Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Oriental fruit moth, Grapholita molesta (Busck), is a worldwide pest and is the dominant pest of rosaceous plants in northern China. Little is known, however, about the influence of abiotic factors on the daily life history events of this economically important pest, so here we evaluated the effect of different photoperiods (L:D) (0:24; 2:22; 4:20; 6:18; 8:16; 10:14; 12:12; 14:10; 15:9 [control]; 16:8; 18:6; 20:4; 22:2; and 24:0 h) and light intensities (50, 100, 200, 300, 400, and 500 lux) on the mating behavior and reproduction of oriental fruit moth. We found that oriental fruit moth adults with an 8, 9, or 10 h scotophase showed considerably more courtship behavior than those in other photoperiod treatments. Meanwhile, male fanning and male ‘crawling in a circle’ behaviors significantly decreased with increasing light intensity. Neither female or male oriental fruit moth longevity nor the egg hatch rate were influenced by photoperiod (P = 0.146; 0.271; 0.107) or light intensity (P = 0.268; 0.08; 0.123). In both photoperiod and light intensity treatments (P < 0.05), the number of eggs laid daily by females was significantly influenced by female age, decreasing with greater age. Female oriental fruit moth lifetime fecundity was influenced by photoperiod, with the 9, 10, 16, 18, and 22 h scotophase periods having higher fecundity than other treatments. Meanwhile, fecundity decreased with increasing light intensity.
The Asphondylia prosopidis Cockrell complex with its fungal associate produces four distinct bud galls on honey mesquite (Prosopis glandulosa). They are considered as potential biological control agents to reduce seed production of invasive mesquites. Previous studies suggest that the complex may consist of more than one gall midge species or biotype. Therefore, before conducting host specificity tests, it is essential to understand the relationships among the gall midges in the complex. Each gall type was collected from sympatric regions in Arizona, New Mexico, and Texas for four years. Here we show that midges producing each gall type were clearly separated based on phylogenetic analysis using DNA sequences in the cytochrome oxidase subunit I region. Furthermore, we confirmed that morphological differences between pupae from each gall type were discernible, although variable, using a scanning electron microscope. Based on these differences, we suggest that the A. prosopidis complex consists of four different gall midge species, three of which are cryptic species. Among them, Asphondylia species producing a barrel gall type and A. prosopidis producing the original gall type are potential biological control agents of P. glandulosa because they are multivoltine species with four to five generations per year that complete their annual life cycle exclusively on flower buds of mesquite.
The spotted-wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is attracted to numerous volatile organic compounds (VOCs) emitted from several ripening, small fruit crops. However, the strawberry leaf terpenoid, β-cyclocitral, is reportedly very attractive to D. suzukii (but not to all Drosophila spp.). This suggests that leaf and fruit VOCs may be critical sources needed to further develop a more species-specific D. suzukii monitoring lure, or semiochemically based attract-and-kill systems. This study investigated the electrophysiological responses of male and female D. suzukii towards selected host fruit-ripening VOCs and β-cyclocitral, along with behavioral responses toward combined fruit VOCs with β-cyclocitral. Electroantennogram (EAG) results revealed a positive dose–response, for both sexes, as concentrations increased for all VOCs tested. For β-cyclocitral, hexyl acetate and methyl butyrate, the mean male EAG responses were significantly greater than the female responses at lower doses. In caged behavioral bioassays, only in the β-cyclocitral treatments were the mean number of flies captured (sexes combined) significantly greater than that captured in solvent (mineral oil) controls. Our study has demonstrated that while single fruit-based VOCs alone are not enough to cause a strong behavioral attraction by both male and female D. suzukii, the addition of β-cyclocitral did produce a significant attraction response from both sexes. In both bioassays, males had higher responses to β-cyclocitral than females, which suggest a greater sensitivity to this compound. Further studies are needed to ascertain the role β-cyclocitral may play in the development of a more species-specific D. suzukii monitoring lure.
Arboreal ant communities are primarily structured by interactions among ant species, food availability, and physical structures within the environment. Epiphytes are a common feature of tropical forests that can provide ants with both food and nesting space.To date, little work has examined what role epiphytic ant-plants play in structuring arboreal ant communities. We surveyed ant species inhabiting the Australian epiphytic ant-plant Myrmecodia beccarii Hook.f. (Gentianales: Rubiaceae) and how arboreal ant communities are structured in relation to M. beccarii presence on trees. Myrmecodia beccarii was inhabited by the ant Philidris cordata Smith, F. (Hymenoptera: Formicidae) on the majority of Melaleuca viridiflora Sol. Ex Gaertn. (Myrtales: Myrtaceae) trees with ant-occupied ant-plants at our two sites. Dominant arboreal ant species at both study sites exhibited discrete, nonoverlapping distributions, and C-score analysis detected an ant mosaic at one site. The distribution of P. cordata was limited by the distribution of ant-plants for both sites. Philidris cordata dominance on trees was also determined by the presence of M. beccarii occupied by P. cordata at both sites. We suggest that by providing P. cordata with nesting space M. beccarii plays a role in structuring these arboreal ant communities.
Multiple predatory ant species, including the red imported fire ant, Solenopsis invicta (Buren) (Hymenoptera: Formicidae), have been reported to attack ixodids (Ixodida: Ixodidae), but evidence has largely been circumstantial. When living lone star tick, Amblyomma americanum (L.) (Acarina: Ixodidae), eggs, and unfed and blood-engorged larvae, nymphs, and adults were deployed on bait transects with hot dog slices and dead house flies, Musca domestica L., in West, Central, and South Texas. The various ixodid life stages were not attacked while ants were strongly recruited to the hot dog and M. domestica baits. Similarly, when the same ixodid life stages and other baits were placed adjacent to colonies of two ant species (red harvester ant, Pogonomyrmex barbatus (Smith) and the red imported fire ant, Solenopsis invicta Buren) the ixodids were not preyed upon while hot dog slices and dead M. domestica were immediately attacked. Some ant species dragged blood-engorged adult ixodids and eggs away from the colony entrance, where they were originally placed, and discarded them. Evidence and mechanisms for allomone-based ant deterrence in the genera Amblyomma, Dermacentor, and Rhipicephalus (metastriate ixodids) are discussed. Protection of ixodids from predatory ants helps to explain why metastriate ixodids remain problematic worldwide despite the presence of predaceous ants.
Arthropod food webs can be indirectly impacted by woody plant invasions, with cascading consequences for higher trophic levels.There are multiple bottom-up pathways by which invasive plants can alter food webs: aboveground interactions based on plant-herbivore associations and below-ground at the interface of leaf-litter and soil food webs. We compared arthropod community composition in these two food web dimensions in a New York forest that has been heavily invaded by nonnative Japanese barberry. Using two sampling protocols, we compared arthropod community composition on Japanese barberry shrubs to multiple species of native host shrubs and then compared leaf-litter arthropod assemblages between forest patches with exceptionally high Japanese barberry densities and those with relatively little to no Japanese barberry present. Fitting with trends in other woody shrub invasions, arthropod species richness was significantly lower in the leaf litter around Japanese barberry and on Japanese barberry plants themselves. Although overall arthropod abundance was also significantly lower on and in the leaf litter around Japanese barberry than on and around native shrubs, total biomass did not differ due to the taxa associated with Japanese barberry tending to be larger-bodied.We observed a dramatic reduction in predatory arthropods in response to both bottom-up pathways, particularly among ants and spiders. Our results show that Japanese barberry-invaded habitats may be experiencing trophic downgrading as result of lower numbers of generalist predators like spiders and ants, which may have rippling effects up the food web to insectivorous animals and their predators.
The pistachio green stink bug, Brachynema germari Kolenati, is an abundant and economic insect pest in most pistachio-growing regions. Some physiological and ecological features of this pest have been studied, but the microbiological nature of symbiotic bacteria and biological aspects of this host–symbiont interaction have been poorly understood. In the present study, we explored the host-associated environment, phylogeny, and acquisition features of the bacterial symbiont of the insect. Furthermore, the importance of the symbiont on the biological (i.e., lifespan, stage composition, and body weight) and behavioral characteristics (i.e., resting/wandering behaviors of the newborn nymphs) of the host were investigated. We found that a rod-shaped gammaproteobacterium was persistently colonized the fourth midgut region of the insect. Molecular phylogenetic and fluorescence in situ hybridization analyses strongly suggest that this symbiont should be placed in the genus Pantoea of the Enterobacteriales. Egg surface sterilization resulted in the aposymbiotic insects suggesting the vertical transmission of symbiont via egg surface smearing upon oviposition. Symbiotic and aposymbiotic B. germari showed no significant differences in the wandering behaviors of the first nymphal stages, whereas the symbiont-free insects exhibited retarded growth, lower longevity, and adult body weight. Taken together, these data provide a better understanding of the relationship between the bacterial symbiont and B. germari and demonstrate that the insect is heavily affected by the deprival of its gut symbionts.
The Chinese cordyceps, regarded as the ‘Himalayan Viagra’, is highly valued for its medicinal benefits. The decline of its yield due to over-exploitation and increased market demand have stimulated efforts to artificially cultivate Chinese cordyceps for over half a century. However, successful cultivation of Chinese cordyceps through caterpillar infection by the fungus Ophiocordyceps sinensis (Berk.) and the induction of the fruiting body from each mummified cadaver remains difficult for its complex life cycle. Herein, we report the developmental dynamics of hyphal bodies in hemolymph of injected Thitarodes xiaojinensis (Tu, Ma & Zhang) larvae and the success in artificial cultivation of sexual fruiting bodies from the mummified cadavers in the low-altitude area. We find that not only the numbers of hyphal bodies but also the conversion of hyphal bodies into hyphae played important roles in the mummification of the injected larvae. This cultivation will be beneficial for sustainable utilization of natural resources and provides the possibility for further research on the mechanism of the interaction between pathogenic fungus and host insect.
Insect-resistant genetically modified (GM) plants have been cultivated in several countries on a large scale.These plants express the Cry toxins from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt), which confers target-pest resistance to plants. Studies on the effects of GM plants on nontarget organisms are important to assess the technology's impact on biodiversity.The objective of this study was to determine whether there are differences in the species richness and composition of ants and ground beetles in Bt maize (four different toxins: Cry1Ab, Cry1F, and Cry1A.105/Cry2Ab2) and conventional isoline (non-Bt) fields, in the first (summer) and second (winter) cropping seasons in 13 localities of Mato Grosso do Sul State, Brazil, over a 2-yr period (2009–2011).The assessment of Coleoptera and Formicidae species was performed using pitfall traps placed in fields throughout the period of vegetative growth and maturation of plants. Data were analyzed using faunistic indices of species richness, ordination by nonmetric multidimensional scaling, and multivariate analysis of variance. No statistically significant difference was found in the species richness of ant and ground beetle communities when comparing sites of Bt with those of non-Bt maize. Overall, Bt technology did not affect the composition of ant and ground beetles; however, municipality and cropping season exerted influence on the beetle composition. Some species were only observed in the first crop, whereas others were only observed in the second crop.This research suggests that Bt maize does not affect ant and ground beetle populations differently from its isoline.
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), the brown marmorated stink bug, is an invasive polyphagous insect that can cause serious economic injury to specialty and row crops in the United States and globally. To date, H. halys has been managed with repeated insecticide applications. While progress has been made toward development of trap-based monitoring tools to guide management decisions, little is known regarding the trapping area over which a single pheromone-baited trap captures H. halys. We conducted single trap, multiple distance mark-release-recapture experiments; results were used to estimate trapping area for nymphs and adults in sites without host plants present (open field) and for adults in sites with host plants present (apple orchard). Plume reach for pheromone-baited sticky traps was consistently estimated to be <3 m. Maximum dispersive distance in an open field devoid of host plants was estimated to be 40 m for nymphs and 120–130 m for adults resulting in trapping areas of 0.58 ha and 4.83–5.56 ha, respectively. When traps were deployed in association with host plants within the border row of an apple orchard, adult maximum dispersive distance and trapping area was reduced to 70 m and 1.67 ha, respectively. These results indicate that the behavioral response of H. halys to pheromonal stimuli is influenced by the presence of host plants and that trapping area for pheromone-baited traps will likely change relative to the cropping system in which it is deployed. Caution should be taken when extrapolating these results, because the measured values may differ in other crop systems.
Pest abundance on urban trees often increases with surrounding impervious surface. Gloomy scale (Melanaspis tenebricosa Comstock; Hemiptera: Diaspididae), a pest of red maples (Acer rubrum L.; Sapindales: Sapindaceae) in the southeast United States, reaches injurious levels in cities and reduces tree condition. Here, we use a chronosequence field study in Raleigh, NC, to investigate patterns in gloomy scale densities over time from the nursery to 13 yr after tree planting, with a goal of informing more efficient management of gloomy scale on urban trees. We examine how impervious surfaces affect the progression of infestations and how infestations affect tree condition. We find that gloomy scale densities remain low on trees until at least seven seasons after tree planting, providing a key timepoint for starting scouting efforts. Scouting should focus on tree branches, not tree trunks. Scale density on tree branches increases with impervious surface across the entire studied tree age range and increases faster on individual trees that are planted in areas with high impervious surface cover. There is a lag between the onset of pest infestations and a decline in tree condition, indicating that gloomy scale management should begin prior to a visible decline in tree condition. Our results inform management of gloomy scale in cities.
Phytophagous insects synchronize emergence with plant phenology by engaging in dormancy during periods of host scarcity and environmental stress. Regulation of dormancy is achieved through response to seasonal cues. While temperature and photoperiod are important cues in temperate latitudes, seasonal humidity, such as the onset of rains, can be a reliable cue to for synchronization of emergence and affects survival of overwintering insects. We compared response of Mexican Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) populations inhabiting subtropical environments differing in humidity patterns, to seasonal humidity regimes. Both populations emerged as adults in high proportions and suffered lower mortality under humidity regimes ending with a humid summer, but the effect was more pronounced for the Eje Volcanico Trans Mexicano (EVTM) population, which inhabits a dryer environment and undergoes longer dormancy. While there were no differences among pupae from the Sierra Madre Oriental (SMO) in percent of non-emerged pupae surviving and engaging in prolonged dormancy after a year, EVTM pupae exposed to an initial humid period engaged in prolonged dormancy in higher proportions than those exposed to other regimes. Seasonal humidity had little effect on the duration of dormancy, but EVTM pupae exposed to consecutive dry periods took longer to emerge than those exposed to other regimes. Our results suggest that rather than being used as a token stimulus, humidity affected survival of overwintering R. pomonella, especially at the end of dormancy when energy reserves are depleted and there is an increase in metabolic rate that renders EVTM pupae more susceptible to desiccation.
Insect herbivores, especially sap-feeders, are sensitive to host-plant nitrogen quantity. However, past studies present contradicting results on sap-feeder life history traits influenced by plant nitrogen supplementation. This study analyzed the bottom-up effects of below-recommended nitrogen fertilization rates (0, 0.021, 0.048, and 0.091 g N/liter) on life history and total protein and lipid contents of a significant pest species, Phenacoccus madeirensis Green (the Madeira mealybug) (Hemiptera: Pseudococcidae). Developmental durations and survivorship from egg to adulthood of male and female mealybugs were similar across nitrogen fertilization levels. Females reared on plants fertilized at 0.021, 0.048, and 0.091 g N/liter produced, respectively, 152, 142, and 67% more eggs than females reared on unfertilized plants. Finite and intrinsic rates of increase and net reproductive rates of females were similar among the nitrogen fertilization levels, whereas the generation times of females from fertilized plants were significantly shorter than those from the unfertilized plants. Lipid contents of adult females and eggs, and average adult female protein content were similar across the nitrogen treatments. Average egg protein content increased with increasing host-plant fertilization rate.These results suggest that the response of the female Madeira mealybug to nitrogen fertilization is complex and may involve trade-offs and nutrient re-allocation.
Many plants use terpenoids and other volatile compounds as semiochemicals. Reception of plant volatiles by conspecifics may trigger a defensive phytochemical response. These same compounds can also function as host recognition signals for phytophagous insects. In this experiment, we find that when the specialist gall-forming fly Eurosta solidaginis (Fitch; Diptera: Tephritidae) attacks its tall goldenrod (Solidago altissima (L.; Asterales: Asteraceae)) host plant, the fly indirectly induces a phytochemical response in nearby tall goldenrod plants. This phytochemical response may, in turn, act as a positive signal attracting the goldenrod specialist aphid Uroleucon nigrotuberculatum (Olive; Hemiptera: Aphididae). Laboratory-based experiments exposing ungalled tall goldenrod plants to the volatiles released by E. solidaginis galls demonstrated a consistent increase in foliar terpenoid concentrations in ungalled plants. Analysis of tall goldenrod stem and gall tissue chemistry revealed induction of terpenoids in gall tissue, with a simultaneous decrease in green leaf volatile concentrations. Field experiments demonstrated a consistent spatial relationship in tall goldenrod foliar terpenoid concentrations with distance from an E. solidaginis gall. Both laboratory and field experiments establish consistent induction of the terpene β-farnesene, and that this compound is a strong positive predictor of U. nigrotuberculatum aphid presence on goldenrod plants along with plant biomass and several other foliar terpenoids.These findings suggest E. solidaginis induced phytochemistry, especially β-farnesene, may be acting as a kairomone, driving aphid distribution in the field.
Salinization is one of the most critical abiotic stress factors for crops and a rising setback in agro-ecosystems. Changes in weather, land usage, and the salinization of irrigation water are increasing soil salinity of many farmlands. Increased soil salinity alters the plant quality, which subsequently may trigger bottom-up effects on herbivorous insect. We examined the bottom-up effect of salinity stress on population parameters of the brown planthopper (BPH), Nilaparvata lugens through rice (Oryza sativa L.) plant. The results revealed that salinity interfered with egg hatching of BPH. The nymphal development period, adult longevity, and oviposition were also influenced by salinity. Notable differences appeared in the intrinsic growth rate (r), the finite increase rate (λ) and the net reproduction rate (R0) of BPH, and a concentration-dependent effect was detected. Although salinity adversely affected BPH development, population projection predicted a successful growth of the BPH population in a relatively short time under the treatment of low and medium levels of salinity (6, 8, and 10 dS/m of NaCl), whereas higher salt concentrations (12 and 14 dS/m) lead to significant fitness costs in BPH populations. Our study predicts that BPH could become a problem in areas with lower and medium salinity and that those planthoppers may exacerbate the negative effects of salinity for rice production. This study will provide valuable information for understanding the field abundance and distribution of BPH on saline rice field, thus contributing to the development of eco-friendly strategies to manage this pest in saline ecosystems.
The winter moth, Operophtera brumata (L.) is an invasive forest and agricultural pest in North America that causes severe defoliation to a wide range of host species. This study examines the differential larval densities, development, and survival on seven host species in midcoast Maine: red oak (Quercus rubra L., Fagales: Fagaceae), apple (Malus domestica L., Rosales: Rosaceae) and crab apple (Malus sp. L., Rosales: Rosaceae), red maple (Acer rubrum L., Sapindales: Sapindaceae), pin cherry (Prunus pensylvanica L., Rosales: Rosaceae), white birch (Betula papyrifera L., Fagales: Betulaceae), wild lowbush blueberry (Vaccinium angustiflolium L., Ericales: Ericaceae), and highbush blueberry (Vaccinium corymbosum L., Ericales: Ericaceae). We also explore the degree of synchrony between selected host plants and larval hatch and its effect on survival. We found that densities, development, and survival were significantly greater on red oak (Quercus rubra) and apple (Malus sp.) than on all other target species and were lowest on pin cherry (Prunus pennsylvanica). We found low larval densities in open, wild lowbush blueberry fields; however, larvae successfully fed and developed on wild lowbush blueberry in a laboratory setting. This suggests that winter moth is a potential pest to wild lowbush blueberry in Maine if the outbreak expands to include areas with wild lowbush blueberry production.
Ectropis obliqua Prout is the main pest of the tea plant Camellia sinensis (L.) O. Kuntze in China, affecting an annual area of more than one million acres. (–)-Epigallocatechin-3-gallate (EGCG) is the major catechin in tea leaves. Here, we show that EGCG is highly efficient in increasing the survival rate of E. obliqua larvae. We also compared the gut peroxidase (PO) activity between EGCG-fed and control larvae. EGCG-fed larvae had significantly greater PO activity levels than control larvae. Western blotting validated these results. Gut PO activity levels of larvae fed an artificial diet gradually decreased and disappeared completely by day 5. We hypothesize that the increased survival rate of EGCG-fed larvae was associated with increased PO activity.This research provides evidence that E. obliqua larvae have adapted to, and may even benefit from, secondary compounds found in tea leaves.
Monophagous insects that use discrete resources for oviposition and feeding are especially sensitive to variations in host quality and availability because their opportunities to find these resources are scarce. The monophagous tephritid fly Anastrepha spatulata Stone is a tephritid fly that uses as hosts the fruits of the non-economically important Schoepfia schreberi J. F. Gmel. Scant information of host utilization behavior in the field is available for this species. Wild individually marked flies were observed during the fruiting season. Observations of oviposition, feeding and resting on three trees were taken hourly from 0900 to 1800 hours on days with benign weather. Our results suggest that females can use fruits for oviposition or for feeding according to a temporal scale. Females were significantly more likely to feed on smaller hosts and oviposit in larger ones. Additionally, individual variation in host patch exploitation was detected. However, females that fed on a natural food source such as host fruit juice oviposited fewer eggs than females provided an artificial diet of sucrose and hydrolyzed yeast. Results indicate that females use different foraging tactics during the fruiting season and confirm that, in this case, the host plant is not the center of activity.
Although insect defoliators are recognized as major agents of ecological change in North American forests, their ecology in industrially degraded landscapes with poor-quality soils, metal contamination, and marginal vegetation growth is largely unknown. We fed gypsy moth larvae (Lymantria dispar L.) paper birch leaves (Betula papyrifera Marsh) (Fagales: Betulaceae) collected from four forested catchment areas near an abandoned Cu/Ni smelter in Sudbury (Ontario, Canada) with different histories of industrial degradation and remediation (reference, remediated, natural recovery, and degraded). We measured caterpillar feeding, frass properties and decomposability, and the effects of frass on the growth of ticklegrass (Agrostis scabra Willd.) (Poales: Poaceae). Caterpillars generally ate more (+25–50%) and produced more frass (+30–40 %) on a diet of leaves from the more industrially degraded sites. Frass had an overall positive effect on plant survivorship (+4.1–10.8 effect size) and growth (+0.1–0.5 effect size), although the smallest benefits came from frass derived from vegetation from the more heavily degraded sites. Our results suggest that defoliating insects respond to differences in environmental degradation and remediation and that industrial landscapes may be particularly susceptible to more extensive defoliation and increased conversion of foliar biomass into frass, which could alter plant growth and survivorship, soil development, and nutrient and metal cycling. Some of these effects may pose additional challenges to landscape recovery (e.g., increased defoliation) while others may be beneficial (e.g., enhanced plant growth and soil development).
Bumble bees are commonly used to provide pollination services within crop fields and greenhouses, with Bombus impatiens Cresson; Hymenoptera: Apidae, a bee native to the eastern United States, being the only managed bumble bee available commercially in the United States. Although many researchers have explored managed bumble bees' ability to pollinate various crops and the potential spread of pathogens by managed bumble bees, scant research is available on how managed bumble bee colony health is affected after foraging within crop fields. We measured 10 B. impatiens colony health parameters: 1) colony weight; number of 2) honey/pollen pots, 3) workers, 4) queens, 5) drones, 6) immatures, 7) eggs; and weight of 8) workers, 9) drones, and 10) queens from colonies that foraged within blueberry or watermelon fields, and compared them to control colonies that were purchased and immediately frozen upon receipt. Bees that foraged within blueberry increased in colony weight and in the number of immatures and eggs during the bloom period compared to control colonies. In contrast, bee colonies placed within watermelon decreased in colony weight, number of workers and immature bees, and individual bee weight compared to control colonies. Blueberry appeared to provide bees with sufficient nectar and pollen, whereas watermelon may not have provided adequate resources for the bees. Bees foraging within watermelon were probably forced to search for other sources of pollen and nectar, resulting in colony health parameter declines. Our data suggest that some crops (e.g., blueberry) can support managed B. impatiens, potentially adding to localized bumble bee populations, while others (e.g., watermelon) cannot.
Native and introduced bees were attracted to and captured in commercially available Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), traps baited with floral lure components: geraniol, eugenol, and phenethyl propionate [PEP] in Rhode Island, Ohio, and Tennessee. Studies in Rhode Island showed that Bombus impatiens Cresson (Hymenoptera: Apidae) was significantly more attracted to geraniol alone and as a component in floral lure blends than to either eugenol or PEP alone. Xylocopa virginica (L.) (Hymenoptera: Apidae) was more selective in being primarily attracted to traps baited with higher amounts of geraniol in 2016. Removing geraniol from the floral lure blend did not significantly reduce Japanese beetle captures in 2017 and 2018 in Rhode Island and Ohio but did significantly reduce bee captures in Rhode Island in 2017 and 2018. Green, black, brown, and red traps captured significantly fewer bees than clear or standard yellow vane and green cage traps in 2018 in Rhode Island and Tennessee; however, there were no significant differences between Japanese beetle captures in any of the colored or clear traps. Our results show that using all green traps with a lure composed of eugenol and PEP and the Japanese beetle female produced sex pheromone can effectively capture Japanese beetles while minimizing bycatch of bees.
Joseph S. Elkinton, Tonya D. Bittner, Valerie J. Pasquarella, George H. Boettner, Andrew M. Liebhold, Juli R. Gould, Heather Faubert, Lisa Tewksbury, Hannah J. Broadley, Nathan P. Havill, Ann E. Hajek
We collected data on mortality of late-instar gypsy moth, Lymantria dispar (L.), from outbreak populations over 4 wk in June 2017 at 10 sites in the New England region of the United States, along with estimated rainfall at these sites. Deposition of airborne conidia of the fungal pathogen, Entomophaga maimaiga Humber, Shimazu & R.S. Soper, was measured at these same sites as well as at seven other locations in New England. We also quantified the geographical distribution of gypsy moth-caused defoliation in New England in 2017 and 2018 from Landsat imagery. Weekly mortality of gypsy moth larvae caused by E. maimaiga correlated with local deposition of conidia from the previous week, but not with rainfall. Mortality from this pathogen reached a peak during the last 2 wk of gypsy moth larval development and always exceeded that caused by LdNPV, the viral pathogen of gypsy moth that has long been associated with gypsy moth outbreaks, especially prior to 1989. Cotesia melanoscela (Ratzeburg) was by far the most abundant parasitoid recovered and caused an average of 12.6% cumulative parasitism, but varied widely among sites. Deposition of E. maimaiga conidia was highly correlated with percent land area defoliated by gypsy moths within distances of 1 and 2 km but was not significantly correlated with defoliation at distances greater than 2 km.This is the first study to relate deposition of airborne conidia of E. maimaiga to mortality of gypsy moths from that agent.
Invasive insect pests can be challenging to manage because their recent arrival provides limited information on which to build predictive population models. The magnitude and timing of activity by the invasive vinegar fly, Drosophila suzukii, in crop fields has been unpredictable due to its recent arrival in many new regions of the world and changes in methods for its detection. Using 7 yr of consistent trapping of adults at four blueberry farms in Michigan, United States, we modeled the temporal and environmental factors influencing D. suzukii activity. We found that this pest established high levels within 2 yr of being detected, with peak fly activity continuing to increase. Fly activity timing and abundance were predicted by the annual number of days below 0°C, the number of winter and spring days above 10°C, and by the fly activity in the preceding year, providing support for overwintering in our region. We monitored larval infestation for 4 yr at these same sites and found a moderate positive correlation between larvae in fruit and adults in traps. Finally, we developed a generalized additive model to predict D. suzukii fly capture throughout the season based on relevant environmental factors and examined the relative timing and magnitude of activity under varying winter and spring temperature conditions. Our results suggest that D. suzukii activity is predictable and that environmental conditions can be used in temperate regions to provide regional risk warnings as a component of strategies to manage this invasive insect pest.
Sampling methods for detecting stink bugs are intensive, time-consuming, and yield variable results. In a 2-yr mark-release-observe experiment, over 500 adult green stink bugs, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), were used to test for variation in nocturnal and diurnal insect distribution patterns on cotton. Field-collected stink bugs were marked or unmarked with nontoxic fluorescent sharpie markers, released, and monitored in cotton fields at peak bloom. Stink bugs were monitored visually during day and night, aided by a handheld blacklight for nighttime observations. Within-cotton distribution insect observations were categorized by plant section (i.e., bottom, middle, and top branches), by fruiting positions and leaf surface, and by concealed or exposed orientation on floral bracts and leaf surfaces. Green stink bugs were primarily distributed on the middle and top branches irrespective of photoperiod, and on bolls in first position from the main stem. Differences in stink bugs observed concealed or exposed on fruiting structures were detected. During daytime, stink bugs were primarily observed inside the bract of bolls, and when detected on leaves concealed on the lower surface. In contrast, stink bugs were primarily outside the bract of bolls at night, and when detected on leaves were exposed on an upper surface.These results support focus on assessing internal boll injury for evaluating stink bug injury to avoid the challenges in stink bug detection observed here, and point to additional study to refine stink bug density estimation when needed.
Pyramiding (combining) of plant incorporated protectants (PIPs) with insecticidal activity in genetically engineered crops is a strategy used to improve efficacy as well as delay potential resistance for a specific group of targets. In some countries, a regulatory risk assessment is required for breeding “stacks” expressing multiple PIPs and these countries may require an assessment of potential interaction among the PIPs. This study evaluated whether combining soybean events MON 87551 and MON 87701 results in a toxicological interaction that effects a species that is controlled by each event. MON 87751 coexpresses the Cry1A.105 and Cry2Ab2 proteins and MON 87701 expresses the Cry1Ac protein. EC50 values for MON 87751 and MON 87701 were comparable in diet-incorporation bioassays using corn earworm (Lepidoptera: Noctuidae, Helicoverpa zea) and the observed combined activity of the stack was consistent with predictions of additivity (i.e., no interaction). Under the concentration and response addition models, predicted and observed median effect levels differed by <10%. These results demonstrate independent action at the median effect level between the insecticidal activity of MON 87751 and MON 87701. Taken together, no interaction between these PIPs and acceptable margins of safety for the individual proteins to nontarget organisms, it is appropriate to bridge back to the risk assessments for the individual products that demonstrated environmental safety of stack products containing both MON 87751 and MON 87701.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere