000 years. However, human-assisted introductions have caused the mixing of large populations of African and European subspecies in South and Central America, permitting an unprecedented opportunity to study a large-scale hybridization event using molecular analyses. We obtained reference populations from Europe, Africa, and South America and used these to provide baseline information for a microsatellite and mitochondrial analysis of the process of Africanization of the bees of the Yucatan Peninsula, Mexico. The genetic structure of the Yucatecan population has changed dramatically over time. The pre-Africanized Yucatecan population (1985) comprised bees that were most similar to samples from southeastern Europe and northern and western Europe. Three years after the arrival of Africanized bees (1989), substantial paternal gene flow had occurred from feral Africanized drones into the resident European population, but maternal gene flow from the invading Africanized population into the local population was negligible. However by 1998, there was a radical shift with both African nuclear alleles (65%) and African-derived mitochondria (61%) dominating the genomes of domestic colonies. We suggest that although European mitochondria may eventually be driven to extinction in the feral population, stable introgression of European nuclear alleles has occurred.
Careful study of apparently generalist phytophagous insects often reveals that they instead represent complexes of genetically differentiated host races or cryptic species. The goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis, attacks two goldenrods in the Solidago canadensis complex: S. altissima and S. gigantea (Asteraceae). We tested for host-associated genetic differentiation in G. gallaesolidaginis via analysis of variation at 12 allozyme loci among larvae collected at six sites in Iowa, Minnesota, and Nebraska. Gnorimoschema gallaesolidaginis from each host are highly polymorphic (3.6–4.7 alleles/locus and expected heterozygosity 0.28–0.38 within site-host combinations). Although there were no fixed differences between larvae from S. altissima and S. gigantea at any site, these represent well differentiated host forms, with 11 of 12 loci showing significantly different allele frequencies between host-associated collections at one or more sites. Host plant has a larger effect on genetic structure among populations than does location (Wright's FST = 0.16 between host forms vs. FST = 0.061 and 0.026 among altissima and gigantea populations, respectively). The estimated FST between host forms suggests that the historical effective rate of gene flow has been low (Nem ≈ 1.3). Consistent with this historical estimate is the absence of detectable recombinant (hybrid and introgressant between host form) individuals in contemporary populations (none of 431 genotyped individuals). Upper 95% confidence limits for the frequency of recombinant individuals range from 5% to 9%. Host association is tight, but imperfect, with only one likely example of a host mismatch (a larva galling the wrong host species). Our inferences about hybridization and host association are based on new maximum-likelihood methods for estimating frequencies of genealogical classes (in this case, two parental classes, F1 and F2 hybrids, and backcrosses) in a population and for assigning individuals to genealogical classes. We describe these new methods in the context of their application to genetic structure in G. gallaesolidaginis. Population phenograms are consistent with the origin of the host forms (at least in the midwestern United States) via a single host shift: altissima and gigantea moth populations form distinct lineages with 100% bootstrap support. Genetic structure in Gnorimoschema is of particular interest because another gallmaking insect attacking the same pair of hosts, the tephritid fly Eurosta solidaginis, includes a pair of host races with partial reproductive isolation. Gnorimoschema gallaesolidaginis and E. solidaginis therefore represent the first reported case of parallel host-associated differentiation, that is, differentiation by evolutionarily independent insect lineages across the same pair of host plants.
A fully resolved cladogram for 19 species in the Charis cleonus group of riodinid butterflies, which have closely parapatric ranges throughout the Amazon basin, is used to derive an area cladogram for the region. This represents the first comprehensive species-level analysis using insects and results in a hypothesis of Amazonian area relationships that is the most detailed to date. The Charis area cladogram is interpreted as supporting an historical vicariant split between the Guianas and the remainder of the Amazon and then between the upper and lower Amazon. The latter two clades can be further divided into the six most widely recognized areas of endemism and even smaller endemic centers within these, some of which, especially along the Madeira and lower Amazon Rivers, have never been previously hypothesized for butterflies. The overall pattern of historical interrelationships indicated is Guiana ((Rondônia (Pará Belém)) (Imeri (Napo Inambari))). The area relationships for riodinid butterflies show substantial congruence with those presented from the literature for amphibians, reptiles, birds, primates, rodents, and marsupials, suggesting a common vicariant history for these organisms. A summary area cladogram generated by combining area cladograms for all the aforementioned groups of organisms indicated the pattern of historical interrelationships to be (Guiana (Rondônia (Pará Belém))) (Imeri (Napo Inambari)). Charis cleonus group species distributions are noticeably larger around the upland periphery of Amazonia and smaller in the central and lower regions. A significant positive correlation between the proportion of range area above 100 m and total range size for each species is used to suggest that past sea-level rises may explain smaller range sizes in low-lying regions and that riverine barriers have been important in shaping the current distribution of C. cleonus group species.
We identify instances of parallel morphological evolution in North American scincid lizards of the Eumeces skiltonianus species group and provide evidence that this system is consistent with a model of ecological speciation. The group consists of three putative species divided among two morphotypes, the small-bodied and striped E. skiltonianus and E. lagunensis versus the large-bodied and typically uniform-colored E. gilberti. Members of the group pass through markedly similar phenotypic stages during early development, but differ with respect to where terminal morphology occurs along the developmental sequence. The morphotypes also differ in habitat preference, with the large-bodied gilberti form generally inhabiting lower elevations and drier environments than the smaller, striped morphs. We inferred the phylogenetic relationships of 53 skiltonianus group populations using mtDNA sequence data from the ND4 protein-coding gene and three flanking tRNAs (900 bp total). Sampling encompassed nearly the entire geographic range of the group, and all currently recognized species and subspecies were included. Our results provide strong evidence for parallel origins of three clades characterized by the gilberti morphotype, two of which are nested within the more geographically widespread E. skiltonianus. Eumeces lagunensis was also nested among populations of E. skiltonianus. Comparative analyses using independent contrasts show that evolutionary changes in body size are correlated with differences in adult color pattern. The independently derived association of gilberti morphology with warm, arid environments suggests that phenotypic divergence is the result of adaptation to contrasting selection regimes. We provide evidence that body size was likely the target of natural selection, and that divergences in color pattern and mate recognition are probable secondary consequences of evolving large body size.
The elaborate songs of songbirds are frequent models for investigating the evolution of animal signals. However, few previous studies have attempted to reconstruct historical changes in song evolution using a phylogenetic comparative approach. In particular, no comparative studies of bird song have used a large number of vocal characters and a well-supported, independently derived phylogeny. We identified 32 features in the complex vocal displays of male oropendolas (genera Psarocolius, Gymnostinops, and Ocyalus) that are relatively invariant within taxa and mapped these characters onto a robust molecular phylogeny of the group. Our analysis revealed that many aspects of oropendola song are surprisingly evolutionarily conservative and thus are potentially useful characters for reconstructing historical patterns. Of the characters that varied among taxa, nearly two thirds (19 of 29) showed no evidence of evolutionary convergence or reversal when mapped onto the tree, which was reflected in a high overall consistency index (CI = 0.78) and retention index (RI = 0.88). Some reconstructed patterns provided evidence of selection on these signals. For example, rapid divergence of the songs of the Montezuma oropendola, Gymnostinops montezuma, from those of closely related taxa suggests the recent influence of strong sexual selection. In general, our results provide insights into the mode of vocal evolution in songbirds and suggest that complex vocalizations can provide information about phylogeny. Based on this evidence, we use song characters to estimate the phylogenetic affinities of three oropendola taxa for which molecular data are not yet available.
We used exogenous gonadotropin hormones to physiologically enlarge litter size in the bank vole (Clethrionomys glareolus). This method allowed the study design to include possible production costs of reproduction and a trade-off between offspring number and body size at birth. Furthermore, progeny rearing and survival and postpartum survival of the females took place in outdoor enclosures to capture salient naturalistic effects that might be present during the fall and early winter. The aim of the study was to assess the effects of the manipulation on the growth and survival of the offspring and on the reproductive effort, survival, and future fecundity of the mothers. Mean offspring body size was smaller in enlarged litters compared to control litters at weaning, but the differences disappeared by the winter. Differences in litter sizes disappeared before weaning age due to higher mortality in enlarged litters. In addition to the effects of the litter size, offspring performance was probably also influenced by the ability of the mother to support the litter. Experimental females had higher reproductive effort at birth, and they also tended to have higher mortality during nursing. Combined effects of high reproductive effort at birth and high investment in nursing the litter entailed costs for the experimental females in terms of decreased probability of producing a second litter and a decreased body mass gain. Thus, enlarged litter size had both survival and fecundity costs for the mothers. Our results suggest that the evolution of litter size and reproductive effort is determined by reproductive costs for the mothers as well as by a trade-off between offspring number and quality.
Sexual dimorphism is widespread in lizards, with the most consistently dimorphic traits being head size (males have larger heads) and trunk length (the distance between the front and hind legs is greater in females). These dimorphisms have generally been interpreted as follows: (1) large heads in males evolve through male-male rivalry (sexual selection); and (2) larger interlimb lengths in females provide space for more eggs (fecundity selection). In an Australian lizard (the snow skink, Niveoscincus microlepidotus), we found no evidence for ongoing selection on head size. Trunk length, however, was under positive fecundity selection in females and under negative sexual selection in males. Thus, fecundity selection and sexual selection work in concert to drive the evolution of sexual dimorphism in trunk length in snow skinks.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere