BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is an invasive pest that was first introduced into southern Texas in 1980 and has been expanding its range eastward along the United States Gulf Coast. The pest attacks rice (Oryza sativa L.), sugarcane (Saccharum spp.), corn (Zea mays L.), and other graminaceous crops, and its establishment in Louisiana is expected to have severe economic impacts on crop production. Range expansion and population distribution of E. loftini were monitored with a network of 77 pheromone traps throughout southwestern Louisiana from 2013 to 2015. Eoreuma loftini was ubiquitous throughout the study region, with male moths captured in every habitat sampled. Spatial analysis revealed the population is characterized by high and low density clusters, with the greatest trap captures occurring in southeastern Calcasieu Parish and southern Jefferson Davis Parish. Trap captures in more northern regions of the study were lower than in southern parishes. Trap captures in areas where the pest has been established for->3 yr were greatest in rice habitats. The weighted mean population center moved eastward at a rate of ∼11 km per year. Human-aided movement of E. loftini was probably not involved in the eastward expansion documented during this study. Seasonal population peaks were detected in March–April, July–August, and October–November. This study indicates this species is continuing its spread eastward along the United States Gulf Coast and will likely become established throughout Louisiana within the next 20 yr.
Alternatives to pesticides are necessary for the management of hop (Humulus lupulus L.) arthropod pests. The three major arthropod pests in northeastern US hop production include two-spotted spider mite, Tetranychus urticae Koch, hop aphid Phorodon humuli (Schrank), and potato leafhopper, Empoasca fabae Harris. This 3-yr study (2012–2014) in Vermont investigated the effect of flowering ground covers on arthropod pest abundance. Hop cultivars ‘Nugget’ and ‘Cascade’ were evaluated under a strip-split plot experimental design. Ground cover treatments included 1) Control: mowed red clover (Trifolium pratense) and resident weeds, 2) Clover: red clover, and 3) Diverse: common yarrow (Achillea millefolium), beebalm (Monarda fistulosa), red clover, and annual sunflower (Helianthus annuus). Natural enemies were grouped by associated pest and indicated by our mixed model to be strong predictors of the number of hop aphid and potato leafhopper on hop plants. In year two, ground cover treatment had a significant effect on two-spotted spider mite abundance where fewer two-spotted spider mite were observed on hop plants in Diverse plots. The established, un-mowed Clover treatment was preferred by potato leafhopper over Diverse ground cover and hop plants. This revealed the potential for clover ground cover to serve as a trap crop for potato leafhopper management in northeastern hop yards. Our findings are evidence that ground covers implemented for conservation biological control may serve more specific pest management functions instead of or in addition to boosting top-down pest pressure.
We assessed local horn fly (Haematobia irritans L.) and face fly (Musca autumnalis De Geer) communities on cattle in 2012 and 2013 relative to vegetation and climate data to understand how parasitism of cattle is influenced by change in climate and vegetation structure. We compared heterogeneity management using spatially and temporally discrete fires (i.e., patch-burning one-third of a pasture annually) to homogeneity management (i.e., burning entire pasture in 2012 then no burning in 2013), with cattle grazing all years in both treatments. Predicted emergence of horn flies and face flies was 24 and 34 d earlier in 2012 associated with earlier spring warming, a significant deviation from the five-year mean. Intraannual horn fly dynamics were explained by concurrent high ambient air temperature the day of observations, but face flies were explained by low ambient air temperatures and dry conditions 3 wk before observations. Importance values of information for the theoretic models including fire treatments ranged from 0.89 to 1, indicating that both horn flies and face flies are sensitive to habitat alterations and fire-driven animal movements. Ordination indicates herds on unburned pastures were dissimilar to herds on pastures burned with patchy fires or pastures burned completely and species-specific fly responses to different vegetation structure metrics. For example, horn flies were correlated with vegetation visual obstruction, and face flies were correlated with woody plant cover. Vegetation structure may be as important as climate in driving the dynamics of fly parasites of cattle.
Urbanization negatively affects biodiversity, yet some urban habitat features can support diversity. Parasitoid wasps, an abundant and highly diverse group of arthropods, can inhabit urban areas and do well in areas with higher host abundance, floral resources, or local or landscape complexity. Parasitoids provide biological control services in many agricultural habitats, yet few studies have examined diversity and abundance of parasitoids in urban agroecosystems to understand how to promote conservation and function. We examined the local habitat and landscape drivers of parasitoid abundance, superfamily and family richness, and parasitoid composition in urban gardens in the California central coast. Local factors included garden size, ground cover type, herbaceous plant species, and number of trees and shrubs. Landscape characteristics included land cover and landscape diversity around gardens. We found that garden size, mulch cover, and urban cover within 500 m of gardens predicted increases in parasitoid abundance within gardens. The height of herbaceous vegetation and tree and shrub richness predicted increases in superfamily and family richness whereas increases in urban cover resulted in declines in parasitoid richness. Abundance of individual superfamilies and families responded to a wide array of local and landscape factors, sometimes in opposite ways. Composition of parasitoid communities responded to changes in garden size, herbaceous plant cover, and number of flowers. Thus, both local scale management and landscape planning may impact the abundance, diversity, and community composition of parasitoids in urban gardens, and may result in differences in the effectiveness of parasitoids in biological control.
Karina M. Borges, W. Rodney Cooper, Stephen F. Garczynski, Jenita Thinakaran, Andy S. Jensen, David R. Horton, Joseph E. Munyaneza, Isabel Cueva, Nina M. Barcenas
The psyllid Bactericera maculipennis (Crawford) (Hemiptera: Triozidae) often cohabits field bindweed (Convolvulus arvensis, Solanales: Convolvulaceae) and other plants with the congeneric psyllid, Bactericera cockerelli (Šulc), in the Pacific Northwestern United States. Bactericera cockerelli is a vector of “Candidatus Liberibacter solanacearum,” the pathogen associated with zebra chip disease of potato (Solanales: Solanaceae). Because B. maculipennis and B. cockerelli both naturally occur on certain plants, we surveyed B. maculipennis adults collected from Washington and Idaho for presence of “Ca. L. solanacearum” to determine whether this psyllid also harbors this pathogen. Liberibacter was present in 30% of field-collected B. maculipennis and in 100% of colony-reared psyllids. Sequences of 16S rDNA and microsatellite markers revealed that “Ca. L. solanacearum” from B. maculipennis was closely related to Liberibacter haplotype B from B. cockerelli. Results of laboratory assays demonstrated that Liberibacter can be transmitted between B. cockerelli and B. maculipennis on plants within the Convolvulaceae. Potato plants challenged with Liberibacter-infected B. maculipennis did not become infected, apparently because potato is not a suitable host for the psyllid. We therefore conclude that B. maculipennis is not a direct threat to potato production, despite its association with Liberibacter. We are the first to report that “Ca. L. solanacearum” is associated with a psyllid other than B. cockerelli in North America. Results of our study demonstrate the importance of understanding the complete ecology of psyllids—including interactions with other psyllids on non-crop hosts—in predicting what crops or regions are potentially susceptible to the spread of Liberibacter.
The ecological role of social wasps has been extensively studied, but little is known about symbiotic relationships of these wasps with microbes. Recently, it was shown that vespid wasps in Europe carry yeasts, predominantly Saccharomyces cerevisiae, in their gastrointestinal (GI) tract. Interestingly, this niche allowed for sexual recombination of yeasts to occur and the formation of novel hybrid species. Our goals were 1) to survey the GI tract of eusocial wasps in the Pacific Northwest for the presence of yeasts and 2) to compare the diversity of such yeasts to that described for wasps in Europe. The GI tracts of 19 individual wasps from five species were plated, and 27 yeast-like colonies were identified to the species level. Yeasts in the genera Lachancea and Hanseniaspora each comprised ~30% of the isolates; ~25% were identified as Metschnikowia spp., with the remaining 10% belonging to Rhodotorula. Four bacterial isolates were identified as Escherichia coli, Enterococcus faecalis, and two isolates of Stenotrophomonas maltophilia. Yeasts were present at all life stages of the wasps except for two unfed gynes of Dolichovespula maculata (L.) that contained only bacteria. The presence of a particular yeast species was not correlated with any wasp species. Furthermore, S. cerevisiae was not found in any wasp species. This highlights an interesting difference in the life cycle of both S. cerevisiae and wasps in Europe and the Pacific Northwest, and prompts further studies on the interactions of these microbes with their host wasps.
Three larval parasitoids were imported from Europe to control the lily leaf beetle, Lilioceris lilii Scopoli (Coleoptera: Chrysomelidae), an accidentally introduced herbivore of native and cultivated lilies in North America. Tetrastichus setifer Thomson (Hymenoptera: Eulophidae) was introduced in Massachusetts in 1999, and was found to be established there in 2002. Subsequent releases of T. setifer were made and two additional parasitoids, Lemophagus errabundus Szepligeti (Hymenoptera: Ichneumonidae) and Diaparsis jucunda (Holmgren) (Hymenoptera: Ichneumonidae), were introduced. The establishment and distribution of the three parasitoids was evaluated through 2016. Tetrastichus setifer is now established in Massachusetts, Rhode Island, New Hampshire, Maine, Connecticut, and Ontario, Canada. Lemophagus errabundus is established in Massachusetts and Rhode Island, and D. jucunda is established in Massachusetts, Rhode Island, Connecticut, and Maine. All three parasitoids have spread at least 10 km from release sites. The establishment of T. setifer is associated with a substantial reduction of L. lilii. In time it is likely that the parasitoids will spread throughout the North American range of L. lilii. This process can be accelerated to protect ornamental and native lilies by collecting and redistributing parasitoids to new infestations of L. lilii.
Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of bumble bees to the pollination of commercial highbush blueberries in Florida is unknown. Herein, we determined if managed bumble bees could contribute to highbush blueberry pollination. There were four treatments in this study: two treatments of caged commercial bumble bee (Bombus impatiens Cresson) colonies (low and high weight hives), a treatment excluding all pollinators, and a final treatment which allowed all pollinators (managed and wild pollinators) in the area have access to the plot. All treatments were located within a highbush blueberry field containing two cultivars of blooming plants, ‘Emerald’ and ‘Millennia’, with each cage containing 16 mature blueberry plants. We gathered data on fruit set, berry weight, and number of seeds produced per berry. When pollinators were excluded, fruit set was significantly lower in both cultivars (<8%) compared to that in all of the other treatments (>58%). Berry weight was not significantly different among the treatments, and the number of seeds per berry did not show a clear response. This study emphasizes the importance of bumble bees as an effective pollinator of blueberries and the potential beneficial implications of the addition of bumble bees in commercial blueberry greenhouses or high tunnels.
Emerald ash borer (Agrilus planipennis Fairmaire) was recently found on a novel host in North America, white fringetree (Chionanthus virginicus L.) (Oleaceae). In this study, we artificially infested 4-yr-old, naïve white fringetree and white ash (Fraxinus americana L.) saplings under well-watered and water-deficit conditions with emerald ash borer eggs. We used physiological and phenotypical approaches to investigate both plant response to emerald ash borer and insect development at 21, 36, and 61 d postinfestation. Photosynthesis was reduced in both tree species by larval feeding, but not by water deficits. Emerald ash borer larvae established and survived successfully on white ash. Both establishment and survival were lower on white fringetree than on white ash. Larvae were larger, and had reached higher instars at all three time points on white ash than on white fringetrees. Larvae grew faster in white ash under water-deficit conditions; however, water-deficit conditions negatively impacted survival of larvae at 61 d postinfestation in white fringetrees, although head size did not differ among surviving larvae. White ash showed higher callus formation in well-watered trees, but no impact on larval survival was observed. In white fringetree, callus formation was not affected by water treatment, and was inversely related to larval survival. The higher rate of mortality and slow growth rate of larvae in white fringetree as compared to white ash suggest that populations of emerald ash borer may be sustained by white fringetree, but may grow more slowly than in white ash.
The bronze bug, Thaumastocoris peregrinus Carpintero & Dellapé, 2006 (Heteroptera: Thaumastocoridae) originally restricted to Australia, is an important emerging pest of Eucalyptus plantations in the Southern Hemisphere. It feeds on mature leaves, causing the loss of photosynthetic surface area and defoliation and, according to some studies, even tree death. In this work, feeding activities of T. peregrinus on Eucalyptus camaldulensis Dehn leaves and its primary food resources were identified. In cross sections of leaves, solid salivary deposits on epidermal cells and in the vicinity of stomata cells were detected. In subepidermal cells of the palisade parenchyma near the stylet penetration point, disorganization and removal of chloroplasts were also observed. The presence of chlorophyll in guts of adults and nymphs was analyzed using spectrophotometry and confocal laser scanning to obtain in situ fluorescent spectra. Both spectra showed chlorophyll absorbance peaks. In addition, the presence of chlorophyll in guts of T. peregrinus using fluorescence microscopy was identified. These results provide the first evidence that T. peregrinus feeds from the palisade parenchyma (chlorenchyma) of Eucalyptus leaves.
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive and polyphagous herbivore that has been problematic in Mid-Atlantic fruit orchards, many of which are adjacent to woodlands containing its wild hosts. Our tree census in woodlands bordering 15 Mid-Atlantic apple orchards revealed 47 species of deciduous trees and shrubs, 76.6% of which were recorded hosts of H. halys. Tree of heaven was most common and abundant overall. Halyomorpha halys nymphs have a substantial walking dispersal capacity, and their fitness is enhanced by feeding on multiple hosts. Directional and temporal patterns of nymphal H. halys movement on selected wild hosts and apple and peach trees at the orchard–woodland interface were monitored in 2014 and 2015 using passive traps to capture nymphs walking up and down tree trunks. Weekly captures from mid-May to late September or mid-October were compared among hosts across both seasons. Despite higher total nymphal captures in 2014 than 2015, the seasonal trends for both years were similar and indicated bivoltine H. halys populations. In both years, more nymphs were intercepted while walking up than down and captures of upward- and downward-walking nymphs varied significantly among the hosts. All instars were captured, but captures of second instars predominated. Captures reflected seasonal changes in instar distribution and consisted predominantly of younger and older nymphs, early and later in the season, respectively. Results are discussed in relation to host and seasonal effects on the movement of nymphs at the orchard–woodland interface, and the implications for H. halys management.
In the process of feeding, aphids modify the physiology of their host plants in species-specific ways, and plant responses to these aggressions are often genotype- or cultivar-specific. Thus, different aphid species sharing a host can influence each other's fitness via plant-mediated interactions, usually with negative and asymmetric impacts. Here, we show that feeding by the sugarcane aphid, Melanaphis sacchari Zehntner, can improve the suitability of sorghum as a host plant for the bird cherry-oat aphid, Rhopalosiphum padi L. Whereas the reciprocal effects were generally negative for sugarcane aphid, the specific life history impacts varied with sorghum cultivar. Line ‘PI 550610′ was a more suitable host plant for both aphid species than the hybrid ‘P8500′, contrary to expectations based on the former representing a source of resistance to Schizaphis graminum (Rondani). Whereas coinfestation with sugarcane aphid had positive effects on bird cherry-oat aphid survival, development, and reproduction on both cultivars, the presence of bird cherry-oat aphid reduced the sugarcane aphid fecundity on both cultivars, although other negative effects (lower survival and delayed development) were evident only on the less suitable P8500. A second experiment using previously infested plants yielded similar results, although a gradual decay of aphid-induced effects postinfestation was apparent. Bird cherry-oat aphid is the second aphid species, after S. graminum, shown to benefit from sugarcane aphid facilitation on sorghum. We conclude that facilitation by sugarcane aphid at least partly accounts for the various aphid species forming mixed infestations with this invasive species in fields of susceptible sorghum cultivars.
Adaptation to different host plants can lead to host-associated differentiation (HAD). The mites Oligonychus perseae and Oligonychus punicae have a broad range of host plants, but, to date, records of them coexisting sympatrically had only been reported on avocado. However, our field observations showed both species coexisting on host plants other than avocado. The lack of previous records of these mites on the host plants studied here suggests only recent divergence to new host plant species. Previous studies showed that O. punicae had a limited migration capacity compared with O. perseae, suggesting that O. punicae is more likely to develop a close host plant relationship leading to HAD. Adults of both species were collected from trees hosting both mite species. Three genera of host plants considered were Persea, Salix, and Alnus; two species within one genus were Alnus jorullensis and Alnus acuminata; and three varieties within one species were Persea americana var. Fuerte, var. Hass, and var. Criollo, a noncommercial variety. Using sequence data from a segment of the mitochondrial cytochrome oxidase subunit I, the phylogenetic relationships and genetic population structure of both mite species in relation to the host plant were determined. Oligonychus perseae populations showed a significant population structure in relation to host plant at the species and genus level, but there was no effect of variety. In contrast, host plant explained none of the genetic variation among O. punicae populations. The potential role of coexistence mechanisms in the contrasting genetic population structure of both mite species is discussed.
Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean.
The squash bug, Anasa tristis (DeGeer) (Hemiptera: Coreidae), is an indigenous pest of squash and other cucurbits. Pesticides can control squash bug populations although many small-scale growers in the Southeast seek alternative methods of management. Cultural control methods, including varying the planting date and farmscaping, are not well understood under southeastern conditions. The goal of farmscaping is to increase natural ecosystem functions to aid in the control of pest populations. In the summers of 2014 and 2015, field plots of squash, separated by a minimum of 150 m were organized in a split-split plot design, with floral resources at the whole-plot level and varied planting date at the subplot level. Data were collected on squash bug abundance and fruit yield (kg), and abundance of potential natural enemies of A. tristis. Plots with added floral resources had fewer squash bug adults than plots without added floral resources in four of eight possible year × site × planting date combinations. Furthermore, the site in 2014 which had a reduction in squash bug adult abundance also had an increase in the abundance of potential enemies, including spiders, ground beetles, and predaceous Hemiptera. There were additional instances when potential natural enemy abundance was greater in resource-enhanced plots, but they were not associated with sites that had a reduction in yield loss or squash bug abundance. The use of floral resources to attract natural enemies and beneficial insects merits further investigation.
Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing.
Age polyethism in a social insect colony occurs when individuals of different ages perform different tasks. In termites (Isoptera), it has mostly been reported in higher termites, but elements of age polyethism were recently found in juvenile colonies of a lower termite, Coptotermes formosanus Shiraki (Rhinotermitidae). The objective of this study was to compare age polyethism in immature colonies (10-mo-old) of C. formosanus to the age polyethism observed in juvenile colonies (4-yr-old), to investigate if age polyethism emerges as soon as old workers are present, or if it emerges later on, as the colony grows and ages. Age polyethism may be displayed with different patterns in immature colonies of C. formosanus when compared with juvenile colonies, owing to a difference of environmental condition within the nest, i.e., demographics and colony size. Ten-month-old colonies were observed in planar arenas and termite activities were recorded using camcorders. Larval and worker instars were determined by measuring their head width and the occurrence of behaviors was compared with behavioral data previously obtained from 4-yr-old colonies. Workers were the major workforce in both the 10-mo-old and 4-yr-old colonies. Age polyethism was minimal in 10-mo-old colonies, but was more extensive and complex in 4-yr-old colonies. Therefore, age polyethism emerges in C. formosanus as the colony matures, and may recapitulate the transition from a one-piece colony type to an extended nest colony type, with changing conditions inside the nest as the colony grows.
We evaluated the low-density application of 50 dispensers per hectare, in contrast to the traditional >800 dispensers per hectare in apple orchards, to achieve disruption of communication of adult codling moth, Cydia pomonella (L.), in walnuts, Juglans regia (L.), using several methods. These methods included cumulative catches of male moths in traps baited with sex pheromone (Ph) or codlemone, (E,E)-8,10-dodecadien-1-ol, or a combination of codlemone, pear ester (PE), ethyl (E,Z)-2,4-decadienoate, and acetic acid, and by examining the mating status of females. These data were collected from 2011–2014 in nontreated plots and in similar plots treated with Meso dispensers loaded with codlemone (Ph Meso) or codlemone and PE (Ph + PE Meso). Male moth captures in both the Ph and combination lure traps reduced by 88–96% and 72 to 77%, respectively, compared with traps in the nontreated plots. A significantly higher proportion of female moths were nonmated in plots treated with Ph + PE Meso dispensers (33%) than in plots treated with Ph Meso (18–26%), or left nontreated (13%). In addition, significantly fewer multiple-mated females were trapped in the Ph + PE Meso-treated plots (6%) than in either Ph Meso-treated (13–18%) or nontreated plots (23%). These data suggest that the addition of PE can effectively improve Ph-based disruption of C. pomonella in walnut orchards. In addition, these data suggest that the use of low-density hand-applied dispensers can be an effective and lower-cost approach to manage this pest in the large canopy presented by walnut orchards.
Trichogramma chilonis Ishii is an important natural enemy of many lepidopterous pests on vegetables and field crops. The effects of two conventional insecticides on male-specific sex pheromone discrimination and mate choice in T. chilonis was evaluated in the laboratory. Beta-cypermethrin LC20 exposure induced decreases in male conspecific sex pheromone discrimination and mating rate in T. chilonis, and these decreases were not due to the lower locomotor activity of the surviving T. chilonis males. Spinosad LC20 exposure caused a significant decrease in male locomotor activity of T. chilonis, but did not affect male-specific sex pheromone discrimination (conspecific sex pheromone discrimination or virgin sex pheromone discrimination) or mating rate. However, there was no significant difference in specific sex pheromone discrimination, mate choice, and locomotor activity between control males and males exposed to the low concentration (LC1) of insecticide (beta-cypermethrin or spinosad). In conclusion, beta-cypermethrin LC20 exposure was harmful to male-specific sex pheromone discrimination and mate choice in T. chilonis.
Cuticular chemical profiles of Euglossa cordata L. males were analyzed to test whether ecological predictors affect their composition and relative proportion. Males were collected in areas of Caatinga and Atlantic Forest from Brazil during two distinct seasonal periods. We found 48 compounds from the cuticular extracts of males, which consisted of hydrocarbons (71.39%), acetates (16.79%), esters (10.5%), alcohols and others (1.31%). We verified that when specimens were separated between biomes, they did not show a qualitative differentiation, but a small quantitative variation of compounds was found between some alkanes. We suggest that these results reflect stability of epicuticular compounds even under variable environmental conditions.
There is scarce information regarding the vertical stratification of predaceous Coccinellidae in tall trees. Although numerous studies have been done in orchards and forests, very few studies have assessed the occurrence of predaceous Coccinellidae high in tree canopies. The objective of this study was to examine the abundance of Coccinellidae at different heights in mature pecan, Carya illinoinensis (Wangenh.) K. Koch, orchards with tall trees. From spring through late fall during 2013 and 2014, yellow pyramidal Tedders traps were suspended in the pecan canopy at 6.1 and 12.2 m, in addition to being placed on the ground (0 m). The exotic species Harmonia axyridis and Coccinella septempunctata accounted for a high percentage of trap capture during this study. Except for Olla v-nigrum, low numbers of native species (Hippodamia convergens, Coleomegilla maculata, Cycloneda munda, Scymnus spp., and Hyperaspis spp.) were captured. However, significantly more were captured in ground traps rather than in canopy traps with the exception of O. v-nigrum. Similar to most native species, significantly more C. septempunctata were captured in ground traps than canopy traps. This contrasts sharply with H. axyridis captured similarly at all trap heights. The ability to exploit resources across vertical strata, unlike many intraguild predators, may be an underestimated factor helping to explain the invasiveness of H. axyridis.
Given the global biodiversity crisis, it is crucial to identify methods best suited for conducting inventories. We evaluated the relative merits of Malaise traps (MT) and ground-level yellow pan traps (YPT) to sample male velvet ants (Hymenoptera: Mutillidae) in a Neotropical savanna biodiversity hotspot. We compared richness, number of captures, evenness, composition, and body size of male velvet ants (Hymenoptera: Mutillidae) sampled with both methods in four sites at Parque Nacional da Chapada dos Veadeiros, central Brazil, during 19 d. We expected reduced diversity and smaller body size of velvet ants sampled with YPT, because they target visually oriented insects that are active closer to the ground, whereas MT represent a passive method that intercepts insects flying at different heights. Richness, total number of captures, and evenness of species and genera were significantly higher in MT. The body size of velvet ants captured with MT was significantly larger than those found in YPT. Generalized linear model and nonmetric multidimensional scaling analyses revealed a clear difference in the patterns of abundances and composition of velvet ants sampled with MT and YPT, especially for the genera Darditilla, Traumatomutilla, Lomachaeta, Pseudomethoca, Tallium, and Ephuta. YPT were effective at capturing few species that were rare in MT but, overall, MT were much more effective than YPT. We found similar patterns when using either species or genus for assessing samples obtained with MT or YPT, suggesting that ecological studies on Neotropical velvet ants may not require taxonomic resolution to the species level.
Terrestrial insects in water can often delay or escape drowning by floating and swimming. However, we observed that flooding of pitfall traps baited with rotting carrion results in high overnight mortality of captured beetles and reasoned that this risk may be enhanced by microbial respiration. By assessing carrion beetle (Coleoptera: Silphidae) response to flooding, tolerance to immersion, and swimming behavior, we offer insights to this cause of death and beetle behavioral physiology. Response of buried Nicrophorus orbicollis Say to soil flooding resulted in beetles moving to the soil surface. The lethal time to 50% mortality (LT50 (immersion); mean ± 95% CI) for Nicrophorus investigator Zetterstedt, Nicrophorus marginatus F., Necrodes surinamensis F., and Thanatophilus lapponicus Herbst was 14.8 ± 2.3, 9.0 ± 3.3, 3.2 ± 1.1, and 12.1 ± 2.5 h, respectively. Swimming behavior and survival time of N. investigator was tested using yeast:sucrose (Y:S) solutions to create a eutrophic, severely hypoxic aqueous environment. LT50 (swimming) for N. investigator was 7.5 ± 1.4, 6.0 ± 1.7, and 4.2 ± 1.2 h for the low, medium, and high Y:S solutions, respectively, and >24.0 h in control treatments. Nicrophorus investigator survived nearly twice as long when completely immersed in deoxygenated water, as might occur in flooded burrows, than when swimming on the surface. We document for the first time, the rapid induction of hypoxic coma and death for a terrestrial insect from enhanced microbial activity and CO2 production of an aqueous environment, as well as suggestions on trapping protocols related to the federally endangered Nicrophorus americanus Olivier.
Predicting the emergence and arrival of insect pests is paramount for integrated pest management. To achieve this goal, it is important to understand how abiotic factors influence pest dispersal behavior. We investigated the effects of abiotic conditions on flight initiation by the Asian citrus psyllid, Diaphorina citri Kuwayama. We first explored the effect of barometric pressure changes on flight initiation. We used a custom-made barometric chamber and observed the activity of D. citri as measured by the number of psyllids captured on yellow cardboard panels coated with adhesive. We found that psyllid flight initiation changed in response to variations in barometric pressure rather than to differences in stable pressures. Diaphorina citri were equally active at 1,009 mbar and 1,022 mbar. However, D. citri dispersed more as barometric pressure increased, and less when barometric pressure decreased. In a subsequent experiment, we manipulated temperature and relative humidity and observed how D. citri dispersed between citrus plants. Psyllids dispersal increased linearly with temperature. Changes in humidity did not affect dispersal of D. citri. Less than 1% of psyllids dispersed at 15 °C, compared with 7.7% at 21 °C and 27% at 25 °C. The minimal threshold for D. citri to initiate flight is estimated to be 16.5 °C. Collectively, our results provide an initial step toward developing predictive models of D. citri movement as influenced by abiotic factors.
Jose A. Valadez-Lira, Nahui O. Medina-Chavez, Alonso A. Orozco-Flores, J. Antonio Heredia-Rojas, Abraham O. Rodriguez-de la Fuente, Ricardo Gomez-Flores, Juan M. Alcocer-Gonzalez, Patricia Tamez-Guerra
Worldwide mobile telephone and microwave use have resulted in an increasing presence of extremely low-frequency electromagnetic field radiations (ELF-EMFs) in ecosystems. ELF-EMFs have been associated with altered physiological processes that can adversely affect exposed organisms. In this study, Trichoplusia ni Hübner larvae were exposed for 24, 48, or 72 h to ELF-EMFs (60 Hz and 2.0 mT) to assess effects on immune response parameters and fertility. Trichoplusia ni life cycle and fertility were not affected by 24-h exposure. However, the number of apoptotic-like cells and cellular immune response significantly increased (P < 0.01) after 72-h exposure (2- and 1.1-fold, respectively), whereas hemolymph total protein and hemocyte cells were reduced (P < 0.01; 16 and 50%, respectively) after 48-h exposure. Hemocyte cell type analysis resulted in significantly (P < 0.01) higher granulocytes number in the unexposed (2-fold increase) and oenocytoids in the 72-h-exposed larvae (28.6-fold increase). Quantitative retrotranscription (RT-qPCR) showed that after 72-h ELF-EMF exposure, the antimicrobial peptides cecropin, lysozyme, gallerimycin, and pgrp were downregulated by 24,866.0, 2.69-, 119.1-, and 1.45-fold, respectively, whereas attacin and defensin were upregulated by 1.59- and 1.85-fold, respectively. The effect of ELF-EMFs on the T. ni larvae immune response and their potential impact on its physiology and susceptibility to pathogens are discussed. This information may provide new insight of ELF-EMFs on other pest species, as well as for the preservation of ecologically important species.
A 2-yr (2014-2015) field study in eastern Washington State quantified the effect of environmental factors on the overwintered Eustenopus villosus (Boheman) and Larinus curtus (Hochhut) adults in relation to phenology of Centaurea solstitialis L. (Asteraceae: Cardueae), the feeding and breeding host for these two weevil biocontrol agents. We recorded in the study area: ambient and soil temperatures, soil moisture, percent cover and developmental stage of C. solstitialis, and presence of adults of each weevil species. Sampling took place from early May to mid-August. Weevil activity for both species in both years was segregated into three phases: 1 – a pre-appearance phase in which neither species was detected, 2 – appearance and increase in frequency, and 3 – decrease in frequency. Eustenopus villosus increase in frequency was most strongly associated with warming temperatures both years. Larinus curtus increase in frequency in 2014 was most associated with increasing C. solstitialis cover and in 2015 with warming temperatures and drying soils. In both years, both weevil species' decline in frequency was likely due to the advancing C. solstitialis phenology. This pattern indicates that the appearance and increase in frequency of the overwintered E. villosus and L. curtus adults was likely a function of warming temperatures. Both species' decline in frequency was likely a function of the weevils completing their life cycle in synchrony with the phenological advancement of C. solstitialis and decline of abundant breeding and foraging sites (buds and flowers).
Insects often have facultative associations with bacterial endosymbionts, which can alter the insects' susceptibility to parasitism, pathogens, plant defenses, and certain classes of insecticides. We collected pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), from pear orchards in Washington and Oregon, and surveyed them for the presence of bacterial endosymbionts. Adult psyllids were collected on multiple dates to allow us to assay specimens of both the summer (summerform) and the overwintering (winterform) morphotypes. Two endosymbionts, Arsenophonus and Phytoplasma pyri, were detected in psyllids of both morphotypes in both states. A separate survey revealed similar associations present in psyllids collected in 1987. Arsenophonus was present in 80-100% of psyllids in all growing regions. A slightly lower proportion of summerform than winterform psyllids harbored the bacterium. Arsenophonus was present in the bacteriomes and developing oocytes of most psyllids, indicating that this endosymbiont is transovarially transmitted. This bacterium was also observed in the salivary glands and midguts of some psyllids. Phytoplasma pyri was present in a greater proportion of pear psylla from orchards near Yakima, WA, than from other regions, and was present in a higher proportion of winterforms than summerforms. We did not detect Wolbachia, Profftella, or Liberibacter europaeus, which are associated with other psyllid pests, including other species of Cacopsylla. Our study is the first to survey North American populations of C. pyricola for endosymbionts, and provides a foundation for further research on how bacterial associations may influence the ecology and management of this pest.
From a regulatory perspective, Asian gypsy moth is a species complex consisting of three species of Lymantria and two subspecies of Lymantria dispar (L.), differing from the European subspecies, L. dispar dispar (L.), by having consistently flight-capable females. As such, the invasion potential in North America is thought to exceed that of European gypsy moth. USDA-APHIS therefore has a monitoring program to detect Asian gypsy moth at high-risk introduction pathways. Molecular markers are used to improve the diagnosis of Asian gypsy moth. One such marker, which targets the FS1 locus, detects an allele, FS1-A, prevalent in Asian populations but occurring at low frequencies (3–6%) throughout the European gypsy moth's range in North America. However, some locales, such as Minnesota, exhibit elevated FS1-A frequencies. We studied the distribution of the FS1-A allele in northern Minnesota, 2013–2014, assessing spatial patterns in the distribution of the FS1-A allele using Moran's I and using spatial regression techniques to examine if the FS1-A allele was associated with putative movement pathways. We also used time series analysis to discern if temporal patterns in FS1-A or possible introduction events occurred. Our results indicated that FS1-A occurred randomly in space and time. We found no evidence that elevated FS1-A frequencies were associated with movement pathways or possible immigration events into this region over the two years. Elevated frequencies of the FS1-A allele within this region could be due to genetic drift and allelic surfing along the expanding population front, or to selection of physiological or behavioral traits.
Previous studies into third trophic level exposure of Chrysoperla spp. (Neuroptera: Chrysopidae) to Cry1Ab proteins produced by Bt crops yielded contradicting results. These contradictions were largely ascribed to differences in prey quality and exposure methods. In this study, we used healthy prey to expose lacewing larvae to Cry1Ab protein produced by Bt maize, and also determined the concentration of this protein at different trophic levels. Experiments were conducted in which Chrysoperla pudica (Navás) larvae were fed different diets which included aphids and healthy Bt-resistant Busseola fusca (Fuller) (Lepidoptera: Noctuidae) larvae feeding on Bt maize tissue. Lacewing larval and pupal development times as well as overall mortality were determined. The concentration of Cry1Ab protein in B. fusca larvae were fourfold reduced compared with that in leaf tissue and was below detection level in lacewing larvae. Survival to the pupal stage was higher than 96% in all treatments. Larval and pupal development periods did not differ significantly between treatments in which prey fed on Bt or non-Bt maize. This study showed feeding on healthy prey that consumed Cry1Ab protein has no adverse effect on the biology of C. pudica.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere