Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Zebra chip disease (ZC) is an emerging disease of potato in which tubers are produced with striped necrotic patterns that make them unmarketable. ZC is associated with the bacterium “Candidatus Liberibacter solanacearum” (Lso), which is transmitted by the potato psyllid, Bactericera cockerelli (Šulc; Hemiptera: Triozidae). First found in Idaho during 2011, ZC now contributes to increased production costs each season via additional insecticide sprays. To clarify the extent and severity of the threat of ZC in Idaho, we sampled potato psyllids in commercial potato fields across the state over four growing seasons (2012–2015). All life stages of psyllids were sampled using a combination of methods (yellow sticky traps, vacuum samples, and leaf samples), and adult psyllids were tested for the presence of Lso by Polymerase Chain Reaction (PCR). Abundance of potato psyllids initially increased gradually over each growing season, then exhibited a sharp late-season rise and a sharp decline as most fields were being harvested. Abundance of psyllids was higher at warmer, lower elevation sites, but infestation onset did not differ between growing regions. Fewer psyllids were collected in vacuum samples than in sticky trap samples. Nymphs and eggs were found only late season and during years with high abundance of adults. Overall incidence of Lso was similar among all years but one. The results presented here clarify our understanding of the seasonal phenology of potato psyllids and Lso in Idaho potato fields and will aid in developing integrated management strategies against this important pest of potato.
Fruit flies are among the most damaging insect pests of commercial fruit in Brazil. It is important to understand the landscape elements that may favor these flies. In the present study, spatial data from surveys of species of Anastrepha Schiner (Diptera:Tephritidae) in an urban area with forest fragments were analyzed, using geostatistics and Geographic Information System (GIS) to map the diversity of insects and evaluate how the forest fragments drive the spatial patterns. The results indicated a high diversity of species associated with large fragments, and a trend toward lower diversity in the more urbanized area, as the fragment sizes decreased. We concluded that the diversity of Anastrepha species is directly and positively related to large and continuous forest fragments in urbanized areas, and that combining geostatistics and GIS is a promising method for use in insect-pest management and sampling involving fruit flies.
The pine bark adelgid, Pineus strobi Hartig (Hemiptera: Adelgidae), is a native herbivore of eastern white pine, Pinus strobus L. (Pinales: Pinaceae), in eastern North America. P. strobi does not appear to have any dominant overwintering lifestage in southwest Virginia, as it does in its northern range. Eggs can be found consistently from late March through early December and may be produced sporadically later throughout the winter during warm periods. Two distinct generations were observed in the spring, after which life stage frequencies overlapped. Adult body size varied seasonally and was greatest in the spring. The present study constitutes the first recording of phenological details of the P. strobi in its southern range, informing biological control efforts aimed at closely related invasive pests. The phenological plasticity observed between northern and southern P. strobi populations provides insight into the potential effects of climate on the population dymanics of this and related species.
One of the most tangible outcomes of climate change is change in the frequency of El Niño/La Niña events. They have a large impact on rainfall in the Western hemisphere, but their impact on tropical fauna is largely unknown. A decade long capture-mark-recapture study of the widespread Ecuadorian butterfly Nessaea hewitsoni (Felder & Felder) from an intact forest allowed us to analyze patterns of monthly and seasonal population dynamics before, during, and after an El Niño event. El Niño events did not affect long-term population size, but a 5-month delayed El Niño led to temporary emigration of females, with their subsequent return. Increased rainfall correlated with reduced survival in both sexes, but this effect was twice as strong in females. This investigation is the longest, continuous population study on any Neotropical insect species. Though we sampled on a modest scale, the magnitude of El Niño events suggests that our findings likely reflect insect population responses across a much larger portion of Amazonian forests.This study underscores the importance of analyzing multiple, interacting population parameters beyond local abundance in order to understand the biotic responses to El Niño and climate change in tropical systems. Had our analyses not included temporary emigration, no effect would have been detected because El Niño did not affect local population abundance.
The invasive brown marmorated stink bug, Halyomorpha halys (Stål; Hemiptera: Pentatomidae), has recently emerged as a harmful pest of horticultural crops in North America and Europe. Native to East Asia, this highly polyphagous insect is spreading rapidly worldwide. Climate change will add further complications to managing this species in terms of both geographic distribution and population growth. This study used CLIMEX to compare potential H. halys distribution under recent and future climate models using one emission scenario (A2) with two different global circulation models, CSIRO Mk3.0 and MIROC-H. Simulated changes in seasonal phenology and voltinism were examined. Under the possible future climate scenarios, suitable range in Europe expands northward. In North America, the suitable H. halys range shifts northward into Canada and contracts from its southern temperature range limits in the United States due to increased heat stress. Prolonged periods of warm temperatures resulted in longer H. halys growing seasons. However, future climate scenarios indicated that rising summer temperatures decrease H. halys growth potential compared to recent climatic conditions, which in turn, may reduce mid-summer crop damage. Climate change may increase the number of H. halys generations produced annually, thereby enabling the invasive insect to become multivoltine in the northern latitudes of North America and Europe where it is currently reported to be univoltine. These results indicate prime horticultural production areas in Europe, the northeastern United States, and southeastern Canada are at greatest risk from H. halys under both current and possible future climates.
Tropical forests account for at least 50% of documented diversity, but anthropogenic activities are converting forests to agriculture and urban areas at an alarming rate, with potentially strong effects on insect abundance and diversity. However, the questions remain whether insect populations are uniformly affected by land conversion and if insect conservation can occur in agricultural margins and urban gardens. We compare butterfly populations in tropical secondary forests to those found in sugarcane and urban areas in coastal Guyana and evaluate the potential for particular butterfly communities to inhabit human-modified landscapes. Butterflies were sampled for 1 yr using fruit-baited traps in three separated geographical locations on the coast. We used nonmetric multidimensional scaling to assess differences in species assemblages and a generalized linear mixed model to evaluate abundance, species richness, evenness, and diversity. The secondary forests in all three locations supported higher butterfly abundance and diversity than other human-modified areas, although the magnitude of this effect varied by season and location. However, each land use supported its own type of butterfly community, as species composition was different across the three land uses. Sugarcane field margins and urban gardens supported populations of butterflies rarely found in our tropical secondary forest sites. Land management practices that encourage forest conservation along with butterfly-friendly activities in human settlements and agricultural areas could improve butterfly conservation. To this end, butterfly conservation in Guyana and other tropical landscapes would benefit from a shift from inadvertently to actively making the landscape attractive for butterflies.
Mediterranean oak forests of the Iberian Peninsula host a great diversity of saproxylic beetles. For centuries, humans have carried out traditional management practices in this area, at both habitat and tree level, causing changes in forest structure.The aim of this study was to evaluate the anthropic effect of these traditional practices on saproxylic beetle diversity by measuring a set of environmental variables related to forest structure at both plot and tree level. Fauna was collected using window traps over a period of 12 mo. Multiple regression procedures showed which variables significantly affected the diversity of the studied assemblage. Our results demonstrated that the different metrics used to assess the diversity of assemblages responded variably depending on the management strategies applied and the level at which they were carried out. Certain management practices that disrupted the landscape from its natural state, such as the introduction of livestock or the local removal of particular trees, maximized species richness but, nevertheless, had a negative effect on the rest of diversity metrics analyzed. However, other practices such as pollarding, which involves the suppression of the main branch of the tree, had a positive effect on all diversity metrics evaluated as it promoted the formation of potential microhabitats for saproxylic fauna. We concluded that not all types and degrees of traditional forest management favor saproxylic beetle diversity and that different diversity metrics should be taken into consideration in future strategies for the protection and conservation of this fauna.
In this work, we investigated the factors that determine the distribution of galling insects in high-altitude grasslands, locally called ‘campos de altitude’ of Mantiqueira Range and tested whether 1) richness of galling insects decreases with altitude, 2) galling insect richness increases with plant richness, 3) variation in galling insect diversity is predominantly a consequence of its β component, and 4) turnover is the main mechanism driving the beta diversity of both galling insects and plants. Galling insect richness did not exhibit a negative relationship with altitude, but it did increase with plant richness. The additive partition of regional richness (γ) into its local and beta components showed that local diversity (α) of galling insects and plants was relatively low in relation to regional diversity; the β component incorporated most of the regional diversity. This pattern was also found in the multiscale analysis of the additive partition for galling insects and plants. The beta diversity of galling insects and plants was driven predominantly by the process of turnover and minimally by nesting. The results reported here point out that the spatial distribution of galling insects is best explained by historical factors, such as the distribution of genera and species of key host plants, as well as their relation to habitat, than ecological effects such as hygrothermal stress – here represented by altitude.
Land use changes and forest fragmentation result in biodiversity loss and displacement, with insects among the most affected groups. Among these, bark beetles (Curculionidae: Scolytinae) occupy a prominent position due to their close ties to food resources, i.e., trees, and importance as primary decomposers in forest ecosystems. Therefore, our study aimed to document scolytine biodiversity associated with landscape components that vary based on their physical or botanical composition. Bark beetle diversity was sampled monthly for 12 mo in an Atlantic forest remnant and five adjacent vegetation plots (mixed Agroforestry System—AFS, of native trees and fruit species; AFS of rubber trees and coffee plants; coffee monoculture; rubber monoculture; and pasture). In total, 1,833 individuals were sampled from 38 species of which 24 (63%) were detected in very low abundance. The remaining 14 species were more abundant and widespread almost in all areas. Hypothenemus hampei (Westwood), Premnobius cavipennis (Eichhoff), Hypothenemus sp1., and Xyleborus volvulus (Fabricius) were the most abundant. The greatest abundance and richness of bark beetles were found in the dry and cold season. The varied microclimatic conditions of the vegetation plots greatly affected the diversity of the Scolytinae. Solar radiation presented a significant negative effect on abundance in almost all the studied areas. The greatest scolytine diversity was found in anthropic areas with tree canopy structure. Open areas (pasture and coffee monocrop) had a lower species diversity. Similarly, a lower abundance and species richness were found for the Atlantic forest remnant.
Ecosystem engineers are profoundly important in many biological communities. A Neotropical taxonomic group considered to have engineering effects is the Formicidae (ants). Leaf-cutter ants (LCAs), in particular, which form extensive colonies of millions of individuals, can be important ecosystem engineers in these environments. While the effects of LCAs on plant community structure and soil chemistry are well-studied, their effects on consumers are poorly understood. Therefore, we examined the indirect effects of the LCA Atta cephalotes L. on the leaf-litter arthropod community. We compared abundance and diversity patterns at ant nests to areas distant from nests, utilizing both a factorial design and gradient analysis for both nocturnal and diurnal arthropods. We found that arthropod abundance and diversity was significantly lower for multiple taxonomic groups and trophic levels near leaf-cutter nests, and this pattern was strongest at night. Exceptions to this pattern included two morphospecies of Collembola that were more abundant on nests, suggesting some specialization for these species. For the gradient analysis, abundance increased exponentially for most groups of arthropods. However, for the dominant arthropod species, the amphipod Cerrorchestia hyloraina Lindeman, a quadratic function was the best fit curvilinear model for abundance. It appeared that C. hyloraina had maximal abundance at the transition between nest site and less disturbed forest. These results indicate that LCA activity has a strong effect on the leaf-litter arthropod community, adding to spatial heterogeneity within neotropical forests. These effects may translate into changes in important ecological processes such as nutrient cycling and food web function.
Like other ambrosia beetles, Xyleborus volvulus Fabricius (Coleoptera: Curculionidae) lives in a mutualistic symbiotic relationship with fungi that serve as food source. Until recently, X. volvulus was not considered a pest, and none of its symbionts were considered plant pathogens. However, recent reports of an association between X. volvulus and Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva (Ophiostomatales: Ophiostomataceae), the cause of the laurel wilt disease of avocado (Persea americana Mill. [Laurales: Lauraceae]), and its potential role as vector of the pathogen merit further investigation. The objective of this study was to evaluate three artificial media containing sawdust obtained from avocado or silkbay (Persea humilis Nash) for laboratory rearing of X. volvulus. The effect of R. lauricola in the media on the beetle’s reproduction was also evaluated. Of the three media, the one with the lowest content of sawdust and intermediate water content provided the best conditions for rearing X. volvulus. Reproduction on this medium was not affected by the sawdust species or the presence of R. lauricola. On the other two media, there was a significant interaction between sawdust species and R. lauricola. The presence of R. lauricola generally had a negative effect on brood production. There was limited colonization of the mycangia of X. volvulus by R. lauricola on media inoculated with the pathogen. From galleries formed within the best medium, there was 50% recovery of R. lauricola, but recovery was much less from the other two media. Here, we report the best artificial substrate currently known for X. volvulus.
Amaranth is an African indigenous vegetable that is gaining popularity due to its nutritional, medicinal, and economic values. In East Africa, frequent outbreaks of Lepidopteran leaf-webbers, Spoladea recurvalis F. (Lepidoptera: Crambidae) and Udea ferrugalis Hübner (1976) are reported on this crop, causing up to 100% foliage loss. The larval endoparasitoid Apanteles hemara Nixon is also frequently found associated with these pests during the outbreaks, however, its performance on both pests has never been documented. Laboratory studies were therefore carried out to assess the acceptability and suitability of S. recurvalis and U. ferrugalis to A. hemara. Both leaf-webber species were accepted by and suitable for the parasitoid. The mean host searching time and oviposition attempts were neither affected by rearing host nor test host. The total developmental time of A. hemara ranged between 10.6 ± 0.16 and 12.8 ± 0.30 days on both hosts. The sex ratio of the parasitoid was female biased when reared on S. recurvalis but male biased on U. ferrugalis. When offered 50 larvae of leaf-webbers for 24 h, a single female A. hemara achieved parasitism rates from 42.63 ± 5.80 to 44.55 ± 5.95, while a cohort of five females resulted in parasitism rates between 87.25 ± 2.70 and 94.67 ± 1.98 %. There was no significant difference between hosts in regard to progeny fitness at each parasitoid density. The parasitoid also caused significant nonreproductive larval mortalities in the hosts. The implications of these findings for mass rearing of the parasitoid as well as for conservation and augmentative biological control of amaranth lepidopteran leaf-webbers in East Africa are discussed.
Since 2014, populations of the kudzu bug, Megacopta cribraria (F.) (Hemiptera: Plataspidae), have declined in the southeastern United States and seldom require treatment. This decline follows the discovery of Paratelenomus saccharalis (Dodd; Hymenoptera: Platygastridae), a non-native egg parasitoid. The objective of this project was to observe the temporal and spatial dynamics of P. saccharalis parasitism of kudzu bug egg masses in commercial soybean fields. Four fields were sampled weekly for kudzu bugs and egg masses at a density of one sample per 0.6 ha. Sampling commenced when soybean reached the R2 maturity stage and continued until no more egg masses were present. Responses including kudzu bugs, egg masses, and parasitism rates were analyzed using ANOVA, Spatial Analysis by Distance Indices (SADIE), and SaTScan spatial analysis software. Egg masses were collected from the field, held in the lab and monitored for emergence of kudzu bug nymphs or P. saccharalis. Kudzu bug populations were generally lower than previously reported in the literature and spatial aggregation was not consistently observed. Egg parasitism was first detected in early July and increased to nearly 40% in mid-August. Significant spatial patterns in parasitism were observed with spatio-temporal clusters being loosely associated with clusters of egg masses. There were no significant differences in parasitism rates between field margins and interiors, suggesting that P. saccharalis is an effective parasitoid of kudzu bug egg masses on a whole-field scale.
The pecan weevil, Curculio caryae (Horn) (Coleoptera: Curculionidae), is a key pest of pecans Carya illinoinensis ([Wangenh.] K. Koch) (Fagales: Juglandaceae). Control recommendations rely on broad spectrum chemical insecticides. Due to regulatory and environmental concerns, effective alternatives for C. caryae control must be sought for pecan production in conventional and organic systems. We explored the use of microbial biopesticides for control of C. caryae in Georgia pecan orchards. Three experiments were conducted. The first investigated an integrated microbial control approach in an organic system at two locations. Three microbial agents, Grandevo (based on byproducts of the bacterium Chromobacterium subtsugae Martin, Gundersen-Rindal, Blackburn & Buyer), the entomopathogenic nematode Steinernema carpocapsae (Weiser), and entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin, were applied to each treatment plot (0.6 ha) at different times during the season. A second experiment compared the effects of S. carpocapsae and B. bassiana applied as single treatments relative to application of both agents (at different times); survival of C. caryae was assessed approximately 11 mo after larvae were added to pots sunk in an organic pecan orchard. In a conventional orchard (with 1.0 ha plots), the third experiment compared Grandevo applications to a commonly used regime of chemical insecticides (carbaryl alternated with a pyrethroid). All experiments were repeated in consecutive years. The combined pest management tactic (experiment 1) reduced C. caryae infestation relative to non-treated control plots in both locations in 2014 and one of the two locations in 2015 (the other location had less than 1% infestation). In experiment 2, no differences among combined microbial treatments, single-applied microbial treatments or different numbers of application were observed, yet all microbial treatments reduced C. caryae survival relative to the control. In the third experiment, both Grandevo and standard chemical insecticide applications resulted in lower weevil infestation than the control (both years) and there was no difference between the insecticide treatments in 2014 although the chemical insecticide regime had slightly lower infestation in 2015. These results provide evidence that microbial biopesticides can substantially reduce pecan weevil infestations in organic and nonorganic systems.
Chinese tallowtree, Triadica sebifera (L.) Small (Euphoriaceae), is one of the most aggressive weeds of coastal wetlands and forests of the southeastern United States. The lack of specialist herbivores in the invaded range may be one of the factors that contribute to the invasive nature of this weed. Chinese tallowtree has been the target of a classical biological control project since 2006. Several herbivore species are being tested for biological control of Chinese tallowtree. Concurrently, an adventive herbivore, Caloptilia triadicae Davis (Lepidoptera: Gracillariidae), was found feeding on Chinese tallowtree in the southeastern United States in 2004 and now occurs throughout the invaded range. Field populations of C. triadicae from two sites caused extensive mining damage to the Chinese tallowtree leaves. The greatest damage occurred after 30 d of exposure to C. triadicae in the herbivory treatment and amounted to about 25–30 leaf mines (early instars) and leaf rolls (late instars) per plant. Insecticide-treated plants had atmost 5–10 leaf mines and rolls per plant. Despite this difference, plant growth in height, number of new branches, and leaves did not differ significantly from plants protected from herbivory. Analysis of harvested plant results suggested that, in general, herbivory had little impact on biomass. However, there was a slight reduction in trunk weights in the unrestriced herbivory treatment compared with the insecticide-treated plants. Although this study exposed experimental plants to only 60 d of herbivory, these results suggested that C. triadicae alone will not exert sufficient control of invasive populations of Chinese tallowtree. Furthermore, they indicated that continued development of biological control agents that target Chinese tallowtree are needed.
Apocephalus borealis phorid flies, a parasitoid of bumble bees and yellow jacket wasps in North America, was recently reported as a novel parasitoid of the honey bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Little is known about the ecology of this interaction, including phorid fecundity on bee hosts, whether phorid-bee parasitism is density dependent, and which local habitat and landscape features may correlate with changes in parasitism rates for either bumble or honey bees. We examined the impact of local and landscape drivers and host abundance on phorid parasitism of A. mellifera and the bumble bee Bombus vosnesenskii Radoszkowski (Hymenoptera: Apidae). We worked in 19 urban gardens along the North-Central Coast of California, where phorid parasitism of honey bees was first reported in 2012. We collected and incubated bees for phorid emergence, and surveyed local vegetation, ground cover, and floral characteristics as well as land cover types surrounding gardens. We found that phorid parasitism was higher on bumble bees than on honey bees, and phorids produced nearly twice as many pupae on individual bumble bee hosts than on honey bee hosts. Parasitism of both bumble and honey bees increased with abundance of honey bees in a site. Differences in landscape surroundings did not correlate with parasitism, but local factors related to bee resource provisioning (e.g., tree and shrub abundance) positively correlated with increased parasitism. This research thus helps to document and describe conditions that may have facilitated phorid fly host shift to honey bees and further elucidate how resource provisioning in urban gardens influences bee–parasite interactions.
Larvae of many insect species, including stag beetles, have a limited mobility from their initial oviposition site. The fate of immature stages, therefore, depends on the maternal choice of oviposition site. Decaying wood preference by stag beetles was studied in a dry-evergreen forest in Chanthaburi province, Thailand. From a total of 270 examined logs, 52 contained stag beetles (255 total), which were identified to eight species from five genera. Aegus chelifer chelifer MacLeay, 1819 (Coleoptera: Lucanidae) was the dominant species both by occurrence and by number of individuals.The occurrence and numbers of stag beetle larvae found in logs was more frequent in those of a moderate decay class, which had moderate hardness and water content. Principal component analysis (PCA) revealed that logs with stag beetles had relatively high nitrogen content and fungal biomass. Thus, selection of oviposition sites by stag beetles was likely to depend on both the log decay stage (or hardness) to protect immature stages from natural enemies and its nutritional properties to enhance the larval performance.
Japanese barberry (Berberis thunbergii de Candolle; Ranunculales: Berberidaceae) is an exotic invasive shrub that escaped cultivation in the United States and is now permanently established in many eastern and midwestern states. This study examined the long-term impacts of Japanese barberry management on blacklegged tick (Ixodes scapularis Say; Acari: Ixodidae) abundances and associated prevalence of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner; Spirochaetales: Spirochaetaceae), the etiologic agent of Lyme disease. At six locations across Connecticut, adult I. scapularis were sampled for up to 10 yr. At each location, we sampled an area where barberry infestations were unmanipulated, adjacent areas where barberry was virtually nonexistent, and areas where barberry was managed utilizing a variety of techniques. Barberry management reduced B. burgdorferiinfected adult I. scapularis (BBIAIS) abundances (191/ha ± 64 SE) over 6 yr to statistically indifferent from that of no barberry areas (140/ha ± 47 SE; P = 0.080) and significantly less than intact barberry stands (458/ha ± 80 SE; P = 0.026). Over 9 yr, BBIAIS abundances in managed barberry remained lower than intact barberry stands (P = 0.037), but increased to be significantly greater than no barberry areas (P = 0.007) as cover increased over time. Longer-term data further document that Japanese barberry infestations are favorable habitat for I. scapularis. Control of Japanese barberry and other invasives should be at least on a 5-yr rotation to maintain low levels of invasive cover and eliminate humidity refugia to expose juvenile I. scapularis to more hostile environmental conditions in the interest of public health.
Sampling in Kansas and North Dakota documented the plant–herbivore and plant–pollinator interactions of the developing perennial oilseed crop, Silphium integrifolium Michx. The larva of the tortricid moth, Eucosma giganteana (Riley), was the most damaging floret- and seed-feeding pest in Kansas, with infested heads producing ≈85% (2015) or ≈45% (2016) fewer seeds than apparently undamaged heads. Necrosis of apical meristems caused stunting and delayed bloom in Kansas; though the source of the necrosis is not known, observations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois; Hemiptera: Miridae), in S. integrifolium terminals suggest a possible cause. In North Dakota, E. giganteana larvae were not found, but pupae of Neotephritis finalis (Loew; Diptera: Tephritidae), a minor pest of cultivated sunflower, were common in the heads of S. integrifolium. Bees appeared highly attracted to S. integrifolium, and in all but one observation, bees were seen actively collecting pollen. The most common bees included large apids (Apis mellifera L., Svastra obliqua [Say], Melissodes spp.) and small-bodied halictids (Lasioglossum [Dialictus] spp.). Controlled pollination experiments demonstrated that S. integrifolium is pollinator dependent, due to both mechanical barriers (imperfect florets and protogyny) and genetic self-incompatibility. Subsequent greenhouse tests and AFLP confirmation of putative self-progeny show that a low (<1%) level of self-pollination is possible. If genetic self-incompatibility is eventually reduced through breeding, mechanical barriers would maintain a reliance on bees to move pollen between male and female florets. Collectively, observations on S. integrifolium show that both herbivore and pollinator management are important to maximize seed production.
Exyra ridingsii (Riley) (Lepidoptera: Noctuidae) is a moth whose obligate host is the pitcher plant Sarracenia flava (L.) (Nepenthales: Sarraceniaceae). The entire life cycle of the moth is completed in the trumpets of this fire-dependent plant that is found throughout the southeastern United States in bogs, long-leaf pine savannas, and pocosins. The purpose of this study was to determine the effects of E. ridingsii on S. flava, including the effect of herbivory on trumpet height in the year subsequent to feeding and whether moths select trumpets for oviposition based on height. Although most forms of herbivory by insects might be expected to have negative effects on plants by reducing photosynthetic abilities, it would be counterproductive for herbivory by E. ridingsii to negatively affect S. flava as this plant is the only possible habitat for E. ridingsii. At each site in selected quadrats, the number of trumpets, trumpet height, trumpet status, number of trumpets in a clump, and number of clumps were recorded. The relationship between height and herbivory was analyzed using a linear model, and a positive correlation was found between height and herbivory. E. ridingsii herbivory had no effect on the next year's growth of S. flava based on a Spearman's correlation. Therefore, we concluded that E. ridingsii has little effect on S. flava populations and has likely evolved to selectively avoid herbivory on more vulnerable, smaller plants.
Rhagoletis zephyria Snow and Rhagoletis pomonella (Walsh) (Diptera:Tephritidae) are morphologically similar flies that attack white-colored snowberry fruit (Symphoricarpos spp.) and yellow/red or dark-colored apple/hawthorn fruit (Malus/Crataegus spp.), respectively. The two flies are caught together on traps in R. pomonella surveys in the western United States, increasing labor needed to process catches. Comparing responses of the two species with different traps could help identify best practices for reducing R. zephyria captures in these surveys and could contribute to understanding population divergence in Rhagoletis flies. In Washington State, United States, we found that R. zephyria responded most to yellow rectangles and more to white than red spheres (RSs) baited with ammonium carbonate (AC), whereas R. pomonella responded most to RSs with AC. Yellow plastic rectangles with AC were more effective in capturing R. zephyria than cardboard rectangles, as has been found for R. pomonella. R. zephyria did not respond to apple fruit volatiles associated with RSs that were attractive to R. pomonella. In contrast, R. zephyria responded more to yellow rectangles with snowberry than apple volatiles. Both species responded to AC. Our results suggest that RSs are better than yellow rectangles for surveying R. pomonella when snowberries are abundant. However, if discrimination from R. zephyria is paramount, RSs with apple volatiles should be used. Differences in the lspecies' responses to traps appear related to odor/color cues of the flies' host fruit, while commonalties appear related to visual/olfactory stimuli associated with protein feeding, for which AC is a general attractant.
The flight activity of Coleomegilla maculata DeGeer and Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae) was examined by observing tethered beetles in the laboratory. C. maculata were fed eggs of Ephestia kuehniella Zeller, as were larval H. convergens, whereas adult H. convergens were fed Melanaphis sacchari (Zehntner) to induce egg maturation; adults of both species received water and diluted honey. A spot of magnetic paint was applied to one elytrum of each beetle, which then adhered to a small neodymium magnet attached to a thread. Beetles were permitted 1 h flight opportunities daily for 3-d periods, first as virgins on their fifth day of adult life, secondly after mating, thirdly after females began oviposition, and fourthly after prey were withheld and egg maturation and oviposition ceased. Both species exhibited low flight activity as virgins, and whereas C. maculata females increased their activity after mating, H. convergens females did not. Flight activity in C. maculata did not change with onset of oviposition, whereas it increased in H. convergens males, but not females. In contrast, H. convergens females increased their flight activity after cessation of oviposition, whereas C. maculata females did not. Female flight activity when either virgin or mated correlated weakly with fecundity in C. maculata, but not in H. convergens. Species differences are discussed in the context of nutritional ecology; H. convergens usually enters diapause immediately following emergence, and is more dependent on aphids for reproduction, whereas C. maculata develops and reproduces on a wider range of foods and is not so constrained.
Ectropis grisescens Warren (Lepidoptera: Geometridae) is one of the most severe pests of tea plants in China. This species commonly pupates in soil; however, little is known about its pupation ecology. In the present study, choice and no-choice tests were conducted to investigate the pupation behaviors and emergence success of E. grisescens in response to different substrates (sand, sandy loam 1, sandy loam 2, and silt loam) and moisture contents (5, 20, 35, 50, 65, and 80%). Moisture-choice bioassays showed that significantly more E. grisescens individuals pupated in or on soil (sandy loam 1 and 2 and silt loam) that was at the intermediate moisture levels, whereas 5%- and 35%-moisture sand was significantly more preferred over 80%-moisture sand for pupating. Substrate-choice bioassays showed that sand was most preferred by E. grisescens individuals at 20%- and 80%-moisture levels, but no preference was detected among the four substrates at 50%-moisture content. No-choice tests showed that the percentage of burrowed E. grisescens individuals and pupation depth were significantly lower when soil was dry (20% moisture) or wet (80% moisture). In addition, 20%-moisture sandy loam 2 and silt loam significantly decreased the body water content of pupae and emergence success of adults compared to 50%-moisture content. However, each measurement (percentage of burrowed individuals, pupation depth, body water content, or emergence success) was similar when compared among different moisture levels of sand. Interestingly, pupae buried with 80%-moisture soil exhibited significantly lower emergence success than that were unburied.
Volatile compounds in Tapinoma melanocephalum (Fabricius) (Hymenoptera: Formicidae, Dolichoderinae) workers were analyzed using gas chromatography–mass spectrometry and electroantennogram responses of workers to these compounds were investigated using coupled gas chromatography–electroantennographic detection. Among 18 detected compounds, six elicited electroantennogram response, including 6-methyl-5-hepten-2-one, 4 iridodials, and (Z)-9-nonadecene. (Z)-9-Nonadecene and iridodials were identified the first time in T. melanocephalum. (Z)-9-Nonadecene is a major component in mandibular glands and iridodials are produced in pygidial glands. In contrast to previous report, actinidine was not found in pygidial glands. Behavioral response of workers to the synthetic (Z)-9-nonadecene was investigated. (Z)-9-nonadecene is an attractant to T. melanocephalum. It also affected their locomotion patterns.
Pedro M. Pedro, Ross Piper, Pedro Bazilli Neto, Laury Cullen, Milena Dropa, Rogerio Lorencao, Maria Helena Matté, Tatiane Cristina Rech, Mauro Osmar Rufato, Miriam Silva, Daniele Turganti Turati
Spatial and temporal collections provide important data on the distribution and dispersal of species. Regional-scale monitoring invariably involves hundreds of thousands of samples, the identification of which is costly in both time and money. In this respect, metabarcoding is increasingly seen as a viable alternative to traditional morphological identification, as it eliminates the taxonomic bottleneck previously impeding such work. Here, we assess whether terrestrial arthropods collected from 12 pitfall traps in two farms of a coffee (Coffea arabica L.) growing region of Sao Paulo State, Brazil could differentiate the two locations. We sequenced a portion of the cytochrome oxidase 1 region from minimally processed pools of samples and assessed inter- and intraspecific parameters across the two locations. Our sequencing was sufficient to circumscribe the overall diversity, which was characterized by few dominant taxa, principally small Coleoptera species and Collembola. Thirty-four operational taxonomic units were detected and of these, eight were present in significantly different quantities between the two farms. Analysis of community-wide Beta diversity grouped collections based on farm provenance. Moreover, haplotype-based analyses for a species of Xyleborus beetle showed that there is significant population genetic structuring between the two farms, suggesting limited dispersal. We conclude that metabarcoding can provide important management input and, considering the rapidly declining cost of sequencing, suggest that large-scale monitoring is now feasible and can identify both the taxa present as well as contribute information about genetic diversity of focal species.
Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae) and Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae: Scolytinae), are among the most damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but recent research has shown that attacks may be reduced by maintaining media moisture below a 50% threshold thereby reducing flood stress. We compared the efficacy of managing media moisture and insecticide applications for reducing ambrosia beetle attacks on three ornamental tree species in North Carolina. During trials in spring 2013 and 2015, flooded Cornus florida and Cornus kousa were heavily attacked despite sprays with permethrin, but nonflooded C. kousa or C. florida were not attacked. In spring 2015 trials, both nonflooded and flooded Styrax japonicus were heavily attacked regardless of permethrin applications. Although ethanol emissions were not measured, the apparently healthy nonflooded S. japonicus trees may have been exposed to an unknown physiological stress, such as low temperature injury, the previous winter, which predisposed them to beetle attack. However, ethanol levels within host tissues were not measured as part of the current study. X. crassiusculus (75%), Xyloborinus saxesenii Ratzburg (13%), and X. germanus (9%) were the most abundant species collected in ethanol baited traps deployed in 2015, while X. crassiusculus (63%) and X. germanus (36%) were the predominant species reared from attacked trees. Results indicate that managing media moisture levels at or below 50%, and maximizing tree health overall, may provide significant protection against Xylosandrus spp. attacks in flood intolerant tree species.
Thiamethoxam is a neonicotinoid insecticide commonly applied directly to the seeds (seed-treatment) of commercial snap beans, Phaseolus vulgaris L. While previous studies have examined target and nontarget effects of thiamethoxam seed-treatments in snap beans and other crops, to our knowledge, none have been conducted in agroecosystems predominated by the pest Mexican bean beetle, Epilachna varivestis Mulsant (Coleoptera: Coccinellidae). This study examined the effects of thiamethoxam-treated snap beans on E. varivestis, other arthropods, and crop performance in southwestern Virginia. Greenhouse experiments were conducted to evaluate residual toxicity of treated snap beans to E. varivestis and a key predator, Podisus maculiventris (Say) (Hemiptera: Pentatomidae). Treated plants were highly toxic to E. varivestis at 13 d, moderately toxic from 16 to 20 d, and minimally toxic at 24 d. P. maculiventris was unaffected by exposure to treated plants or by feeding on E. varivestis that consumed treated plants. Small plot field experiments in 2014 and 2015 showed no significant effects of thiamethoxam seed-treatments on E. varivestis densities, other arthropods, crop injury, or yield. In 2016, planting was delayed by persistent rain, resulting in early E. varivestis colonization. In this year, thiamethoxam-treated plants had significantly lower densities and feeding injury from E. varivestis, followed by significantly higher yields. Natural enemies were unaffected by seed-treatments in all field experiments. These experiments demonstrated that thiamethoxam seed-treatments provide control of E. varivestis when beetles infest fields within 2 to 3 wk after planting; but otherwise provide negligible advantages. Negative effects from thiamethoxam seed-treatments on nontarget arthropods appear minimal for snap beans in this region.
Kudzu bug, Megacopta cribraria Fabricius (Hemiptera: Plataspidae), first discovered in the United States in 2009, is an invasive pest of soybeans. From 2013 to 2016, Maryland has been the northern limit of its distribution in the United States. We sought to determine the physiological cold temperature limits, timing of movement to overwintering locations, and to characterize overwintering microhabitat temperature. We measured supercooling point (SCP) on three populations from distinct USDA plant hardiness zones in Maryland and Virginia between October and December of 2015. The average SCP across all sample months and populations was -12.6°C and no consistent trend of month or population location were observed. Additionally, we assessed the lower lethal temperature to kill 50% of the population (LLT50) at the same population locations in October and November 2015. The average LLT50 over both months and all three population locations was -5.1°C. Again, no consistent trend based on population location was observed but we did find a modest depression in the LLT50 values between October and November. We observed that kudzu bug overwinters in leaf litter and begins to move into the litter in late November to early December. Leaf litter moderates day to night temperature differences and was warmer than ambient temperature by an average of 0.7°C. Evidence suggests that the cold tolerance of the kudzu bug limits its distribution north of Maryland.
Hermetia illucens (L.) (Diptera: Stratiomyidae) is able to consume a wide range of organic matter and is of particular interest for waste management. The nutritional value of preimaginal stages, in particular the protein content, makes this species a valid candidate for use as feed for other organisms. Vegetables and fruits are promising rearing substrates for insects produced for this purpose according to the EU regulation. In order to examine the effects of diets on insect performance and chemical composition, larvae were reared on the following substrates: 1) fruit (apple, pear, and orange); 2) vegetable (lettuce, green beans, and cabbage); and 3) mixed fruits and vegetables. High percentages of survival were observed on all diets, but there were differences among weights of larvae, pupae, and adults, with weights of larvae reared on mixed fruits and vegetables lower than on other diets. Pupae reared on the mixed diet were heaviest, and also morphometric measurements of adults were highest. Larvae reared on fruit diets had the highest fat content, comprising mostly saturated fatty acids; the highest content of essential n-3 fatty acids was found in vegetable reared larvae and that of n-6 in mixed reared larvae. Larvae reared on the mixed diet had the highest protein content. Calcium contents were high and moderate amounts of iron and zinc were found. H. illucens showed the capability to develop on vegetable and fruits diets displaying different nutrient profiles and biological performances.The best-performing rearing strategy should vary in relation to the final use of H. illucens.
The pistachio seed wasp, Eurytoma plotnikovi Nikol'skaya (Hymenoptera: Eurytomidae), is one of the main pests in various pistachio growing regions of Iran. This pest passes the winter as diapausing last instar larvae. In this study, the relationship between diapause and cold hardiness and also the physiological and biochemical characteristics the diapausing and nondiapausing larvae of E. plotnikovi were investigated. Digestive α-amylase enzyme showed a high activity (70.41 ± 2.36 μg maltose/min per mg protein) in nondiapausing larvae, but its activity vigorously decreased during the diapause period. Glycogen declined at the beginning of diapause until March. Decrease in glycogen content was proportional to increase in total simple body sugars, trehalose, myo-inositol, and sorbitol contents. Lipid accumulated from the onset of diapause in September until January reaching a high concentration of 28.74 mg/g fresh body weight, but then declined from March to end of diapause in April.The supercooling points were decreased from August (–17.68 ± 0.14°C) to January and reached to its lowest point in January (–23.14 ± 0.27°C), the coldest month of the year, then gradually increased through April (–21.38 ± 0.32°C). The survival rates at low temperature indicate that last instar larvae of E. plotnikovi are most cold tolerant in December–February when total body sugars, trehalose, myo-inositol, and sorbitol concentration is high, suggesting an alternative cryoprotective role for these compounds. The experimental data show that E. plotnikovi is freeze avoidance insect.
A subtropical insect, Maruca vitrata (F.) (Lepidoptera: Crambidae), is invasive to temperate zones, in which low temperatures during winter would be a serious challenge for colonization. This study assessed cold tolerance and cold-hardening of M. vitrata to understand its overwintering mechanism. Supercooling capacity was confirmed in all developmental stages exhibiting body freezing points at lower than -10°C, in which supercooling points (SCPs) were significantly different among developmental stages, with eggs having the lowest SCP (at -22.5°C). However, all developmental stages suffered significant mortality after being exposed to low temperatures much higher than SCPs. Furthermore, nonfreezing injury increased with elapsed time at 25°C after cold shock. One of the nonfreezing symptoms was a darkening on thorax, which was explained by uncontrolled prophenoloxidase activation. Pre-exposure to 8°C for 1 h significantly increased the survival of both young and old larvae to a low-temperature treatment (-5°C for 1 h). Rapid cold-hardening (RCH) was accompanied by significant increase in hemolymph trehalose concentration. During RCH, trehalose-6-phosphate synthase was significantly upregulated in its expression level.These results suggest that M. vitrata is a freeze-susceptible species and becomes cold-hardy via hypertrehalosemia.
This study tested the effect of photophase duration on black soldier fly, Hermetia illucens (L.; Diptera: Stratiomyidae), development. Successful larval eclosion, development time and adult emergence were measured for individuals exposed to 0 h, 8 h, and 12 h of light, at approximately 27°C and 70% relative humidity. Accumulated degree hours (ADH) were calculated to correct for differences in temperature across treatments. Larvae successfully eclosed in all treatments, with larvae in 12 h light requiring 5.77% and 4.5% fewer ADH to eclose than larvae in 0 h and 8 h, respectively. Overall, larvae in 0 h required 39.34% and 37.78% more ADH to complete their development from egg to adult than larvae in 8 h and 12 h, respectively. The effect of photophase duration on juvenile development was largest in the post-feeding stage, and smallest in the pupal stage. Specifically, post-feeding larvae in 0 h required 80.02% and 90.08% more ADH to pupate than larvae in 8 h and 12 h, respectively, but pupae in 8 h required 9.63% and 7.52% fewer ADH to eclose than pupae in 0 h and 12 h, respectively. Lastly, larval mortality was significantly higher in 0 h, with 72% survivorship, and 96% and 97% in 8 h and 12 h, respectively. However, 17.8% of mortality in the absence of light is hypothesized to be a result of predation by Arachnidae and Blattidae. These data could prove valuable for optimizing industrial processes for mass-production of this species for use as alternative protein in feed for livestock, poultry, and aquaculture.
Exposure to ambient ultraviolet-B (UVB) radiation generates DNA lesions, such as cyclobutane pyrimidine dimers and 6-4 pyrimidine–pyrimidine photoproducts in Tetranychus urticae Koch (Acari: Tetranychidae). Larvae appeared normal and healthy after UVB irradiation. Conversely, many mites were trapped in their old epidermis or experienced retarded development and shrunk, thus failing to molt from protochrysalises to protonymphs and died. This suggested that DNA lesions per se were not causing lethality in mites unless damaged genes were expressed. UVB-induced DNA lesions may have interfered with DNA replication and gene expression during the physiological changes of morphogenesis in the chrysalis stage. Comprehensive gene expression analysis by RNA sequencing revealed that gene expression involving epidermal tissue (characteristically cuticular protein genes) and myosin heavy chain muscle-like genes were downregulated in protochrysalises irradiated with UVB at the larval stage. We conclude that the success of protochrysalis molting is determined by whether the DNA lesions of genes, particularly those connected with morphogenesis, are repaired before expression at the protochrysalis stage.
To find out the potential condition for diapause induction in the potato tuber moth Phthorimaea operculella (Zeller), combination of constant temperatures (15, 20, and 30°C) and photoperiods (8, 9, 10, 11, 12, 14, and 16 h) were employed from egg to adult emergence. In addition, changes in the total phospholipid fatty acid content and cold tolerance of non-diapausing and diapausing pupae were examined. The critical daylength for diapause induction were 12.43 h at 20°C and lower temperatures that can induce in 50% of population. Moreover, the composition of total phospholipid fatty acids in the pupae revealed seven major fatty acids in both non-diapausing and diapausing pupae: oleic (26–32%), palmitic (21–29%), linoleic (18–21%), palmitoleic (4–10%), stearic (9%), linolenic (7–8%), and pentadecanoic acids (3–5%) with an increase in proportion of unsaturated fatty acids in diapause state. In contrast to increase of oleic acid (C18:1) from 26 to 32% in non-diapausing to diapausing pupae, a decrement trend from 29 to 21% in palmitic acid (C16:0) was observed at the same state. Additionally, supercooling point was observed to be significantly lower in diapausing (-22.6°C) than in non-diapausing pupae (-18.5°C) and the fresh weight of diapausing pupae was found to be significantly higher than non-diapausing ones.The significance of these findings would allow us a better understanding of interrelationship between diapause and cold tolerance.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere