Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Onion thrips, Thrips tabaci Lindeman, is a worldwide pest of onion whose feeding damage and transmission of Iris yellow spot virus (IYSV) may reduce onion yields. Little is known about the seasonal dynamics of T. tabaci dispersal, the distance of dispersal, or the movement of thrips infected with IYSV during the onion-growing season. To address these questions, T. tabaci adults were collected using transparent sticky card traps in commercial onion fields three times during the onion-growing season (June, July, and late August) at varying heights above the canopy (0.5–6 m above soil surface) and with trap-equipped unmanned aircraft (UAVs) flying 50–60 m above onion fields during August sampling periods in 2012 and 2013. Randomly selected subsamples of captured T. tabaci were tested for IYSV using RT-PCR. Most T. tabaci adults were captured in late August and near the onion canopy (<2 m) throughout the season. However, 4% of T. tabaci adults captured on sticky cards were at altitudes ≥2 m, and T. tabaci were also captured on UAV-mounted traps. These data strongly suggest that long-distance dispersal occurs. More T. tabaci captured on sticky cards tested positive for IYSV in August (53.6%) than earlier in the season (2.3 to 21.5% in June and July, respectively), and 20 and 15% of T. tabaci captured on UAV-mounted traps tested positive for IYSV in 2012 and 2013, respectively. Our results indicate that T. tabaci adults, including viruliferous individuals, engage in long-distance dispersal late in the season and likely contribute to the spread of IYSV.
The rice stink bug, Oebalus pugnax (F.), is a graminaceous feeder, and the most injurious insect pest of heading rice, Oryza sativa L., in the United States. Rice growers are aware of the economic importance of host grasses in O. pugnax abundance. However, the need for increased knowledge of host sequence relative to O. pugnax abundance is vital. Densities of O. pugnax on 15 graminaceous hosts were evaluated in the central Mississippi Delta from April through August in 2011 and 2012. Two cultivated and 13 wild host grasses were sampled using a sweep net. Overall, populations of O. pugnax were lower in 2012 than in 2011. Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lambert), was the main host that supported O. pugnax survival and reproduction from overwintering to early summer. Echinochloa spp., Digitaria spp., and Eriochloa spp. maintained greater populations of O. pugnax in the summer. Browntop millet, Urochloa ramosa (L.) Nguyen, and broadleaf signalgrass, U. platyphylla (Munro ex C.Wright) R. D.Webster, were important for populations of O. pugnax populations immediately prior to overwintering. Host switching was also an important factor that contributed to O. pugnax abundance. The evolution of Italian ryegrass resistance to the broad spectrum herbicide glyphosate in the central Mississippi delta has become an important component of O. pugnax population dynamics because of its increased abundance in and around agricultural areas. Cultural control measures on host grasses before flowering could result in less use of insecticides, thereby reducing cost of rice production.
Parasitism of ants that nest in rotting wood by eucharitid wasps was studied in order to examine whether habitat and season influence ant parasitism, vegetation complexity and agrochemical use correlate with ant parasitism, and whether specific local and landscape features of agricultural landscapes correlate with changes in ant parasitism. In a coffee landscape, 30 coffee and 10 forest sites were selected in which local management (e.g., vegetation, agrochemical use) and landscape features (e.g., distance to forest, percent of rustic coffee nearby) were characterized. Rotten logs were sampled and ant cocoons were collected from logs and cocoons were monitored for parasitoid emergence. Sixteen ant morphospecies in three ant subfamilies (Ectatomminae, Ponerinae, and Formicinae) were found. Seven ant species parasitized by two genera of Eucharitidae parasitoids (Kapala and Obeza) were reported and some ant-eucharitid associations were new. According to evaluated metrics, parasitism did not differ with habitat (forest, high-shade coffee, low-shade coffee), but did increase in the dry season for Gnamptogenys ants. Parasitism increased with vegetation complexity for Gnamptogenys and Pachycondyla and was high in sites with both high and low agrochemical use. Two landscape variables and two local factors positively correlated with parasitism for some ant genera and species. Thus, differences in vegetation complexity at the local and landscape scale and agrochemical use in coffee landscapes alter ecological interactions between parasitoids and their ant hosts.
Demand for agricultural production systems that are both economically viable and environmentally conscious continues to increase. In recent years, reduced tillage systems, and grass and pasture rotations have been investigated to help maintain or improve soil quality, increase crop yield, and decrease labor requirements for production. However, documentation of the effects of reduced tillage, fescue rotation systems as well as other management practices, including pesticides, on pest damage and soil arthropod activity in peanut production for the Mid-Atlantic US region is still limited. Therefore, this project was implemented to assess impacts of fescue-based rotation systems on pests and other soil organisms when compared with cash crop rotation systems over four locations in eastern North Carolina. In addition, the effects of tillage (strip vs. conventional) and soil chlorpyrifos application on pod damage and soil-dwelling organisms were also evaluated. Soil arthropod populations were assessed by deploying pitfall traps containing 50% ethanol in each of the sampled plots. Results from the present study provide evidence that location significantly impacts pest damage and soil arthropod diversity in peanut fields. Cropping history also influenced arthropod diversity, with higher diversity in fescue compared with cash crop fields. Corn rootworm damage to pods was higher at one of our locations (Rocky Mount) compared with all others. Cropping history (fescue vs. cash crop) did not have an effect on rootworm damage, but increased numbers of hymenopterans, acarina, heteropterans, and collembolans in fescue compared with cash crop fields. Interestingly, there was an overall tendency for higher number of soil arthropods in traps placed in chlorpyrifos-treated plots compared with nontreated controls.
The cerambycid beetle, Phoracantha semipunctata F., was introduced into California in the mid-1980s and killed large numbers of Eucalyptus host trees. The populations of the borer declined to very low levels in the mid-1990s following the establishment of the congener, Phoracantha recurva Newman, and the intentional introduction of the egg parasitoid, Avetianella longoi Siscaro. The distributions of the beetles overlap in the Australian native range, but one species has replaced the other in the adventive range in California. One possible explanation is differential susceptibility to natural enemies introduced for biological control. An alternative explanation for the reduced abundance of P. semipunctata is asymmetric interspecific competition between the two species. To test this hypothesis, equal larval densities of each species were introduced into host logs. In all cases, more P. recurva adults emerged than P. semipunctata adults, but the presence of congeners did not have a different effect than the presence of an equal density of conspecific individuals. Neither the temporal order of introduction or bark thickness altered the outcome of potential competitive interactions. Consequently, it appears that the ecological replacement of one borer with another in the adventive environment in southern California may not be a result of bottom-up intraguild competitive interactions. The top-down effects of natural enemies on P. semipunctata have most likely led to its decline.
Despite the applied importance of necrophilous histerid beetles, their communities and habitat preferences had not been characterized in the Iberian Peninsula. The current article describes the composition of those communities in seven types of natural habitats along a bioclimatical gradient in central Spain, describing and discussing the habitat preferences and niche breadths of the most abundant species. In total, 25 species of necrophilous Histeridae were collected using carrion-baited traps. As a result, six groups of species can be distinguished according to their habitat preferences. These groupings depend on either the distribution among habitats or their restriction to certain habitats. Moreover, within each habitat, the type of vegetation was a factor structuring histerid communities, with those species with wide distribution throughout several habitats showing a preference for more open areas.
Insect-mediated pollination is critical for lowbush blueberry (Ericaceae: Vaccinium angustifolium Aiton) fruit development. Past research shows a persistent presence of wild bees (Hymenoptera: Apoidea) providing pollination services even when commercial pollinators are present. We undertook the study to 1) provide a description of bee communities found in lowbush blueberry-growing regions, 2) identify field characteristics or farm management practices that influence those communities, 3) identify key wild bee pollinators that provide pollination services for the blueberry crop, and 4) identify non-crop plants found within the cropping system that provide forage for wild bees. During a 4-year period, we collected solitary and eusocial bees in over 40 fields during and after blueberry bloom, determining a management description for each field. We collected 4,474 solitary bees representing 124 species and 1,315 summer bumble bees representing nine species. No bumble bee species were previously unknown in Maine, yet we document seven solitary bee species new for the state. These include species of the genera Nomada, Lasioglossum, Calliopsis, and Augochloropsis. No field characteristic or farm management practice related to bee community structure, except bumble bee species richness was higher in certified organic fields. Pollen analysis determined scopal loads of 67–99% ericaceous pollen carried by five species of Andrena. Our data suggest two native ericaceous plants, Kalmia angustifolia L. and Gaylussacia baccata (Wangenheim), provide important alternative floral resources. We conclude that Maine blueberry croplands are populated with a species-rich bee community that fluctuates in time and space. We suggest growers develop and maintain wild bee forage and nest sites.
The interaction between the fish Oreochromis mossambicus (Percifomes: Cichlidae) and aquatic insects after application of chicken, cow, and pig manure was studied in 7,000-liter plastic aquadams. Principal component analysis showed that most of the variation in water quality after application of manure was accounted for by potassium, nitrogen, dissolved oxygen, phosphate, and alkalinity. Canonical correspondence analysis showed that Gyrinidae, Elminidae, Hydrophilidae, Hydraenidae, and Athericidae were associated with high nutrient levels (nitrogen, phosphorus, and potassium) characteristic of the chicken manure. However, the most abundant aquatic insects Gerridae, Notonectidae, and Culicidae were close to the centre of the ordination and not defined by any nutrient gradient. The Shannon—Wiener diversity was highest in the aquadams treated with chicken manure. The most frequently occurring aquatic insects in the diet of O. mossambicus were culicid mosquitoes in all the treatments. However, in the laboratory, Chironomidae were the most preferred because they lacked refuge. Notonectidae and Gerridae were not recorded in the diet of O. mossambicus despite their abundance. This may be because of their anti-predation strategies. Laboratory experiments showed that Notonectidae, Gyrinidae, and Gerridae fed on Chironomidae and Culicidae. This implies that aquatic predatory insects competed for food with O. mossambicus.
The incorporation of cover crops into annual crop rotations is one practice that is used in the Mid-Atlantic United States to manage soil fertility, suppress weeds, and control erosion. Additionally, flowering cover crops have the potential to support beneficial insect communities, such as native bees. Because of the current declines in managed honey bee colonies, the conservation of native bee communities is critical to maintaining “free” pollination services. However, native bees are negatively affected by agricultural intensification and are also in decline across North America.We conducted two experiments to assess the potential of flowering cover crops to act as a conservation resource for native bees.We evaluated the effects of cover crop diversity and fall planting date on floral resource availability and visitation by native bees for overwintering flowering cover crop species commonly used in the Mid-Atlantic region. Cover crop species, crop rotation schedule, and plant diversity significantly influenced floral resource availability. Different cover crop species not only had different blooming phenologies and winter survival responses to planting date, but attracted unique bee communities. Flower density was the primary factor influencing frequency of bee visitation across cover crop diversity and fall planting date treatments. The results from these experiments will be useful for informing recommendations on the applied use of flowering cover crops for pollinator conservation purposes.
A. J. Bakken, S. C. Schoof, M. Bickerton, K. L. Kamminga, J. C. Jenrette, S. Malone, M. A. Abney, D. A. Herbert, D. Reisig, T. P. Kuhar, J. F. Walgenbach
Nonmanaged plants occurring along forest edges and in suburban settings were sampled for brown marmorated stink bug, Halyomorpha halys (Sta° l), in North Carolina (NC) and Virginia (VA) over the course of three growing seasons. Commercial soybeans (Glycine max), an attractive cultivated host, were also sampled in 2014 in NC and in VA from 2010–2014. Very few H. halys were found on nonmanaged plants or soybean fields in the coastal plain region of either state, but substantial populations were recorded in the piedmont and mountain regions. From 2011 to 2013, H. halys comprised from 51 to 97% of all stink bug species observed on nonmanaged plants in the piedmont and mountain regions. In VA, the distribution expanded from detection in 12 counties in 2010 to 53 counties in 2014, with economically damaging levels occurring in the piedmont region. During these studies, H. halys were observed to complete one and a partial second generation per year in western NC and southwestern VA, similar to that previously observed in regions farther north. Several plants were identified as preferred hosts, with tree of heaven, catalpa, yellowwood, paulownia, cherry, walnut, redbud, and grape having consistently high numbers of H. halys. Knowing that these plants are preferred by H. halys during certain stages of the insects' development will aid in the search for H. halys in new areas, as well as serve as one predictor of the likelihood of a certain area to attract and sustain large H. halys populations.
Two species of Culex mosquitoes are common throughout much of North America. Culex restuans Theobold is a native species, whereas Culex pipiens L. is a European immigrant that has been in North America since the 1600s. Larvae of Cx. restuans are numerically dominant in spring and early summer but Cx. pipiens dominates by mid-summer. This transition is termed the “Culex crossover” and has been previously explored in larval populations, largely because Cx. pipiens is more likely to transfer West Nile virus to humans. Adult mosquitoes of both species were captured in 14 light traps in Lucas County, OH, between May and October 1980–2011.We examined this 31-yr, continuous record of adult populations for signs of a species crossover, relationships between abundances of both species and climate factors, and evidence of interspecific competition. The total cumulative degree-days (above 0°C), total cumulative precipitation, and total number of each species were calculated for each day of January–September (annual) and May-September (mosquito season) of each year. On average, adult Cx. pipiens became numerically dominant over Cx. restuans on day 175 ± 21 (June 24), consistent with the Culex crossover reported for their larvae. Pearson correlations showed that abundances of both species were related to temperature and precipitation, but Cx. pipiens tended to be positively related to climatic factors, whereas Cx. restuans showed negative correlations. Moreover, abundances of the two species were more positively than negatively related to one another, providing no evidence of interspecific competition.
The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is an endemic herbivore of bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ∼100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of adult R. indifferens from sweet and bitter cherry differ according to the phenology of their respective host plants and if eclosion times of the host-specific parasitoid Diachasma muliebre (Muesebeck) (Hymenoptera: Braconidae) attacking bitter and sweet cherry flies differ according to the eclosion phenology of their fly hosts. Fly pupae from sweet and bitter cherry fruit were collected from sympatric and allopatric sites in Washington state, and chilled at 5°C. Because timing of eclosion in R. indifferens depends on chill duration, eclosion time in wasps could also vary with chill duration. To account for this, fly pupae were chilled for 1, 2, 2.5, 3, 4, 6, or 8 mo. Both flies and wasps eclosed earlier with longer chill durations. Eclosion times of sweet and bitter cherry flies from a sympatric site in central Washington did not differ. However, at allopatric sites in northwestern and central Washington, bitter cherry flies eclosed later than sweet and bitter cherry flies at the sympatric site. Correspondingly, D. muliebre parasitizing a more isolated bitter cherry fly population eclosed later than D. muliebre parasitizing earlier-emerging sweet and bitter cherry fly populations. These results provide evidence for D. muliebre rapidly responding to changes in host plant shifts by R. indifferens.
Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments.
Growing concerns about the environmental consequences of chemically based pest control strategies have precipitated a call for the development of integrated, ecologically based pest management programs. Carabid or ground beetles (Coleoptera:Carabidae) are an important group of natural enemies of common agricultural pests such as aphids, slugs, and other beetles. Alfalfa (Medicago sativa L.) is one of the most common forage crop species in the semi-arid western United States. In 2011, Montana alone produced 4.0 × 106 Mg of alfalfa on 8.1 × 105 ha for gross revenue in excess of US$4.3 × 108,making it the third largest crop by revenue. We conducted our study over the 2012 and 2013 growing seasons. Each year, our study consisted of three sites each with adjacent systems of monoculture alfalfa, alfalfa nurse cropped with hay barley, and an uncultivated refuge consisting of a variety of forbs and grasses. Carabid community structure differed and strong temporal shifts were detected during both 2012 and 2013.Multivariate fuzzy set ordination suggests that variation in canopy height among the three vegetation systems was primarily responsible for the differences observed in carabid community structure. Land managers may be able to enhance carabid species richness and total abundance by creating a heterogeneous vegetation structure, and nurse cropping in particular may be effective strategy to achieve this goal.
Plant pathogens can influence the behavior and performance of insect herbivores. Studies of these associations typically focus on tripartite interactions between a plant host, a plant pathogen, and its insect vector. An unrelated herbivore or pathogen might influence such interactions. This study used a model system consisting of Tobacco mosaic virus (TMV), the psyllid Bactericera cockerelli Sulc, and tomatoes to investigate multipartite interactions among a pathogen, a nonvector, and a plant host, and determine whether shifts in host physiology were behind potential interactions. Additionally, the ability of TMV to affect the success of another pathogen, ‘Candidatus Liberibacter solanacearum,’ which is transmitted by the psyllid, was studied. In choice trials, psyllids preferred nearly fourfold noninfected plants to TMV-infected plants. No-choice bioassays demonstrated that there was no difference in psyllid development between TMV-infected and control plants; oviposition was twice as high on control plants. Following inoculation by psyllids, ‘Candidatus Liberibacter solanacearum’ titers were lower in TMVinfected plants than control plants. TMV-infected plants had lower levels of amino acids and sugars but little differences in phenolics and terpenoids, relative to control plants. Possibly, these changes in sugars are associated with a reduction in psyllid attractiveness in TMV-infected tomatoes resulting in decreased infection of ‘Candidatus Liberibacter solanacearum.’
We investigated the effect of mutual interference on the attack efficiency and the rate of successful parasitism on the parasitoid Spalangia cameroni (Perkins) attacking pupae of the stable fly Stomoxys calcitrans (L.). Female parasitoids (2, 4, 8, 16, or 32) were exposed to 100 fly pupae during 24 h. The number of pupae that were attacked and the number successfully parasitized increased with the parasitoid density and reached a maximum of ∼70 and 50, respectively. Parasitoid-induced mortality (PIM) was about 20 pupae, irrespective of parasitoid density. The per capita rates of attack, successful parasitism and parasitoid-induced mortality declined monotonously with parasitoid density. Progeny sex ratio was female biased for all parasitoid densities, but declined significantly with increasing parasitoid density from ∼70% females at the lowest density to ∼60% at the highest. Mutual interference was incorporated into a functional response model to predict the attack rate and the rate of successful parasitism at different temperatures, host densities and parasitoid densities. The model explained 93.5% of the variation in the observed number of attacked pupae and 91.5% of the variation in the number of successfully parasitized pupae. The model predicts that increasing parasitoid densities will increase the percentage of killed hosts, but only up to a certain density. Above this density, a further increase in parasitoid abundance will actually lead to a decline in the percentage parasitism. These findings may have some implications for using S. cameroni in biological control against flies using inundative releases.
Predictions of phenological development for insect biological control agents may facilitate post-release monitoring efforts by allowing land managers to optimize the timing of monitoring activities. A logistic thermal time model was tested to predict phenology of immature stem-mining weevils, Hadroplontus litura F. (Coleoptera: Curculionidae), a biological control agent for Canada thistle, Cirsium arvense L. (Asterales: Asteraceae). Weevil eggs and larvae were collected weekly from Canada thistle stems in eastern North Dakota from May through July during 2010 and 2011. Head capsule widths of sampled larvae were measured at the widest point and plotted on a frequency histogram to establish ranges of head capsule widths associated with each instar.We found head capsule width ranges for first-, second-, and third-instar H. litura larvae were 165–324 µm, 346–490µmm, and 506–736 µm, respectively. Logistic regression models were developed to estimate the proportions of H. litura eggs, first-, and second-instar larvae in the weevil population as a function of thermal time. Model estimates of median development time for eggs, first instars, and second instars ranged from 219 ± 23 degree-days (DD) to 255 ± 27 DD, 556 ± 77 DD to 595 ± 81 DD, and 595 ± 109 DD to 653 ± 108 DD, respectively. Based on model validation statistics, model estimates for development timing were the most accurate for eggs and first instars and somewhat less accurate for second instars. These model predictions will help biological control practitioners obtain more accurate estimates of weevil population densities during postrelease monitoring.
There is astounding variation in the abundance and diversity of insect herbivores among plant individuals within plant species in natural systems. One of the most well studied hypotheses for this pattern, the plant architecture hypothesis, suggests that insect community patterns vary with plant structural complexity and plant traits associated with structure. An important limitation to our understanding of the plant architecture hypothesis has been that most studies on the topic confound plant size and plant age. This occurs because, for most plant species, larger individuals are older individuals. This is a limitation because it prevents us from knowing whether insect community patterns are more dependent on traits associated with plant size, like resource quantity or plant apparency, or traits associated with plant age, like ontogenetic changes in phytochemistry. To separate these effects, we characterized galling insect communities on sagebrush (Artemisia tridentata)—a shrub in which age and size are not tightly correlated. We identified gall insects and recorded morphological measurements from 60 plants that varied separately in size and age. We found that plant size explained significantly more variation in insect gall abundance and species richness than did plant age. These results suggest that processes supporting the plant architecture hypothesis in this system are driven primarily by plant size and not plant age per se. Resource qualities associated with host-plant ontogeny may be less important than resource quantity in the assembly of herbivorous insect communities.
Bemisia tabaci (Gennadius) biotype B transmits Tomato yellow leaf curl virus (TYLCV), which affects tomato production globally. Prompt destruction of virus reservoirs is a key component of virus management. Identification of weed hosts of TYLCV will be useful for reducing such reservoirs. The status of weeds as alternate hosts of TYLCV in Florida remains unclear. In greenhouse studies, B. tabaci adults from a colony reared on TYLCV-infected tomato were established in cages containing one of four weeds common to horticultural fields in central and south Florida. Cages containing tomato and cotton were also infested with viruliferous whiteflies as a positive control and negative control, respectively. Whitefly adults and plant tissue were tested periodically over 10 wk for the presence of TYLCV using PCR. After 10 wk, virus-susceptible tomato plants were placed in each cage to determine if whiteflies descended from the original adults were still infective. Results indicate that Bidens alba, Emilia fosbergii, and Raphanus raphanistrum are not hosts of TYLCV, and that Amaranthus retroflexus is a host.
The present study aimed to identify common bean (Phaseolus vulgaris L.) cultivars less susceptible to Caliothrips phaseoli (Hood) in different growing seasons, to evaluate whether climatic conditions influence plant resistance to C. phaseoli infestation, and to investigate the preferred plant part for insect feeding. Eighteen common bean cultivars were evaluated in the winter season, and 19 cultivars were assessed in the rainy and dry seasons, under field conditions in the municipality of Jaboticabal, state of São Paulo, Brazil. Infestation of C. phaseoli nymphs in the upper and lower parts of the beans plants was recorded at weekly intervals from 25 days after plant emergence (DAE) to 60 DAE. In the winter season, the cultivars ‘IAC Galante,’ ‘IAC Centauro,’ ‘IAC Carioca Eté,’ and ‘IAC Formoso’ had significantly lower number of thrips than the cultivar ‘IAC Diplomata.’ In the rainy season, the cultivars ‘IAC Harmonia’ and ‘IPR Siriri’ had the lowest thrips infestation, differing from the cultivars ‘BRS Pontal’ and ‘IAC Una.’ The bean cultivars were equally susceptible to C. phaseoli in the dry season. The results suggest that C. phaseoli nymphs prefer to infest leaves of the lower part of bean plants, like most generalist herbivorous insects. In the winter and dry seasons, the highest thrips infestation was observed at 60 DAE, while in the rainy season, it was recorded from 32 to 46 DAE. Overall, C. phaseoli infestation on bean cultivars was not influenced by either temperature, relative humidity, or rainfall.
Many organisms are protected from natural enemies by a tough exterior. Such protection is particularly important for immobile stages, such as pupae. The pupa of some insects is protected by a puparium, which is a shell formed from the exoskeleton of the last larval instar. However, the puparium of certain fly species is drilled through by adult females of the wasp Spalangia endiusWalker. The female wasp then deposits an egg on the fly pupa within the puparium. After the wasp offspring finishes feeding on the fly pupa, it chews through the puparium to complete emergence. Despite the apparent toughness of the puparium, there was no detectable wear on the ovipositor of S. endius females even when females had been encountering fly pupae (Musca domestica L.) for weeks, and regardless of whether the pupae were large or old or both. Energy dispersive spectroscopy did not reveal any metal ions in the ovipositor's cuticle to account for this resistance against wear. Offspring of S. endius that chewed their way out of pupae also showed no detectable wear on their mandibles. Tests with a penetrometer showed that the force required to penetrate the center of a puparium was greater for larger and for older pupae; and an index of overall thickness was greater for large old pupae than for small old pupae. The lack of an effect of pupal size or age on wear may result from wasps choosing locations on the puparium that are easier to get through.
Population density may affect solitary bee maternal resource allocation. The number of Megachile rotundata (F.), alfalfa leafcutting bee, females released for seed production of Medicago sativa L., alfalfa, may limit flower availability for nest provisioning. In turn, pollinator abundance also may affect crop yield. The M. sativa pollination system presents an opportunity to test for effects of density dependence and maternal manipulation on M. rotundata reproduction. A multiyear study was performed on M. sativa fields upon which M. rotundata densities were altered to induce low, medium, and high density situations. Numbers of adult bees and open flowers were recorded weekly; bee reproduction variables were collected once. Fields varied in plant performance for each site and year, and the intended bee densities were not realized. Therefore, the variable density index (DI) was derived to describe the number of female bees per area of flowers over the study period. As DI increased, percentages of pollinated flowers, established females, and healthy brood significantly increased, and the number of pollinated flowers per female and of dead or diseased brood significantly decreased. Sex ratio was significantly more female biased as DI increased. Overwintered offspring weights were similar regardless of DI, but significantly differed by year for both sexes, and for males also by field and year × field interaction. Overall, resource limitation was not found in this field study. Other density-dependent factors may have induced a bee dispersal response soon after bees were released in the fields that circumvented the need for, or impact of, maternal manipulation.
Honey bees [Apis mellifera L. (Apidae, Hymenoptera)] show spatial learning behavior or orientation, in which animals make use of structured home ranges for their daily activities. Worker (female) orientation has been studied more extensively than drone (male) orientation. Given the extensive and large flight range of drones as part of their reproductive biology, the study of drone orientation may provide new insight on landscape features important for orientation.We report the return rate and orientation of drones released at three distances (1, 2, and 4 km) and at the four cardinal points from an apiary located in Gurabo, Puerto Rico.We used high-resolution aerial photographs to describe landscape characteristics at the releasing sites and at the apiary. Analyses of variance were used to test significance among returning times from different distances and directions. A principal components analysis was used to describe the landscape at the releasing sites and generalized linear models were used to identify landscape characteristics that influenced the returning times of drones. Our results showed for the first time that drones are able to return from as far as 4 km from the colony. Distance to drone congregation area, orientation, and tree lines were the most important landscape characteristics influencing drone return rate.We discuss the role of landscape in drone orientation.
Distortions of sex ratios and sexual traits from synthetic chemicals have been well documented; however, there is little evidence for such phenomena associated with naturally occurring chemical exposures.We reasoned that chemical secretions of vertebrates could contribute to skewed sex ratios in ectoparasitic insects due to differences in susceptibility among the sexes. For example, among ectoparasitic lice the female is generally the larger sex. Smaller males may be more susceptible to chemical effects. We studied sex ratios of lice on two sympatric species of colonial seabirds. Crested auklets (Aethia cristatella) secrete a strong smelling citrus-like odorant composed of aldehydes while a closely related congener the least auklet (Aethia pusilla) lacks these compounds. Each auklet hosts three species of lice, two of which are shared in common.We found that the sex ratio of one louse species, Quadraceps aethereus (Giebel), was highly skewed on crested auklets 1:69 (males: females), yet close to unity on least auklets (1:0.97). We suggest that a host-specific effect contributes to this difference, such as the crested auklet's chemical odorant.
The Asian cockroach, Blattella asahinai Mizukubo, first introduced to Florida in 1986, has been spreading throughout the southeastern United States. Populations can reach extremely high densities and cause damage to crops as well as become a nuisance in residential settings. Because the German cockroach, Blattella germanica L., is its closest extant relative, we characterized the B. asahinai male response to blattellaquinone, the sex pheromone of the German cockroach, in an effort to develop monitoring tools for B. asahinai. Electroantennogram (EAG) analysis was conducted on B. asahinai and B. germanica males and females, and revealed that the antennae of males of both species responded significantly more to blattellaquinone than females, and in both males and females absolute EAG responses of B. asahinai were greater than in B. germanica males and females, respectively. However, normalized male EAG response curves and ED50 values (effective dose to elicit 50% of maximal response) did not differ significantly between the two species. Results of field trapping experiments demonstrated that male B. asahinai were more attracted to blattellaquinone than any other life stage, and 10 µg of blattellaquinone attracted the most males. These results suggest that blattellaquinone or a similar compound might be a component of the sex pheromone of B. asahinai females.
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is an irruptive tree-killing species native to pine forests of western North America. Two potential pathways of spread to eastern forests have recently been identified. First, warming temperatures have driven range expansion from British Columbia into Albertan jack pine forests that are contiguous with the Great Lakes region. Second, high temperatures and drought have fostered largescale outbreaks within the historical range, creating economic incentives to salvage killed timber by transporting logs to midwestern markets, which risks accidental introduction. We evaluated the extent to which local predators and competitors that exploit bark beetle semiochemicals would respond to D. ponderosae in Wisconsin. We emulated D. ponderosae attack by deploying lures containing synthetic aggregation pheromones with and without host tree compounds and blank control traps in six red pine plantations over 2 yr. Predator populations were high in these stands, as evidenced by catches in positive control traps, baited with pheromones of local bark beetles and were deployed distant from behavioral choice plots. Only one predator, Thanasimus dubius F. (Coleoptera: Cleridae) was attracted to D. ponderosae's aggregation pheromones relative to blank controls, and its attraction was relatively weak. The most common bark beetles attracted to these pheromones were lower stem and root colonizers, which likely would facilitate rather than compete with D. ponderosae. There was some, but weak, attraction of potentially competing Ips species. Other factors that might influence natural enemy impacts on D. ponderosae in midwestern forests, such as phenological synchrony and exploitation of male-produced pheromones, are discussed.
Climate changes are predicted to affect the diapause of many insect species around the world adversely. In this context, bees are of interest due to their pollination services. In southern Brazil, the highly eusocial bee species Plebeia droryana (Friese) (Hymenoptera: Apidae: Meliponini) exhibits reproductive diapause in response to the region's rigorous winters. That diapause is characterized by a temporary interruption in brood cell construction by nurse bees and egg-laying by the queen, regardless of other internal tasks underway in the nests. In this study, we evaluated whether P. droryana enter diapause under experimental conditions. P. droryana colonies were kept in a germination chamber, and the temperature was progressively reduced from 20°C over a period of a few weeks until diapause was detected. Additionally, we also estimated the environmental conditions in the actual geographic range occupied by P. droryana and modeled it for predicted changes in climate up to the year 2080. Our findings indicate that P. droryana enter diapause between 10 and 8°C. We also found that the current minimum winter temperature (10.1°C, median) in the distributional range of P. droryana will probably rise (13.4°C, median). Thus, if our experimental data are somewhat accurate, ∼36% of the southern Brazilian P. droryana population may be active during the expected milder winter months in 2080. In this scenario, there may be a larger demand for pollen and nectar for that bee species. Greater conservation efforts will be required to preserve P. droryana populations and keep them viable in the coming decades.
Aedes albopictus (Skuse) is an invasive mosquito species that has spread to many countries in temperate regions bordering the Mediterranean basin, where it is becoming a major public health concern. A good knowledge of the thermal features of the most productive breeding sites for Ae. albopictus is crucial for a better estimation of the mosquitoes' life cycle and developmental rates. In this article, we address the problem of predicting air temperature in three microhabitats common in urban and suburban areas and the air and water temperature inside an ordinary catch basin, which is considered the most productive breeding site for Ae. albopictus in Italy. Temperature differences were statistically proven between the three microhabitats and between the catch basin external and internal temperature. The impacts on the developmental rates for each life stage of Ae. albopictus were tested through a parametric function of the temperature, and the aquatic stages resulted as being the most affected using the specific temperature inside a typical catch basin instead of a generic air temperature. The impact of snow cover on the catch basin internal temperature, and consequently on the mortality of diapausing eggs, was also evaluated. These data can be useful to improve epidemiological models for a better prediction of Ae. albopictus seasonal and population dynamics in central-northern Italian urban areas.
Body size is correlated with potential fecundity in capital breeders, but size-dependent functions of realized fecundity may be impacted by reproductive losses due to mating failure or oviposition time limitations (number of eggs remaining in the abdomen of females at death). Post-mortem assessment of adults collected in the field after natural death represents a sound approach to quantify how body size affects realized fecundity. This approach is used here for two Lepidoptera for which replicated field data are available, the spruce budworm Choristoneura fumiferana Clemens (Tortricidae) and bagworm Metisa planaWalker (Psychidae). Dead female budworms were collected on drop trays placed beneath tree canopies at four locations. Most females had mated during their lifetime (presence of a spermatophore in spermatheca), and body size did not influence mating failure. Oviposition time limitation was the major factor restricting realized fecundity of females, and its incidence was independent of body size at three of the four locations. Both realized and potential fecundity of female budworms increased linearly with body size. Female bagworms are neotenous and reproduce within a bag; hence, parameters related to realized fecundity are unusually tractable. For each of five consecutive generations of bagworms, mating probability increased with body size, so that virgin-dead females were predominantly small, least fecund individuals. The implication of size-dependent reproductive losses are compared for the two organisms in terms of life history theory and population dynamics, with an emphasis on how differential female motility affects the evolutionary and ecological consequences of size-dependent realized fecundity.
Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of potato (Solanum tuberosum L.) that vectors the bacterium that putatively causes zebra chip disease in potatoes, ‘Candidatus Liberibacter solanacearum.’ Zebra chip disease is managed by controlling populations of B. cockerelli in commercial potato fields. Lacking an integrated pest management strategy, growers have resorted to an intensive chemical control program that may be leading to insecticide-resistant B. cockerelli populations in south Texas and Mexico. To initiate the development of an integrated approach of controlling B. cockerelli, we used constant temperature studies, nonlinear and linear modeling, and field sampling data to determine and validate the degree day parameters for development of B. cockerelli infesting potato. Degree day model predictions for three different B. cockerelli life stages were tested against data collected from pesticide-free plots. The model was most accurate at predicting egg-to-egg and nymphto- nymph peaks, with less accuracy in predicting adult-to-adult peaks. It is impractical to predict first occurrence of B. cockerelli in potato plantings as adults are present as soon cotyledons break through the soil. Therefore, we suggest integrating the degree day model into current B. cockerelli management practices using a two-phase method. Phase 1 occurs from potato planting through to the first peak in a B. cockerelli field population, which is managed using current practices. Phase 2 begins with the first B. cockerelli population peak and the degree day model is initiated to predict the subsequent population peaks, thus providing growers a tool to proactively manage this pest.
We tested the effects of high humidity and submergence on egg hatching of spider mites. In both the high humidity and submergence treatments, many Tetranychus and Panonychus eggs did not hatch until after the hatching peak of the lower humidity or unsubmerged controls. However, after humidity decreased or water was drained, many eggs hatched within 1–3 h. This was observed regardless of when high humidity or submergence treatments were implemented: either immediately after oviposition or immediately before hatching was due. Normal eyespot formation was observed in most eggs in the high humidity and submergence treatments, which indicates that spider mite embryos develop even when eggs are underwater. Therefore, delays in hatching are not caused by delayed embryonic development. A delay in hatching was always observed in Panonychus citri (McGregor) but was more variable in Tetranychus urticae Koch and Tetranychus kanzawai Kishida. The high humidity and submergence treatments affected but did not suppress larval development in these species. In contrast, many Oligonychus eggs died following the high humidity treatments. In Tetranychus and Panonychus spider mites, suspension of egg hatching may mitigate the adverse effects of rainfall.
Microtheca ochroloma Stål, the yellowmargined leaf beetle, is one of the most destructive pests of crucifer vegetables on organic farms. Larvae of the green lacewing Chrysoperla rufilabris Burmeister have been observed preying on M. ochroloma, but no studies have evaluated the suitability of M. ochroloma as prey for C. rufilabris or the efficacy of this predator as a biological control agent of the pest. This study quantified the killing rate, developmental time, and survivorship of C. rufilabris when offered eggs and larvae of M. ochroloma at 10, 15, 20, or 25°C. Mean number of prey killed daily increased from 8.4 eggs and 4.0 larvae at 15°C to 18.6 eggs and 10.2 larvae at 25°C. However, predator larvae killed 78% fewer total eggs at 25°C than at 15°C; total number of first-instar prey killed did not vary significantly with temperature. Mean developmental time of predator larvae decreased from 75.5 d at 15°C to 26.6 d at 25°C when they were fed eggs, whereas it decreased from 54.0 d at 15°C to 21.4 d at 25°C when they were fed larvae. Predator survivorship was reduced by 80% at 15°C and no larvae survived at 10°C. We conclude that C. rufilabris can complete development on a diet of eggs of M. ochroloma, but its effectiveness to control M. ochroloma populations will be lessened during cool months, from November to April, when crucifers are produced in Florida and the beetle is actively developing, reproducing, and causing crop damage.
Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), a worldwide distributive invasive pest, originated from the United States, and it was first reported in Guangdong province, China, in 2008. The effects of temperature and relative humidity (RH) on the life history traits of P. solenopsis on Hibiscus rosa-sinensis L. (Malvales: Malvaceae) were studied at seven constant temperatures (15, 20, 25, 27.5, 30, 32.5, and 35°C) and three RHs (45, 60, and 75%). The results showed that temperature, RH, and their interactions significantly influenced the life history traits of P. solenopsis. First instar was the most sensitive stage to extreme temperatures with very low survival rates at 15 and 35°C. At 25–32.5°C and the three RHs, the developmental periods of entire immature stage were shorter with values between 12.5–18.6 d. The minimum threshold temperature and the effective accumulative temperature for the pest to complete one generation were 13.2°C and 393.7 degree-days, respectively. The percentage and longevity of female adults significantly differed among different treatments. It failed to complete development at 15 or 35°C and the three RHs. Female fecundity reached the maximum value at 27.5°C and 45% RH. The intrinsic rate for increase (r), the net reproductive rate (R0), and the finite rate of increase (λ) reached the maximum values at 27.5°C and 45% RH (0.22 d-1, 244.6 hatched eggs, and 1.25 d-1, respectively). Therefore, we conclude that 27.5°C and 45% RH are the optimum conditions for the population development of the pest.
Patterns of body size evolution are of particular interest because body size can affect virtually all the physiological and life history traits of an organism. Sexual size dimorphism (SSD), a difference in body size between males and females, is a widespread phenomenon in insects. Much of the variation in SSD is genetically based and likely due to differential selection acting on males and females. The importance of environmental variables and evolutionary processes affecting phenotypeic variation in both sexes may be useful to gain insights into insect ecology and evolution. Dichroplus elongatus Giglio-Tos is a South American grasshopper widely distributed throughout Argentina, Uruguay, most of Chile, and southern Brazil. In this study, we analyzed 122 adult females of D. elongatus collected in eight natural populations from central-east Argentina. Females show large body size variation among the analyzed populations and this variation exhibits a strong relationship with fecundity. Our results have shown that larger females were more fecund than smaller ones. We found that ovariole number varied along a latitudinal gradient, with higher ovariole numbers in populations from warmer locations. A considerable female-biased SSD was detected. SSD for three analyzed morphometric traits scaled isometrically. However, SSD for thorax length displayed a considerable variation across the studied area, indicating a larger relative increase in female size than in male size in warmer environmental conditions.
Understanding direct response of insects to elevated CO2 should help to elucidate the mechanistic bases of the effects of elevated CO2 on interactions of insects with plants. This should improve our ability to predict shifts in insect population dynamics and community interactions under the conditions of climate change. Effects of elevated CO2 levels on the fitness-related parameters were examined for multigenerations in the Asian corn borer, Ostrinia furnacalis (Guenée). The larvae were allowed to feed on artificial diet, and reared in the closed-dynamic environment chambers with three CO2 levels (ambient, 550 µl/liter, and 750 µl/liter) for six generations. In comparison with the ambient CO2 level, mean larval survival rate decreased 9.9% in 750 µl/liter CO2 level, across O. furnacalis generations, and larval and pupal development times increased 7.5–16.4% and 4.5–13.4%, respectively, in two elevated CO2 levels. Pupal weight was reduced more than 12.2% in 750 µl/liter CO2 level. Across O. furnacalis generations, mean food consumption per larva increased 2.7, 7.0% and frass excretion per larva increased 14.4, 22.5% in the two elevated CO2 levels, respectively, compared with ambient CO2 level. Elevated CO2 levels resulted in the decline mean across O. furnacalis generations in mean relative growth rate, but increased in relative consumption rate. These results suggested that elevated CO2 would reduce the fitness-related parameters such as higher mortality, lower pupal weight, and longer development times in long term. It also reduced the larval food digestibility and utilizing efficiency; in turn, this would result in increase of food consumption.
R. Ellango, Shalini Thakur Singh, Vipin Singh Rana, N. Gayatri Priya, Harpreet Raina, Rahul Chaubey, N. C. Naveen, Riaz Mahmood, V. V. Ramamurthy, R. Asokan, R. Rajagopal
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a phloem-feeding, economically important pest of crops worldwide. In addition to direct damage, it also vectors a number of plant viruses belonging to the family Geminiviridae. Its populations differ biologically with respect to insecticide resistance, virus transmission and host range. Therefore, understanding genetic variation among populations is important for management. We sequenced 850 bp of the mitochondrial COI (mtCOI) gene from B. tabaci populations surveyed across India. BLAST analysis of the mtCOI sequences generated in this study with sequences from the mtCOI dataset showed the presence of one invasive group, MEAM1, and eight other groups of B. tabaci in India. mtCOI sequence analyses showed the presence of Asia I, Asia I-India, Asia II-1, Asia II-5, Asia II-7, Asia II-8, and Asia II-11 genetic groups. We also found China-3 in a field in Birbhum district, West Bengal, India, suggesting a role of anthropogenic activities in the distribution of B. tabaci. Interestingly, more than one genetic group was found coexisting in the same field.
The host plant range of pests can have important consequences for its evolution, and plays a critical role in the emergence and spread of a new pest outbreak. This study addresses the ecological genetics of the indigenous African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae), in an attempt to investigate the evolutionary forces that may be involved in the recent host range expansion and establishment of this species in Ethiopian and southern African sugarcane. We used populations from Ethiopia, Zimbabwe, and South Africa to examine whether the host range expansion patterns shared by the Ethiopian and the southern African populations of B. fusca have evolved independently. Base-pair differences in the cytochrome oxidase I (COI) gene were used to characterize haplotype diversity and phylogenetic relationships. There were seven haplotypes among the 30 sequenced individuals collected on four host plant species from 17 localities in the four countries. Of the seven COI haplotypes identified, the two major ones occurred in both sugarcane and maize. Genetic analyses revealed no detectable genetic differentiation between southern African B. fusca populations from maize and sugarcane (FST = 0.019; P = 0.24). However, there was strong evidence of variation in genetic composition between populations of the pest from different geographic regions (FST = 0.948; P < 0.001). The main implication of these findings is that the B. fusca populations in maize in southern Africa are more likely to shift to sugarcane, suggesting that ecological opportunity is an important factor in host plant range expansion by a pest.
Transgenic corn, Zea mays L., that expresses the Bacillus thuringiensis (Bt) toxin Cry1Ab is only moderately toxic to Helicoverpa zea (Boddie) and has been planted commercially since 1996. Growth and development of H. zea was monitored to determine potential changes in susceptibility to this toxin over time. Small plots of corn hybrids expressing Cry1F, Cry1F × Cry1Ab, Cry1Ab × Cry3Bb1, Cry1A.105 × Cry2Ab2 × Cry3Bb1, Cry1A.105 × Cry2Ab2, and Vip3Aa20 × Cry1Ab × mCry3A were planted in both 2012 and 2013 inNorth and South Carolina with paired non-Bt hybrids from the same genetic background. H. zea larvae were sampled on three time periods from ears and the following factors were measured: kernel area injured (cm2) by H. zea larvae, larval number per ear, larval weight, larval length, and larval head width. Pupae were sampled on a single time period and the following factors recorded: number per ear, weight, time to eclosion, and the number that eclosed. There was no reduction in larval weight, number of insect entering the pupal stadium, pupal weight, time to eclosion, and number of pupae able to successfully eclose to adulthood in the hybrid expressing Cry1Ab compared with a non-Bt paired hybrid. As Cry1Ab affected these in 1996, H. zea may be developing resistance to Cry1Ab in corn, although these results are not comprehensive, given the limited sampling period, size, and geography. We also found that the negative impacts on larval growth and development were greater in corn hybrids with pyramided traits compared with single traits.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere