Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Since its 2005 introduction into the United States, chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), has become a problematic pest of agronomic, vegetable, fruit, and ornamental plants. Knowledge of its population dynamics may help managers better monitor and control S. dorsalis. Population estimates were recorded for S. dorsalis and other thrips species on Knock-Out rose (Rosa ‘Radrazz’) and green buttonwood (Conocarpus erectus L.) from July 2007 to September 2008 in two field plots (one per plant species) in Homestead, FL. Yellow sticky card traps and samples of terminals, flowers, buds, and leaves were collected. S. dorsalis accounted for 95% of all thrips individuals collected from plants and 84% from traps with the remainder including at least 18 other thrips species. More thrips were caught on or flying near rose plants (47,438) than on or near buttonwoods (5,898), and on-plant densities of S. dorsalis appeared higher for rose than for buttonwood. Compared with rose leaves, rose buds, terminals, and flowers each had higher numbers of S. dorsalis, and buds and terminals had higher densities. On each host plant species, S. dorsalis density fluctuated over time with peaks in the late spring, summer, and fall, but populations were consistently low in the late winter and early spring. On roses, increased plant damage ratings correlated with reduced numbers of flowers and buds, reduced mean flower areas, and increased on-plant number and density of S. dorsalis. There were positive correlations over time between S. dorsalis density and plant damage rating for rose flowers (R = 0.78; P = 0.0003) and for buttonwood terminals (R = 0.90; P = 0.0001 ). Yellow sticky card traps were effective for monitoring S. dorsalis and may be especially useful and economically justified for the most susceptible hosts, but they also work well for less susceptible hosts. A good S. dorsalis scouting program should hence consider trap catches and symptoms such as leaf distortion, small flower area (size), and thrips population concentrations near buds and terminals.
The emergence densities of cicadas tend to be patchy at multiple spatial scales. While studies have identified habitat conditions related to these patchy distributions, their interpretation has been based primarily on periodical cicada species; habitat factors associated with densities of nonperiodical (i.e., annual) cicadas have remained under studied. This is despite their widespread distribution, diversity, and role as an important trophic resource for many other organisms, particularly within riparian areas. We studied habitat factors associated with the emergence densities of Tibicen spp. in a bottomland hardwood forest in east-central Arkansas. We found emergence densities were greatest in areas of high sapling densities and increased toward forest edges, although sapling density was a much stronger predictor of emergence density. Emergence densities also differed among sample areas within our study system. The habitat features predicting nymph densities were likely driven by a combination of factors affecting female selection of oviposition sites and the effects of habitat conditions on nymph survival. The differences in nymph densities between areas of our system were likely a result of the differential effects of flooding in these areas. Interestingly, our findings were similar to observations of periodical species, suggesting that both types of cicadas select similar habitat characteristics for ovipositing or are under comparable selective pressures during development. Our findings also imply that changes in habitat characteristics because of anthropogenically altered disturbance regimes (e.g., flooding) have the potential to negatively impact both periodical and annual species, which could have dramatic consequences for organisms at numerous trophic levels.
During 2009, 2010, and 2011, the reproductive dispersal flight phenology of Formosan subterranean termites (Coptotermes formosanus Shiraki) was assessed on Galveston Island, TX, via LED light-based termite alate traps. In all three years, traps were deployed at sampling sites before the initiation of C. formosanus dispersal flights, and retrieved weekly until the cessation flights. In total, 45, 102, and 90 traps were deployed during 2009, 2010, and 2011, respectively. In all years, C. formosanus flights began during the second full week of May; however, peak dispersal flight activity occurred 2 wk earlier in 2009 and 2011 than in 2010. Significantly more alates were collected during the 2009 flight peak than in 2010 and 2011 despite the fact that greater than twice the number of traps were deployed in 2010 and 2011, versus 2009. Additionally, a greater percentage of traps collected C. formosanus alates in 2009 (71.1%) than in 2010 (38.2%) or 2011 (20.0%). A relatively inexpensive trap design (∼US$25.00 per trap) was developed for this project. The traps used in this work yielded results that were similar to those of other researchers using a variety of different trap designs. It is hoped that these results will allow for more targeted surveillance of C. formosanus dispersal flights by residents and pest management professionals at this location and elsewhere.
Miconia calvescens de Candolle (Melastomataceae) is an invasive tree considered the most serious threat to natural ecosystems of Hawaii and other Pacific islands. The success of M. calvescens as an invasive species is greatly owing to its shade tolerance and the shaded habitat it creates, where many native plant species that are light-demanding cannot survive. Salbia lotanalis Druce (Lepidoptera: Crambidae), a neotropical leaf roller attacking M. calvescens, was evaluated for two mechanisms by which it reduces leaf area of its host plant: feeding (defoliation), which removes leaf tissue, and tying leaf rolls, which reduces exposed area of leaves. These impacts were quantified over a 1-yr period at a field site in Costa Rica, where densities of S. lotanalis larvae attacking M. calvescens peaked at the end of the rainy season and declined in the dry season. Up to 47.5% of leaves were attacked by S. lotanalis, with cumulative defoliation by an undetermined number of larvae removing an average of ≈30% (253 cm2) of each leaf attacked. Defoliation and leaf rolling were compared in a greenhouse experiment in which individual S. lotanalis larvae defoliated an average of 3.7% (17.8 cm2) of each attacked leaf, and reduced exposed leaf area as a result of leaf rolling by an average of 12.8% (66.2 cm2). Our results complement the findings of previous studies of S. lotanalis and confirm its potential as a biological control agent of M. calvescens.
Stink bugs (Hemiptera: Pentatomidae) have historically not been pests of soybean in Minnesota. In response to the invasion of Halyomorpha halys (Stål) and reports of increasing abundance of species native to North America, a state-wide survey of soybean was conducted over 3 yr in Minnesota to determine species composition, abundance, and seasonal dynamics of Pentatomidae associated with soybean. Fourteen species of Pentatomidae (12 herbivorous and two predatory) were collected from soybean. H. halys was not detected in this survey. Among the herbivorous species found, adults of Euschistus variolarius (Palisot de Beauvois) had the greatest relative abundance (60.51%) and frequency of detection (18.44%), followed by Euschistus servus euschistoides (Say) (19.37 and 3.04%, respectively) and Chinavia hilaris (Say) (5.50 and 1.69%, respectively). Abundance of herbivorous nymphs and adults exceeded an economic threshold (20 nymphs and adults per 100 sweeps) in 0.82% of fields in 2012 but not in 2011 or 2013. The frequency of detection of herbivorous species and ratio of nymphs to adults increased with increasing reproductive growth stage of soybean. In two of three years, herbivorous adults were more abundant in the edge compared with interior of fields. Two predatory Pentatomidae, Podisus maculiventris (Say) and Podisus placidus Uhler, comprised 5.95 and 1.62% of the pentatomid adults. Though the species composition of Pentatomidae in Minnesota soybean differs from that in eastern and southern states, the spatial (i.e., greater abundance near field edge) and seasonal dynamics (i.e., increasing abundance and reproduction with increasing reproductive maturity of soybean) in soybean appear similar.
The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.
The nutrients found in prey and nonprey foods, and relative digestibility of these foods, has a major influence on diet selection by omnivorous insects. Many insects have developed symbiotic relationships with gut bacteria to help with extracting nutrition from nonprey diets. Gryllus pennsylvanicus (Burmeister) (Orthoptera: Gryllidae) was assigned to one of two treatment groups, antibiotic-treated and nonantibiotic-treated, and consumption of seeds (nonprey) and eggs (prey) were measured. Male crickets administered antibiotics consumed more seeds and greater seed weight, while antibiotic-fed female crickets consumed fewer seeds and less seed weight, relative to the untreated male and female crickets, respectively. Both male and female antibiotic-treated crickets consumed similar weight of eggs as nonantibiotic-treated male and female crickets, respectively. These results provide evidence that gut symbionts influence diet selection of male and female G. pennsylvanicus differently. This sex-specific dietary selection may be because of the fact that male and female crickets have different nutritional requirements.
Xylophagous insects often thrive on nutritionally suboptimal diets through symbiotic associations with microbes that supplement their nutritional requirements, particularly nitrogen. The wood-feeding cerambycid Anoplophora glabripennis (Motschulsky) feeds on living, healthy host trees and harbors a diverse gut microbial community. We investigated gut microbial contributions to larval nitrogen requirements through nitrogen fixing and recycling (urea hydrolysis) processes, using a combination of molecular, biochemical, and stable isotope approaches. Genes and transcripts of conserved regions of the urease operon (ureC) and nitrogen fixing (nif) regulon (nifH) were detected in A. glabripennis eggs and larvae from naturally infested logs and from larvae reared on artificial diet. Significant nitrogen fixation and recycling were documented in larvae using 15N2 gas and 15N-urea, respectively. Subsequent 15N-routing of incorporated recycled nitrogen into larval essential and nonessential amino acids was shown for 15N-urea diet-fed larvae. Results from this study show significant gut microbial contributions to this insect's metabolic nitrogen utilization through nitrogenous waste product recycling and nitrogen fixation.
Microbial symbionts played a central role in insect evolution. Oreina cacaliae (Schrank, 1785) (Coleoptera: Chrysomelidae) is a rare example of a viviparous insect, able to feed on toxic plants and sequester toxic compounds. In the current study, the microbiota associated with O. cacaliae was characterized using a culture-independent approach, targeting the 16S rRNA bacterial gene. The obtained 16S rRNA gene sequences were analyzed and identified at different taxonomic levels. Wolbachia was the dominant bacterium, both in male and female (100 and 91.9%, respectively) individuals; the detected Wolbachia was described as a new sequence type based on multilocus sequence typing (Wolbachia ST375 Ocac_A_wVdO). After phylogenetic analyses, Wolbachia ST375 Ocac_A_wVdO was attributed to the supergroup A. Immunofluorescence assays and electron microscopy confirmed the presence of Wolbachia within O. cacaliae oocytes, confirming its transovarial transmission in this species. Representatives of six species of Oreina were tested for the presence of Wolbachia through specific polymerase chain reaction, and a dendrogram was generated for these species based on coxI gene sequences. The Wolbachia harbored by different species of Oreina were characterized by multilocus sequence typing. Five out of the six examined Oreina species were positive for Wolbachia, with four of these harboring the same sequence type.
Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), a biological control agent of mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, has been mass reared with no infusion of new genetic material for 8–9 yr (at least 24–36 generations), while insects from the same genetic stock have been subject to field conditions in North America for that same period of time. Our main objective was to compare the laboratory population with the field population (and in 1 yr with a Chinese field population) to determine whether genetic changes had occurred, especially ones that may reduce the effectiveness of the laboratory population when released in the field. The laboratory insects laid more eggs and had reduced survival compared with field weevils in several comparisons, and had reduced responsiveness to cues that induce reproductive diapause. Exposure to older plants had the greatest effect on induction of reproductive diapause in both laboratory and field weevils, with effects of daylength and temperature less pronounced. At least a portion of the laboratory weevil population overwintered successfully. Results suggest that it is not necessary to add wild-type genetic material to the rearing colony at this time.
Cavity-nesting megachilid bees in the genus Osmia, found throughout the Palearctic and Nearctic regions, are good candidates for domestication. In North America, Osmia lignaria Say has been reported to be an excellent pollinator of tree fruit and is currently being developed for commercial use in orchards. This is largely because of research over several decades with the western subspecies of this bee, Osmia lignaria propinqua Cresson, in western orchards. The behavior of the eastern subspecies, O. lignaria lignaria Say, in eastern orchards has not previously been reported. This study evaluated the nesting activity and pollen preference of a population of the eastern subspecies in five orchards in the foothills and piedmont regions of North Carolina and Virginia over a 2-yr period. Apple was present in all orchards and all were bordered by hardwood forest. Shelters were placed both within orchards and the forest border. Emergence dates, nest construction, and orchard bloom were monitored weekly. Bee populations increased by 2–3 times annually at most orchards. Pollen species comprising nest provisions from 720 individual nest cells were identified and quantified using scanning electron microscopy. The greatest amount of pollen (46–82%) was that of a small understory tree, Eastern redbud (Cercis canadensis L.), at all orchard sites where these trees were present nearby. The quantity of orchard pollen was relatively low, <20% at full apple bloom, except for one orchard (53%) without nearby redbud. O. lignaria lignaria appears to prefer Eastern redbud pollen over orchard pollen.
Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs aimed at improving conservation biological control in perennial crops such as wine grapes. Beneficial insects (predators, parasitoids, pollinators) attracted to 10 species of flowering native wild buckwheat (Eriogonum spp.) in central Washington were identified and counted on transparent sticky traps. Combining all categories of beneficial insects, the mean number per trap ranged from 48.5 (Eriogonum umbellatum) to 167.7 (Eriogonum elatum). Three Eriogonum spp. (E. elatum, Eriogonum compositum, and Eriogonum niveum) attracted significantly more beneficial insects than the lowest-ranked species. E. niveum attracted greatest numbers of bees and parasitic wasps, and E. elatum was highly attractive to predatory true bugs and beneficial flies. Blooming periods of Eriogonum spp. extended from mid April to the end of September. This study demonstrates the attraction of beneficial insects to native flowering buckwheats and suggests their potential as a component of habitat restoration strategies to improve and sustain conservation biological control in Washington viticulture.
Despite the knowledge about the effects of silicon augmenting antibiosis and nonpreference of plants by apterous aphids, few studies exist on such effects with alate aphids. This study evaluated the effects of silicon fertilization on the biology of alate and apterous morphs of Sitobion avenae (F.) (Hemiptera: Aphididae), and the effect on nonpreference by S. avenae alates for wheat plants with or without silicon fertilization. A method for rearing aphids on detached leaves was evaluated comparing the biology of apterous aphids reared on wheat leaf sections and on whole plants with and without silicon fertilization. Because the use of detached leaves was a reliable method, the effect of silicon fertilization on the biology of apterous and alate S. avenae was assessed using wheat leaf sections. Biological data of aphids were used to calculate a fertility life table. Finally, the effect of silicon fertilization on the nonpreference of alate aphids was carried out for both vegetative and reproductive phases of wheat. Thirty alate aphids were released in the center of a cage, and the number of aphids per whole plant with or without silicon fertilization was observed. Silicon fertilization induced antibiosis resistance in wheat plants to apterous morphs as shown by reduced fecundity, reproductive period, longevity, intrinsic rate of increase, and net reproductive rate; however, alates were unaffected. Plants that received silicon fertilization had fewer alate aphids in both the vegetative and reproductive phases. Thus, silicon fertilization can reduce colonization by alates, enhancing nonpreference resistance, and population growth of apterous S. avenae in wheat plants.
The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the United States. In the eastern United States where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonella. However, the opposite may be true in the western United States. Here, we determined whether newly identified western apple and western hawthorn fruit volatiles are more attractive than ammonium carbonate (AC) to R. pomonella in apple, black hawthorn, and ornamental hawthorn trees in western Washington State. In all three host trees, sticky red sphere or yellow panel traps baited with AC generally caught more flies than traps baited with lures containing the four newly developed fruit blends (modified eastern apple, western apple, western ornamental hawthorn, and western black hawthorn) or two older blends (eastern apple and eastern downy hawthorn). Fruit volatiles also displayed more variation among trapping studies conducted at different sites, in different host trees, and across years than AC. The results imply that traps baited with AC represent the best approach to monitoring R. pomonella in Washington State.
The size and geographic distribution of Coccinella novemnotata Herbst populations have been decreasing rapidly across North America closely following the establishment, spread, and population growth of the invasive seven-spotted lady beetle, Coccinella septempunctata L. To determine whether intraguild predation and competition for prey may be partially responsible for the decline, we paired first-instar larvae of two populations of C. novemnotata (eastern and western) with first-instar C. septempunctata at low or high aphid densities. Survival of both C. novemnotata populations was significantly lower when larvae were paired with C. septempunctata, and western C. novemnotata exhibited significantly lower survival compared with the eastern population. This relationship depended on aphid density with the greatest survival of both C. novemnotata populations occurring at the high aphid density. Both male and female C. novemnotata weighed less on the day of éclosion when paired with C. septempunctata as compared with pairings with conspecifics. In a second test, C. septempunctata and C. novemnotata instars were varied at the start of the trial and C. novemnotata survival to adulthood in the presence of C. septempunctata was dependent of the instar of C. novemnotata used to initiate the experiment. C. novemnotata exhibited higher rates of survival and weighed significantly more on the day of éclosion when C. novemnotata was older than its C. septempunctata partner. These results suggest that interspecific competition including intraguild predation by C. septempunctata may contribute to C. novemnotata population declines, but that the intensity of this impact may vary across C. novemnotata populations.
Consumer feeding preference among resource choices has critical implications for basic ecological and evolutionary processes, and can be highly relevant to applied problems such as ecological risk assessment and invasion biology. Within consumer choice experiments, also known as feeding preference or cafeteria experiments, measures of relative consumption and measures of consumer movement can provide distinct and complementary insights into the strength, causes, and consequences of preference. Despite the distinct value of inferring preference from measures of consumer movement, rigorous and biologically relevant analytical methods are lacking. We describe a simple, likelihood-based, biostatistical model for analyzing the transient dynamics of consumer movement in a paired-choice experiment. With experimental data consisting of repeated discrete measures of consumer location, the model can be used to estimate constant consumer attraction and leaving rates for two food choices, and differences in choice-specific attraction and leaving rates can be tested using model selection. The model enables calculation of transient and equilibrial probabilities of consumer-resource association, which could be incorporated into larger scale movement models. We explore the effect of experimental design on parameter estimation through stochastic simulation and describe methods to check that data meet model assumptions. Using a dataset of modest sample size, we illustrate the use of the model to draw inferences on consumer preference as well as underlying behavioral mechanisms. Finally, we include a user's guide and computer code scripts in R to facilitate use of the model by other researchers.
The effects of foliage color on the selection of host plants by Pieris rapae (L.) were investigated using choice tests between Brassica rapa (L.) varieties with green, variegated, and yellow—green leaves. Gravid-naive females displayed a first landing preference for the green and variegated Brassica varieties when the plants were freely accessible. Comparable results were observed when the plants were enclosed in glass jars, demonstrating that visual cues were sufficient to induce the landing response. The first landing choice was positively correlated with oviposition preference and larval survival. These results suggest that leaf color is an important visual cue used by P. rapae for intraspecific host selection.
The encyrtid parasitoids Coccidoxenoides perminutus Girault and Anagyrus nr. sp. pseudococci (Girault) were compared in the laboratory as parasitoids of the mealybug Planococcus ficus (Signoret). Female C. perminutus preferred second-instar P. ficus for oviposition, and produced more adult offspring (149.3 per female) than A. nr. sp. pseudococci (54.1 per female). The development time, from egg to adult emergence, of C. perminutus decreased with increasing constant temperatures between 18.5 and 30.1°C; at lower (12.0 and 15.0°C) and higher (31.1, 32.7, and 34.2°C) temperatures, the parasitoid did not develop. The lower threshold was calculated by linear methods to be 10.97°C, and the thermal constant was calculated to be 507.98 degree—days. The development times of C. perminutus were longer than those of A. nr. sp. pseudococci, and C. perminutus had narrower temperature tolerances than P. ficus or A. pseudococci. Argentine ants (Linepithema humile (Mayr)) reduced the amount of time C. perminutus foraged on mealybug-infested squash, but did not affect the number of oviposition attempts or offspring produced, whereas Argentine ants reduced A. nr. sp. pseudococci foraging time, oviposition attempts, and number of offspring obtained. Overall, the results suggest that under certain conditions, including optimal conditions of temperature and host-stage availability, C. perminutus outperforms A. nr. sp. pseudococci, and may be an effective augmentative control agent even when ants are tending the hosts. However, temperature limitations and host-stage selection behaviors would reduce C. perminutus performance in the field, and in the absence of ants, other parasitoids may be favored.
In ant-aphid mutualisms, ants usually attack and exclude enemies of aphids. However, larvae of the green lacewing Mallada desjardinsi (Navas) prey on ant-tended aphids without being excluded by ants; these larvae protect themselves from ants by carrying aphid carcasses on their backs. Eggs of M. desjardinsi laid at the tips of stalks have also been observed in ant-tended aphid colonies in the field. Here, we examined whether the egg stalks of M. desjardinsi protect the eggs from ants and predators. When exposed to ants, almost all eggs with intact stalks were untouched, whereas 50– 80% of eggs in which stalks had been severed at their bases were destroyed by ants. In contrast, most eggs were preyed upon by larvae of the lacewing Chrysoperla nipponensis (Okamoto), an intraguild predator of M. desjardinsi, regardless of whether their stalks had been severed. These findings suggest that egg stalks provide protection from ants but not from C. nipponensis larvae. To test whether M. desjardinsi eggs are protected from predators by aphid-tending ants, we introduced C. nipponensis larvae onto plants colonized by ant-tended aphids. A significantly greater number of eggs survived in the presence of ants because aphid-tending ants excluded larvae of C. nipponensis. This finding indicates that M. desjardinsi eggs are indirectly protected from predators by ants in ant-tended aphid colonies.
Native to Southeast Asia, Drosophila suzukii (Matsumura) prefer to oviposit on ripe fruit and have become an important pest of California raspberries (Rubus idaeus L.) since their detection in Santa Cruz County, CA, in 2008. Preliminary management guidelines included D. suzukii monitoring recommendations, though there was little available information on seasonal occurrence and potential lures for use in raspberries. To address this issue, we trapped adult D. suzukii weekly for 2 yr (including both spring and fall harvests) in multiple raspberry varieties using apple cider vinegar and a yeast-sugar-water mixture as liquid lures, and measured fruit infestation when commercially ripe fruit were available. D. suzukii pressure as measured by larval infestation and adult trap captures was higher during the fall raspberry harvest season. The yeast lure captured significantly more D. suzukii during the fall harvest than the apple cider vinegar, and while both lures tended to capture more females than males, this varied by month of the year and was more pronounced for the yeast lure. Trap captures from each lure correlated well to one another, and often exhibited significant correlation to larval infestation. However, during all seasons and under both conventional and organic management, worrisome outliers were present (high larval infestation with low trap captures) that call into question the reliability of using the systems presented here as a basis for management decisions at this time.
To develop safe and effective methods to protect whitebark pines, Pinus albicaulis Engelmann, and limber pines, Pinus flexilis James, from attack by mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), we compared verbenone and verbenone plus green leaf volatiles (GLVs) for prevention of beetle attack. We used two strategies: area-wide protection where semiochemical-releasing flakes are dispersed over the forest floor, and individual tree tests where flakes are applied to tree trunks. The area-wide bioassays were conducted by applying verbenone- and GLV-releasing flakes without stickers to the forest floor on 0.81-ha plots dominated by whitebark pines in the State of Washington with four replicates. We conducted individual tree bioassays by applying the same formulations with stickers to whitebark and limber pines in Montana and Colorado, respectively. In all three situations, both verbenone-alone and verbenone plus GLVs significantly increased the proportion of trees escaping mass attack by beetles, but the two formulations were not significantly different from one another. Despite a lack of significance at a Bonferroni-adjusted α = 0.05, adding GLVs gave slightly greater absolute levels of tree protection in most cases. Monitoring traps placed in the area-wide treatments in Washington showed similar outcomes for numbers of beetles trapped: both treatments had significantly fewer beetles than controls, and they were not significantly different from one another. At peak flight, however, plots with GLVs combined with verbenone had roughly 40% fewer beetles than plots with verbenone alone. GLVs are considerably cheaper than verbenone, so tests of higher application rates may be warranted to achieve enhanced tree protection at reasonable cost.
Artificial nests (e.g., nest boxes) for bees are increasingly being used to contribute to nesting habitat enhancement for bees that use preexisting cavities to provision brood. They usually incorporate additional nesting materials that vary by species. Cavity-nesting bees are susceptible to brood parasitoids that recognize their host (s) using visual and chemical cues. Understanding the range of cues that attract parasitoids to bee nests, including human-made analogues, is important if we wish to control parasitism and increase the potential value of artificial nests as habitat-enhancement strategies. In this study, we investigated the cues associated with the orientation of the generalist brood parasitoid Monodontomerus obscurus Westwood (Hymenoptera: Torymidae) to the nests of a common cavity-nesting resin bee Megachile campanulae (Robertson) (Megachilidae). The parasitoids were reared from previously infested M. campanulae brood cells and placed into choice trials where they were presented with pairs of different nest material cues. Among different materials tested, we found that Mo. obscurus was most attracted to fresh resin collected directly from Pinus strobus trees followed by previously used resin collected from the bee nest. The parasitoid also attacked other bee species in the same nest boxes, including those that do not use resin for nesting. Our findings suggest that M. campanulae could act as a magnet, drawing parasites away from other bee hosts co-occurring in nest boxes, or, as an attractant of Mo. obscurus to nest boxes, increasing attacks on co-occurring host bee species, potentially undermining bee diversity enhancement initiatives.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), commonly known as the Asian longhorned beetle, is an invasive wood-boring pest that infests a number of hardwood species and causes considerable economic losses in North America, several countries in Europe, and in its native range in Asia. The success of eradication efforts may depend on early detection of introduced populations; however, detection has been limited to identification of tree damage (oviposition pits and exit holes), and the serendipitous collection of adults, often by members of the public. Here we describe the development, deployment, and evaluation of semiochemicalbaited traps in the greater Worcester area in Massachusetts. Over 4 yr of trap evaluation (2009–2012), 1013 intercept panel traps were deployed, 876 of which were baited with three different families of lures. The families included lures exhibiting different rates of release of the male-produced A. glabripennis pheromone, lures with various combinations of plant volatiles, and lures with both the pheromone and plant volatiles combined. Overall, 45 individual beetles were captured in 40 different traps. Beetles were found only in traps with lures. In several cases, trap catches led to the more rapid discovery and management of previously unknown areas of infestation in the Worcester county regulated area. Analysis of the spatial distribution of traps and the known infested trees within the regulated area provides an estimate of the relationship between trap catch and beetle pressure exerted on the traps. Studies continue to optimize lure composition and trap placement.
Megachile rotundata (F.) (Hymenoptera: Megachilidae) is the primary pollinator of alfalfa in the northwestern United States and western Canada and provides pollination services for onion, carrot, hybrid canola, various legumes, and other specialty crops. M. rotundata females are gregarious, nest in cavities either naturally occurring or in artificial nesting blocks, where they construct a linear series of brood cells. Because of the physical layout of the nest, the age of the larvae within the nest and the microenvironment the individual larvae experience will vary. These interacting factors along with other maternal inputs affect the resulting phenotypes of the nest mates. To further our understanding of in-nest physiology, gender and developmental rates were examined in relationship to cell position within the nest. Eighty-two percent of the females were located within the first three cells, those furthest from the nest entrance. For those individuals developing in cells located in the deepest half of the nest, the sex of the previous bee had a significant effect on the female decision of the gender of the following nest mate. Removing the prepupae from the nest and rearing them under identical conditions demonstrated that position within the nest during larval development had a significant effect on the postdiapause developmental rates, with males whose larval development occurred deeper in the nest developing more slowly than those toward the entrance. No positional effect on postdiapause developmental rates was noted for the females. The cell position effect on male postdiapause developmental rate demonstrates that postdiapause development is not a rigid physiological mechanism uniform in all individuals, but is a dynamic plastic process shaped by past environmental conditions.
Fecundity is a key factor in modulating population growth rate, and is of particular significance when considering the invasiveness of introduced species. In insects, fecundity is affected by body size, age, and nutrition. We investigated the potential fecundity of the invasive Asian chestnut gall wasp Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), an introduced parthenogenetic gall former of Asian origin and a global pest of chestnut (Castanea spp.), to better understand its invasiveness. We compared ovarian, egg, and body metrics of adult wasps of different age. We evaluated insect weight, body length, mesosomal and metasomal lengths and widths, hind femur length, number of eggs, and size of eggs in wasps from four age cohorts. Adult weight and metasomal width were positively correlated with number of eggs. Egg load decreased with wasp age, and egg size initially increased before decreasing. Our findings suggest that adult D. kuriphilus, previously reported as proovigenic, may be resorping eggs in the absence of suitable hosts, and reallocating nutritive resources for body maintenance and egg quality to increase fitness, implicating a plasticity in its reproductive strategy. D. kuriphilus may be able to vary its potential fecundity in response to nutrition and host availability, thus increasing its invasiveness.
Seasonal changes in the critical thermal maxima (CTmax) of four species of aquatic insects were determined from February 2012 to February 2013 from a first-order stream in northern Lower Michigan. Three of these species: Stenonema femoratum (Ephemeroptera: Heptageniidae), Hydropsyche slossonae (Trichoptera: Hydropsychidae), and Dolophilodes distinctus (Trichoptera: Philopotamidae) exhibited seasonal changes in CTmax, increasing through the spring and summer and then decreasing into the subsequent fall and winter. CTmax of these species correlated strongly with both the seasonal ambient stream temperature and with a series of different laboratory acclimation temperatures, suggesting that organisms adapt to laboratory acclimation in a similar manner as they adapt to seasonal changes. In contrast, the CTmax of Parapsyche apicalis (Trichoptera: Arctopsychidae) remained constant regardless of ambient or acclimation temperature. All species exhibited greater thermal sensitivity relative to ambient temperature during the summer than the winter. Our study indicates that thermal tolerance patterns can be different among species in the same environment. It also provides the first winter and year-round thermal tolerance data for aquatic insects.
To determine if differences in life history parameters contribute to native species exclusion, immature development times, larval survivorship, reproductive life history parameters, and age-specific life tables were determined for two populations (eastern United States and western United States) of ninespotted lady beetles (Coccinella novemnotata Herbst) and one population of sevenspotted lady beetles (Coccinella septempunctata L.). Developing larvae were provided an ad libitum diet of pea aphids (Acyrthosiphon pisum Harris) at a constant temperature of 25°C. The first and fourth larval stadia of C. novemnotata were significantly longer than that of C. septempunctata, as was their total development time from egg to newly eclosed adult. Stage-specific developmental mortality was low for both species and did not exceed 7% for the entire development period. The preoviposition period of the two C. novemnotata populations was significantly shorter (15–20%) than that of C. septempunctata. C. novemnotata from both locations laid significantly fewer total eggs than C. septempunctata (34–40% fewer) over the 31-d test period, and also fewer eggs per day (37–43% fewer). The net reproductive rate of the C. novemnotata populations was 42–50% lower than that of C. septempunctata as was C. novemnotata's intrinsic rate of natural increase (rm: 0.1716 and 0.1840 vs. 0.1959 for western and eastern C. novemnotata and C. septempunctata, respectively).
Cold tolerance of the palm thrips, Thrips palmi Karny, was investigated to predict its survival in field during winter. Supercooling points of T. palmi were varied among the developmental stages and ranged from —26.4 to —18.4°C. However, the cold injuries occurred above supercooling points in terms of higher mortality. The exposure to subzero temperatures (—5° to —15°C) resulted in significant mortalities to all developmental stages of T. palmi. A preexposure to a low temperature (4°C) for 7 h significantly increased the cold tolerance of all stages of T. palmi with respect to survival at — 10°C and supercooling capacity. The rapid cold hardening (RCH) was dependent on the duration of the preexposure period at 4°C in adult stage. Polyol and sugar analysis using an high-performance liquid chromatography analysis showed that 4°C preexposure caused accumulation of glycerol, trehalose, mannitol, and mannose in the adults. The increase in trehalose levels was more significant than the others. This study suggests that all stages of T. palmi are able to become cold-hardy by RCH, in which several polyols and sugars may play crucial roles as cryoprotectants.
Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.
Coptotermes gestroi (Wasmann) or the Asian subterranean termite is a serious structural pest in urban settlements in Southeast Asia that has been introduced to other parts of the world through human commerce. Although mitochondrial DNA markers were previously used to shed light on the dispersal history of the Asian subterranean termite, there were limited attempts to analyze or include populations of the termite found in the wild in Southeast Asia. In this study, we analyzed the 16S ribosomal RNA (16S rRNA) and cytochrome c oxidase subunit 1 (cox1) genes of Asian subterranean termite colonies found in mangrove swamps, beach forests, plantations, and buildings in semi-urban and urban areas to determine the relationship between colonies found in the wild and the urban habitat, and to investigate the possibility of different ecotypes of the termite in Peninsular Malaysia. Our findings show that the 16S rRNA haplotypes recovered from this study clustered into eastern, western, and southern populations of the termite, while the cox1 haplotypes were often specific to an area or site. The 16S rRNA and cox1 genes or haplotypes showed that the most abundant haplotype occupied a wide range of environments or habitats. In addition, the cox1 tree showed evidence of historical biogeography where basal haplotypes inhabited a wide range of habitats, while apical haplotypes were restricted to mangrove swamps and beach forests. Information on the haplotype-habitat association of C. gestroi will enable the prediction of habitats that may harbor or be at risk of invasion in areas where they have been introduced.
A proteomic approach combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry was used to compare hemolymph expression profiles of a beta-cypermethrin-resistant Blattella germanica L. strain and a beta-cypermethrin-susceptible strain. Twenty-eight hemolymph proteins were differentially expressed in the resistant cockroach strain; 19 proteins were upregulated and 9 proteins were downregulated compared with the susceptible strain. Protein identification indicated that expression of putative cuticular protein, nitric oxide synthase, triosephosphate isomerase, alpha-amylase, ABC transporter, and Per a 3 allergen was elevated, and expression of arginine kinase and glycosidase was reduced. The differential expression of these proteins reflects the overall change in cellular structure and metabolism related to the resistance of pyrethroid insecticides.
Before the commercialization of any insect-resistant genetically modified crop, it must be subjected to a rigorous premarket risk assessment. Here, possible effects of growing of transgenic Cry1Ac soybean on arthropod communities under field conditions were assessed for 2 yr and quantified in terms of arthropod community indices including the Shannon—Weaver diversity index, richness index, and dominance index. Our results showed no significant differences of diversity, richness, or dominant indices for Bt soybean compared with the recipient cultivar, conventional soybean, or sprayed conventional soybean. Conventional soybean treatment with insecticide had an adverse effect on the arthropod community after spraying, but arthropod community diversity recovered quickly. Bt soybean had no negative effect on the dominant distribution of subcommunities, including sucking pests, other pests, predators, parasitoids, and others except for lepidopteran pests. The dominance distribution of lepidopteran pests decreased significantly in Bt soybean because of the significant decrease in the numbers of Spodoptera litura (F.) and Ascotis selenaria Schiffermüller et Denis compared with the recipient cultivar. Our results showed that there were no negative effects of Cry1Ac soybean on the arthropod community in soybean field plots in the short term.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere