BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The planthopper Pentastiridius leporinus (L.) (Hemiptera: Cixiidae) has been identified as the main vector of ‘Candidatus Arsenophonus phytopathogenicus’, a plant pathogenic bacterium associated to a sugar beet disease in eastern France called syndrome ‘basses richesses’. In a 2-yr survey (2006–07), we quantified the abundance of P. leporinus populations migrating into 29 sugar beet fields in eastern France. Sticky traps posted in these fields were monitored on a twice-weekly (2006) or weekly (2007) basis. Subsets of the captured planthoppers were tested for the presence of Ca. A. phytopathogenicus through polymerase chain reaction (PCR). Our results showed that planthoppers colonized sugar beet fields in June and July of each year, following temporal patterns of migration that were fitted to logistic functions. The number of planthoppers migrating into sugar beet fields greatly varied among the fields and the years surveyed, averaging from a few (2–10) to over 400 planthoppers per trap. Interestingly, the prevalence of planthoppers infected by Ca. A. phytopathogenicus increased nonlinearly with the abundance of planthoppers captured on the traps. The proportion of infection for Ca. A. phytopathogenicus ranged from ≈0.07–1 (total infection) in small (2–10 planthoppers per trap) and large (400 planthoppers per trap) populations, respectively. We hypothesize that the outbreaks of P. leporinus in sugar beet fields, and the consequent increased rates of planthoppers infected by the Ca. A. phytopathogenicus, are key factors leading to the emergence of the sugar beet disease in eastern France.
The western cherry fruit fly, Rhagoletis indifferens Curran, infests introduced, domesticated sweet [Prunus avium (L.) L. ], and tart cherries (Prunus cerasus L.) as well as native bitter cherry, Prunus emarginata (Douglas) Eaton. Bitter cherries are smaller than sweet and tart cherries and this could affect various life history traits of flies. The objectives of the current study were to determine 1) if body size and egg loads of flies infesting sweet, tart, and bitter cherries differ from one another; and 2) if any observed body size differences are genetically based or caused by the host fruit environment. Pupae and adults of both sexes reared from larval-infested sweet and tart cherries collected in Washington and Montana were larger than those reared from bitter cherries. In addition, flies of both sexes caught on traps in sweet and tart cherry trees were larger than those caught in bitter cherry trees and females trapped from sweet and tart cherry trees had 54.0–98.8% more eggs. The progeny of flies from naturally-infested sweet and bitter cherries reared for one generation in the laboratory on sweet cherry did not differ in size. The same also was true for progeny of sweet and bitter cherry flies reared in the field on bitter cherry. The results suggest that the larger body sizes of flies from sweet and tart cherries than bitter cherries in the field are caused by host fruit and not genetic factors.
The ambrosia beetle, Platypus koryoensis (Murayama), vectors the Korean oak wilt (KOW) pathogen, Raffaelea quercus-mongolicae K.H. Kim, Y.J. Choi, & H.D. Shin, in Korea, which is highly lethal to Mongolian oak, Quercus mongolica Fisch., and is considered a major threat to forest ecosystem health. We characterized the attack pattern of P.koryoensis along the lower trunk of 240 Mongolian oaks in relation to tree decline symptoms on Mt. Uam in Gyeonggi-Do Province, Korea during June–July 2009. For each tree, we recorded diameter at breast height (dbh) (DBH) and P.koryoensis entrance hole density at two heights along the lower trunk (near groundline and at 1.5 m above groundline) and on opposite sides (downslope side and upslope side). Trees were assigned to one of three dieback classes: 1) apparently healthy, no or practically no wilted foliage, and no obvious platypodine frass near the base of the tree; 2) no or only partial wilting with obvious frass near the base of the tree; and 3) apparently recently killed by KOW with all foliage wilted and mostly retained with obvious frass near the base of the tree. As dieback class increased from 1 to 3, P.koryoensis entrance hole density increased at all four trunk locations. Attack density was highest on the downslope side of the trunk near groundline, and principal component analysis indicated that this trunk location was the best indicator of tree dieback. In addition, DBH tended to increase with dieback class suggesting that larger trees were infested first.
The light brown apple moth, Epiphyas postvittana (Walker), is native to Australia and first was detected in California in 2006. In this study, we regularly sampled populations on Leptospermum laevigatum (Gaertn.) F.Muell. at two sites in San Francisco and on Arctostaphylos densiflora M.S. Baker at two sites in Santa Cruz over a 2-yr period to monitor the abundance, age structure, and voltinism of this potential pest in relation to degree-days. Our results showed that larval abundance declined at two sites, cycled with peaks in midsummer at one site, and remained steady at one site. Generations overlapped at all four sites with the full range of larval instars being present for most of the year, although populations during the winter were predominantly mid to late instars. Accumulated degree-days predict an average of 3.27 and 4.58 generations per year in San Francisco and Santa Cruz, respectively, which matched our observed peaks of late-instar larvae in the field remarkably well. This new information on light brown apple moth phenology in coastal California will be invaluable for the development of effective monitoring and management strategies for this new invader in the studied region.
Eastern hemlock [Tsuga canadensis (L.) Carrière] is a foundation species in forests of eastern North America that plays a key role in ecosystem function. It is highly susceptible to the exotic invasive hemlock woolly adelgid (Adelges tsugae Annand), which is causing widespread hemlock mortality. We surveyed the spider communities of eastern hemlock and deciduous canopies over 2 yr, collecting over 4,000 spiders from 21 families. We found that eastern hemlock canopies harbored a more abundant, rich, and diverse spider community than did deciduous canopies. Five spider families were present in our hemlock collections that were absent from the deciduous collections, including Mysmenidae, Theridiosomatidae, Mimetidae, Lycosidae, and Agelenidae. In hemlock canopies there were 4× the number of web builders, consisting primarily of the Tetragnathidae and Araneidae, than active hunters, consisting primarily of the Anyphaenidae and the Salticidae. Ours is the first in depth study of the spider community in eastern hemlock. Spider abundance in hemlock canopies suggest that they may play a role regulating herbivore populations, and could possibly affect the invasive hemlock woolly adelgid, either through direct consumption of the adelgids themselves or through interactions with classical biological control agents.
Widespread destruction of tallgrass prairies in the midwestern United States has fragmented plant communities with the result that populations of endemic animal species have become geographically isolated from one another. The goal of the research summarized here was to evaluate the potential for conserving endemic prairie species of herbivorous insects by managing their host plants. Our study species was the weevil Haplorhynchites aeneus (Boehman), adults of which feed on pollen of plants in the genus Silphium (Asteraceae: Heliantheae). The female weevils clip the peduncles of flower heads and oviposit into the heads, where the larvae feed on the ovules. The research was conducted in 12 prairie sites in eastern Illinois. An allozyme analysis revealed that most populations of H. aeneus at the various prairie sites were genetically differentiated from one another, but the degree of differentiation was not associated with geographic distance between sites. Adult H. aeneus fed and oviposited on the plant species Silphium laciniatum L., S. integrifolium Michx., and S. terebinthinaceum Jacq, which differ in bloom phenology. There was no evidence of genetic differentiation of weevil populations with respect to host plant species, and adult weevils strongly preferred S. terebinthinaceum. We conclude that the oligophagous nature of the weevil assures its survival in small prairie remnants even where some of the host plant species are absent. Although H. aeneus can have a significant impact on reproduction of host plants by clipping flower heads, the perennial nature of Silphium species prevents their local extinction.
Urbanization can alter the organization of ant communities and affect populations of urban pest ants. In this study, we sampled ant communities in urban and suburban yards to understand the habitat factors that shape these communities and influence the abundance of a common pest species, Tapinoma sessile (Say). We used pitfall traps to sample ant communities and a combination of pitfall traps and baiting to collect T. sessile at 24 sites in Knoxville, TN. In total, we collected 46 ant species. Ant species richness ranged from seven to 24 species per yard. Ant species richness tended to be lowest near houses, whereas T. sessile abundance was highest near houses. The best predictors of ant species richness in yards were canopy cover and presence of leaf litter: ant species richness peaked at mid-levels of canopy cover and was negatively correlated with the presence of leaf litter. Tapinoma sessile abundance increased with presence of logs, boards, or landscaping timbers and leaf litter in yards. Our results indicate that ant communities and the abundance of particular pest species in these urban and suburban landscapes are shaped by many of the same factors that structure ant communities in less anthropogenically disturbed environments.
Camponotus ants harbor the obligate intracellular endosymbiont Blochmannia in their midgut bacteriocytes, but little is known about intestinal bacteria living in the gut lumen. In this paper we reported the results of a survey of the intestinal microflora of Camponotus japonicus Mayr based on small-subunit rRNA genes (16S rRNAs) polymerase chain reaction (PCR)-restriction fragment-length polymorphism analysis of worker guts. From 107 clones, 11 different restriction fragment-length polymorphism profiles were identified, and sequences blasting analysis found these represent four types of bacteria. Most (91.6%) of the clones were “Candidatus Blochmannia”, the obligate endosymbionts of Camponotus ants, and 6.5% of the clones were “Candidatus Serratia symbiotica”, a secondary endosymbiont of aphids; the remaining 2% clones were Fructobacillus fructosus and uncultured Burkholderiales bacterium, respectively. These results show that the diversity of gut bacteria in C. japonicus was low. “Candidatus Serratia symbiotica” was identified from Camponotus ants for the first time, an interesting result because Blochmannia's closest bacterial relative is also in the genus Serratia. This discovery supports the scenario that consumption of aphid honeydew or tissue provides an initial step in the evolution of an advanced symbiosis, and suggests that Camponotus ant could acquire other secondary endosymbionts from Hemiptera host through their diet. In addition, Burkholderiales bacterium also was identified from the gut of C. japonicus for the first time, and whether it is a nitrogen-recycling endosymbiont in Camponotus ants needs to be investigated further.
Leucopis spp. (Diptera: Chamaemyiidae) from the Pacific Northwest previously were identified as potential biological control agents for the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), in the eastern United States. We collected Leucopis spp. larvae from A. tsugae infested western hemlocks in Oregon and Washington and reared them on an unidentified Pineus spp., Pineus strobi (Hartig), Adelges cooleyi (Gillette), Adelges piceae (Ratzeburg), and A. tsugae in three no-choice tests. Leucopis spp. survival on A. tsugae was significantly higher than on A. piceae during the 2010 progrediens generation test and significantly higher than on P. strobi and A. cooleyi during the 2010 sistens generation test. However, across all three tests, some larvae completed development to adult on all four of the alternative adelgid species. Larvae that survived to the adult stage were identified as Leucopis argenticollis Zetterstedt and Leucopis piniperda Malloch. These results suggest that populations of L. argenticollis and L. piniperda in the Pacific Northwest may not be specific to A. tsugae. We also studied the phenology of Leucopis spp. on fourteen A. tsugae infested western hemlock trees in Oregon and Washington over a period of 14 mo. Leucopis spp. larvae were collected year-round, but highest densities coincided with the presence of progrediens and sistens eggs and adults of A. tsugae. There was a positive correlation between Leucopis spp. and A. tsugae abundance.
Water was collected from a site on the Susquehanna River in eastern Pennsylvania, where less-than-optimal black fly larval mortality had been occasionally observed after treatment with Bacillus thuringiensis subsp. israelensis de Barjac insecticidal crystalline proteins (Bti ICPs). A series of experiments was conducted with Simulium vittatum Zetterstedt larvae to determine the water related factors responsible for the impaired response to Bti ICPs (Vectobac 12S, strain AM 65–52). Seston in the water impaired the effectiveness of the ICPs, whereas the dissolved substances had no impact on larval mortality. Individual components of the seston then were exposed to the larvae followed by exposure to Bti ICPs. Exposure of larvae to selected minerals and nutritive organic material before ICP exposure resulted in no significant decrease in mortality. Exposure of larvae to silicon dioxide, cellulose, viable diatoms, and purified diatom frustules before Bti ICP exposure resulted in significant reductions in mortality. Exposure of larvae to purified diatom frustules from Cyclotella meneghiniana Kützing resulted in the most severe impairment of mortality after Bti ICP exposure. It is postulated that frustule-induced impairment of feeding behavior is responsible for the impairment of larval mortality.
A biological control program has been initiated against European swallow-worts Vincetoxicum nigrum (L.) Moench. and V. rossicum (Kleopow) Barbar., which are invasive in North America. A population of the leaf beetle Chrysolina aurichalcea asclepiadis (Villa) originating from the western Alps has been under evaluation as a part of this program. The preliminary host range of C. a. asclepiadis was determined among 37 potential host plants. In addition, a prerelease impact study was conducted to determine the effect of larval feeding on the performance of V. nigrum. Under no-choice conditions beetle larvae completed development on nine plant species within the genera Artemisia and Tanacetum (Asteraceae) and Asclepias and Vincetoxicum (Apocynaceae). The host range of adults is broader than larvae (f 3 plant species within five genera received sustained feeding). Three of the six nontarget species supporting larval development are native to North America, however in separate oviposition tests, female beetles failed to produce eggs when confined to these hosts. In multiple-choice tests, neither larvae nor adults preferred Vincetoxicum spp. to nontarget species. Larval damage by C a. asclepiadis at densities at and above five larvae per plant substantially reduced growth, biomass, and delayed reproduction of V. nigrum. However, this population of C. a. asclepiadis is polyphagous and unsuitable for biological control of Vincetoxicum because of potential risk of attack to Asclepias tuberosa L. and native North American Asteraceae, particularly Artemisia.
The leaf feeding beetle Gratiana boliviana Spaeth has been released since 2003 in the southeastern United States for biological control of tropical soda apple, Solanum viarum Dunal. In Florida, G. boliviana can be found on tropical soda apple growing in open pastures as well as in shady wooded areas. The objectives of this study were to determine the effect of light intensity on the performance of tropical soda apple and G. boliviana under greenhouse conditions, and to determine the abundance and mortality of G. boliviana in open and shaded habitats. Leaves growing in the shade were less tough, had higher water and nitrogen content, lower soluble sugars, and less dense and smaller glandular trichomes compared with leaves growing in the open. Plants grew slightly taller and wider under shaded conditions but total biomass was significantly reduced compared with plants grown in the open. In the greenhouse, G. boliviana had higher immature survival, greater folivory, larger adult size, and higher fecundity when reared on shaded plants compared with open plants. Sampling of field populations revealed that the overall abundance of G. boliviana was lower but leaf feeding damage was higher in shaded habitats compared with the open habitats. The percentage of eggs surviving to adult was greater in shaded compared with open habitats. The abundance of predators was higher in the open pasture and was positively correlated with the abundance of G. boliviana. These results indicate that not only plant quality but also habitat structure are important to the performance of weed biological control agents.
The leaflet galling mite Floracarus perrepae Knihinicki & Boczek was released on Lygodium microphyllum (Cav.) in 63 plots in Florida from 2008 to 2009. Mites transferred onto field plants in 34 plots, but failed to establish populations in the majority of plots. Leaflet galls were observed in only six plots, and in only two plots did mite populations persist for >12 mo. Bates of mite transfer onto field plants were similar for methods using direct transfer of galls versus approaches using passive transfer of mites from infested plants. Often leaflets on some L. microphyllum plants were heavily galled by F. perrepae, whereas leaflets on intertwined stems of other L. microphyllum plants were ungalled but exhibited a characteristic browning and scorching of the leaflet tips. Living mites were consistently present on the undersurface of scorched leaflet tips on ungalled plants, suggesting that this damage might be caused by mite feeding on L. microphyllum genotypes that did not support induction of leaflet galls. Plant nutritional status did not account for differences in galling response, because there were no differences in leaflet nitrogen between galled and ungalled stems. We review those factors known to affect the colonization of biological control agents, and discuss how they may have contributed to the lower than expected rate of F. perrepae establishment.
Thirteen plant species were tested for their suitability as hosts for Abagrotis orbis (Grote), a climbing cutworm pest of grapevines in British Columbia. Choice tests were also conducted to investigate larval feeding preferences for the Brassicaceae species joi choi, Brassica rapa variety. Chinensis L., spring draba; Draba verna L.; and shepherd's purse, Capsella bursa-pastoris (L.) Medik; compared with postdormant buds of grape, Vitis vinifera L. (Vitaceae), and leaves of nine other plant species from several families. Results showed that tah tsai, Brassica rapa L. variety rosularis (M. Tsen & S. H. Lee) Hanelt (Brassicaceae), is a superior host for A. orbis based on shorter time to adult eclosion, heavier pupae, and higher rates of survival. Later-instar larvae died when fed draba, whereas those reared on shepherd's purse did not survive beyond the third instar. White clover, Trifolium repens L. (Fabaceae), and grape leaves were unsuitable hosts throughout development. Fifth-instar A. orbis preferred plants of the Brassicaceae family, dandelion, Taraxacum officinale Weber (Asteraceae), and strawberry, Fragaria sp. L. (Bosaceae), compared with postdormant grape buds. The results of this study suggest that the winter annual mustards draba and shepherd's purse that often grow abundantly in vine rows might help reduce climbing cutworm damage to the buds of grapevines.
The lesser peachtree borer, Synanthedon pictipes (Grote and Robinson) (Lepidoptera: Sesiidae), is a serious pest of peach, Prunus persica (L.) Batsch, across the southeastern United States. We examined oviposition by S. pictipes on field-grown Prunus scion and rootstock cultivars and two endemic Prunus spp. when sawn limbs, not roots, were assayed in the laboratory. A choice test compared oviposition on the peach scion ‘Harvester’, peach rootstock ‘Guardian’, plum × peach hybrid rootstock ‘MP-29’, and the plum hybrid rootstock ‘Sharpe’. A significantly lower percentage of eggs occurred on limbs of Sharpe rootstock than other choices. A choice test using two endemic hosts, black cherry (P. serotina Ehrh.) and Chickasaw plum (P. angustifolia Marsh.), along with Sharpe rootstock, found a lower percentage of eggs on limbs of Sharpe than either endemic host. However, when only limbs of Sharpe and a decoy were used, almost all eggs were laid on Sharpe. Interestingly, when Harvester and Sharpe limbs were paired side by side, a higher percentage of eggs were recovered from the Harvester limb than from the Sharpe limb. An analysis of volatiles from Sharpe may identify why fewer eggs were laid on it. Because S. pictipes attacks host trees above ground and Sharpe rootstock on grafted trees grows below ground, this rootstock might be a management option against the congeneric, root-attacking peachtree borer, S. exitiosa (Say). Our results suggest that high budding a peach scion onto Sharpe rootstock, thus allowing the rootstock to serve as the trunk, warrants further investigation against S. exitiosa under orchard conditions.
The yellowmargined leaf beetle, Microtheca ochroloma Stål (Coleoptera: Chrysomelidae), is an introduced pest of cruciferous crops in the southern United States, and arguably the most damaging pest of organic crucifer vegetable production in the region. Studies were conducted in the greenhouse and laboratory to investigate host finding and acceptance preference of M. ochroloma on four commonly grown cruciferous crops: cabbage (Brassica oleracea L. variety capitata), collards (B. oleracea L. variety acephala), napa cabbage [B. pekinensis (Lour.)], and turnip (B. rapa L.) First, adult beetles were allowed to choose among the four plants in a multiple-choice greenhouse cage experiment and host preference was evaluated by using three parameters: number of beetles on each plant, number of larvae on each plant, and plant damage ratings. The results showed that M. ochroloma adults actively discriminated among the four host plants, with significantly higher numbers recorded on turnip and napa cabbage than on cabbage or collards. Significantly higher numbers of larvae also were recorded on turnip and napa cabbage starting on day 10. Similarly, higher damage ratings were recorded on turnip and napa cabbage than on the remaining two hosts. Results of four-choice olfactometer experiments, which compared attraction of M. ochroloma to headspace volatiles of the four host plants, demonstrated that host preference is mediated primarily by plant volatiles. Both sexes were significantly more attracted to napa cabbage than to the remaining treatments, with turnip being the second most attractive plant. These results confirm that turnip and napa cabbage are two preferred host plants of M. ochroloma, and may support the development of a trap crop system and attractant-based strategies for managing M. ochroloma in crucrfer production.
Where a female places her eggs can have a major impact on the fitness of her offspring, especially for insects in which the winged adults are far more mobile than the neonates. Larvae of Heliothis subfiexa (Guenee) (Lepidoptera: Noctuidae), a specialist moth phylogenetically nested within a generalist clade, feed only on fruit of some Physalis species. Field observations of the oviposition behavior of H. subfiexa revealed that 1) females laid most of their eggs on leaves of the Physalis plant, despite the larvae's frugivorous diet, and 2) females laid nearly 20% of the eggs on nonhost plant species. Most eggs oviposited on nonhosts were placed close to the host plant—88% were within 15 cm of the Physalis plant. However, in a study of neonate movement, we found that a distance of 2 cm from the hatch site to the host plant significantly decreased the ability of neonates to establish on the host plant. The estimated fitness cost, quantified as reduced neonate survival, for females ovipositing on nonhosts is 8–17%. Many ecological and evolutionary factors could result in oviposition on less suitable host parts and on nonhosts. One possibility is that specialization on Physalis has recently evolved in H. subfiexa, and females have not fully optimized their oviposition behavior. However, the fitness cost of oviposition on nonhosts may be balanced by fitness benefits of such behavior, such as faster decision-making and reduced predation.
In longhorn beetles and many other internally feeding insects, oviposition choice by females is critical to the survival of their offspring because their larvae are incapable of moving between hosts. Here we report on the complex host selection and colonization strategies of a longhorn beetle, Glenea cantor (F.) (Coleoptera: Cerambycidae), which is an important pest of kapok trees [Bombax ceiba L. = Gossampinus malabaricus (DC.) Merr.] in southern Asia. It attacks weakened trees, eventually killing them. The typical oviposition behavioral sequence in the laboratory includes the following: oviposition site search and recognition using antennae and palpi, oviposition slit preparation with mandibles, turning body direction 180°, egg deposition with the ovipositor, and oviposition wound covering with a jelly-like material from the ovipositor. Bark moisture content significantly increases from the upper to lower sections in kapok trees. In accordance with this variation female adults select the upper section of trees first for oviposition. As infestation continues and the host becomes more weakened, ovipositing females move further down the tree for oviposition. Consequently, the larvae kill the hosts from the top down. We show that the jelly-like material or eggs or both have an olfactory role in attracting females to oviposit nearby. Our findings are important in terms of increasing our understanding of host selection and colonization mechanisms of internally feeding insects, particularly cerambycids, and the development of environmentally friendly pest management measures.
Asian citrus psyllid (Diaphorina citri) transmits the causal agent of Huanglongbing, a devastating disease of citrus trees. In this study we measured behavioral responses of D. citri to combinations of visual, olfactory, and gustatory stimuli in test arenas. Stimuli were presented to the psyllids in droplets or lines of an emulsified wax formulation in two different arena types in no-choice tests. First, when placed on a colored ring situated halfway between the center and perimeter of a petri dish, D. citri spent more time on yellow versus gray rings; however, this response disappeared when either gray or yellow wax droplets were applied. When the psyllids were presented with droplets scented with terpenes, the response to both scent and color was increased. The addition of a dilute (≈0.1 M) sucrose solution to the wax droplets increased the magnitude of D. citri responses. Next, groups of D. citri were placed on plastic laboratory film covering a sucrose solution, to mimic a leaf surface. Test stimuli were presented via two ‘midribs’ made from lines of emulsified wax formulation. Probing levels were measured as a function of color saturation and scent composition, and concentration. The test scents were based on qualitatively major volatiles emitted by Murraya paniculata (L.) Jack, Citrus aurantifolia (Christm.) Swingle, and C. sinensis (L.) Osbeck. The highest probing response was observed on the middle concentration (20-µl scent/10 ml wax formulation) of the C. aurantifolia-scented wax lines. Results indicate that there are interactive effects between the different sensory modalities in directing host-plant assessment behavior.
The convergent lady beetle, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae), is an important predator of soft-bodied insect pests in many regions of the United States, but generally uncommon in Florida citrus. Certain citrus producers in Florida recently initiated releases of commercially available H. convergens from California against the Asian citrus psyllid Diaphorina citri Kuwayama, vector of Huanglongbing or citrus greening disease. However, there is little information on potential efficacy of this predator against the psyllid or other pests of citrus. Preference, development, and reproduction by H. convergens was evaluated on freshly collected nymphs of D. citri, brown citrus aphid Toxoptera citricida Kirkaldy, green citrus aphid Aphisspiraecola Patch, and frozen eggs of the flour moth Ephestia kuehniella Zeller. Larvae preferred D. citri over T. citricida in two-way choice tests and consumed more D. citri or A. spiraecola than T. citricida in no-choice tests. Adults consumed equal numbers of all three species in both tests. Development times of larvae at 25.5 ± 0.05°C on A. spiraecola were longer than on the other three diets. Larval survival and pupation times did not differ among diets. Females lived longer than males irrespective of diet, and longevity of both genders was greatly increased on E. kuehniella compared with D. citri and A. spiraecola. Life table analysis indicated that H. convergens should increase on all three species, with a greater potential on psyllids than aphids. Further studies are warranted to assess establishment and persistence of this potential biological control agent in the Florida citrus environment.
For some Lepidopteran pests, such as the grape berry moth Paralobesia viteana (Clemens), poor correlation between males captured in traps baited with sex pheromone and oviposition activities of female moths has called into question the value of pheromone-based monitoring for these species. As an alternative, we compared the capture of female and male grape berry moth in panel traps baited with synthetic host volatiles with captures of males in pheromone-baited wing traps over two growing seasons in two blocks of grapes in a commercial vineyard in central New York. Lures formulated in hexane to release either 7-component or 13-component host volatile blends captured significantly more male and female grape berry moth on panel traps compared with the numbers captured on panel traps with hexane-only lures. For both sexes over both years, the same or more moths were captured in panel traps along the forest edge compared with the vineyard edge early in the season but this pattern was reversed by mid-season. Male moths captured in pheromone-baited wing traps also displayed this temporal shift in location. There was a significant positive correlation between captured males and females on panel traps although not between females captured on panel traps and males captured in pheromone-baited traps for both years suggesting pheromone traps do not accurately reflect either female or male activity. Male moths captured in pheromone traps indicated a large peak early in each season corresponding to first flight followed by lower and variable numbers that did not clearly indicate second and third flights. Panel trap data, combining males and females, indicated three distinct flights, with some overlap between the second and third flights. Peak numbers of moths captured on panel traps matched well with predictions of a temperature-based phenology model, especially in 2008. Although effective, panel traps baited with synthetic host lures were time consuming to deploy and maintain and captured relatively few moths making them impractical, in the current design, for commercial purposes.
Understanding the accuracy of sampling techniques is critical to accurate interpretation of local and global ecological patterns. Over the past 20 yr, Winkler leaf litter extractors have become one of the most common techniques used to collect terrestrial arthropods. Although the original description of this technique recommends the use of disturbance during extraction to increase extraction efficiency, most published studies do not follow this recommendation. Here we test experimentally how disturbing, or “shuffling” leaf litter during extraction affects collection efficiency for four groups of arthropods: ants, micro-Hymenoptera, beetles, and spiders. Our results show that extraction efficiency for abundance and richness of ants is increased with disturbance. Disturbance also improves extraction efficiency for beetle abundance, but does not affect micro-Hymenoptera and spider abundance or richness. Significantly, our results also demonstrate that shuffling litter can greatly reduce the variability of extraction efficiency between different sites. Because of this greater efficiency, we recommend use of the shuffling technique, when sampling leaf litter via Winkler extractors to maximize the collection of ants and beetles, especially for studies that compare abundance and richness across multiple sites.
The presence of heritable variation is a prerequisite for evolution, but natural selection typically reduces genetic variation. Variation can be maintained in traits under selection through spatial or temporal variation in fitness surfaces, frequency-dependent selection, or disruptive selection. We evaluated the maintenance of variation in the enantiomeric blend of pheromones employed by the bark beetle Ips pint (Say). In natural populations, we quantified fitness surfaces for mating success and progeny production. We investigated the effects of paternal pheromone blend on offspring survival by comparing the spatial scales at which pheromone blends and larval mortality agents vary. Males with extreme pheromone blends obtained up to 1.8 times as many mates who each laid equivalent numbers of eggs, producing strong disruptive selection on male pheromone blend. In combination with imperfect assortative mating that continually produces intermediate genotypes, this fitness surface is sufficient to maintain variation in a heritable trait that is strongly linked to fitness. The ultimate explanation for female preference is unknown but could be because of selection for reduced mortality from specialist predators that prefer common prey pheromone blends. Selection is most likely occurring at the scale of small resource patches within pine stands. Selection at coarser scales (pine stands) is unlikely because pheromone blends did not vary among pine stands. Selection at finer scales (within logs) is unlikely because males of similar enantiomeric blends were not aggregated on logs, and male pheromone blend did not affect the spacing to neighboring galleries. This study documents a rare case of diversifying selection in natural populations.
Thermal requirements (lower temperature threshold and thermal constant) for the development of each developmental stage of the predator Harmonia axyridis (Pallas) were studied on Aphis fabae Scopoli and Dysaphis crataegi (Kaltenbach) under controlled laboratory conditions. The effect of temperature (15, 20, 25, and 30°C) and prey species was examined on pre-imaginal developmental duration and life cycle (pre-oviposition period included) of the predator. Our results suggest comparable thermal requirements for the development of H. axyridis on the particular prey and when compared with other aphid species. The total preimaginal development of H. axyridis, at 15, 20, and 30°C, and its life cycle, at 15 and 30°C, are shorter on D. crataegi than on A. fabae.
Elm leaf beetle, Xanthogaleruca luteola (Muller) is one of the key pests of elm trees all over the world, and survives winter in reproductive diapause in sheltered locations. Seasonal variation of whole body supercooling points (SCPs), LT50 (temperature at which 50% of the test individuals die) and survival rate after exposure to subzero temperatures were determined in field collected adults during October 2008 to May 2009 and October 2009 to May 2010. The SCP of adults decreased significantly from October (median = -13.8°C) to January (median = -20.7°C) in first year, relatively similar results was observed in the second year. The lowest LT50 was observed in overwintering adults collected in January (-16.81°C) in the first year and December (-15.59°C) in the second year. Mortality at -15°C for 24 h was >70% in early autumn in both years whereas it decreased to lower than 45% in early winter, the highest mortality (100%) was observed in adults collected in May in both years. Cold acclimated adults (30 d, 5°C) in November 2008 exhibited significantly higher SCP ( -12.21 ± 0.64°C) than nonacclimated adults (-15.57 ± 1.35°C). A 30-d exposure to 5°C caused >20% mortality in November, while <9% mortality was observed in adults collected in December and January 2008. Overwintering adults died upon freezing and the lower lethal temperatures were within the range of SCP, indicating that X. luteola is a freeze intolerant insect.
Termites face significant and chronic intranidal selection pressures from parasites and pathogens that colonize their nests. They also encounter microbes outside their nest while foraging and during dispersal of winged primary reproductives to establish new colonies. The latter run the additional risk of becoming infected by a mating partner. Indeed, death of reproductives because of disease is a major cause of incipient colony failure and may favor prescreening prospective mates for signs of illness. To determine the role of disease on mate preference in termites, female primary reproductives of the Pacific dampwood termite Zootermopsis angusticollis (Hagen) simultaneously were presented with reproductive males that were either healthy or exhibiting a progression of symptoms associated with infection by the entomopathogenic fungus Metarhizium anisopliae (Metchnikoff Sorokin). We compared duration and frequency of female visits to healthy and infected males. In addition, we determined the physiological consequences for females exposed to fungal conidia, either directly or indirectly through their mate. Females showed no preference for healthy rather than infected males. Moreover, only directly-exposed females experienced negative physiological effects, having a reduced chance of survival, gaining less weight, developing fewer functional ovarioles, and producing significantly fewer vitellogenic oocytes than controls. Although there are important fitness-related costs of direct exposure, the lack of mate selection based on disease risk suggests that more imminent ecological pressures (e.g., predators, desiccation) override the need for a careful and time-consuming assessment of a potential mate's health.
Although a considerable amount of information is available on tradeoffs in wing-polymorphic insects, only limited data are available on the relationship between flight and biochemical variation within species. In the current study, we compared the biochemical basis in the dorsolongitudinal flight muscle of the wing-dimorphic sand cricket, Gryllus firmus Scudder, with respect to tradeoffs in energy resources related to morph-specific flight, including glycogen, trehalose, and triglycerides. Our results show that levels of glycogen and trehalose in long-winged adults (LW [f]) were significantly higher before dispersal, on days 5 and 7. Considering that this is the period during which long-winged adults are flight-capable, these results suggest that both glycogen and trehalose are important to flight. However, levels of triglycerides in short-winged crickets (SW) were higher than in long-winged crickets, suggesting that triglycerides are not directly related to initial flight. In SW adults, triglyceride content on days 5 and 7 was significantly higher just before lights off than at the same time on day 1 or at any other time after lights on all other days. This suggests that triglycerides are probably related to reproductive behaviors, such as mating and oviposition, in the SW morph. In addition, flight muscle water content was significantly lower in the LW(f) morph than in the SW morph.
Reducing chemical use for suppressing internal and external parasites of livestock is essential for protecting environmental health. Although plant condensed tannins are known to suppress gastro-intestinal parasites in small ruminants, no research on the effects of tannins on external arthropod populations such as the house fly, Musca domestica L., have been conducted. We examined the impact of plant material containing condensed tannins on house fly development. Prairie acacia (Acacia angustissima (Mill.), Kuntze variety hirta (Nutt.) B.L. Rob.) herbage, panicled tick-clover (Desmodium paniculatum (L.) DC.) herbage, and quebracho (Shinopsis balansae Engl.) extracts were introduced at rates of 1, 3 or 5% condensed tannins/kg beef cattle, dairy cattle, and goat manure, respectively. In a second experiment, we also introduce purified catechin at 1 or 3% of dairy manure dry matter and measured its impact on house fly development. For the house flies used in these experiments, the following was recorded: percent fly emergence (PFE), average daily gain (ADG), and average fly weight (AFW). No effects (P > 0.05) in house fly development were measured in the caprine manure. Prairie acacia (20.9% condensed tannins) had no effect on house flies developing in either bovine manures. Tick clover (4.9% condensed tannins) had a negative effect on all three quantifiable variables of house fly development in the bovine manures, whereas quebracho extract (64.0% condensed tannins) at the 3 and 5% rate reduced fly emergence in beef manure and average daily gain in dairy manure. The application of purified catechin at 3%, but not 1%, reduced fly PFE, ADG, and AFW.
Temperature and food quality both can influence growth rates and developmental time of herbivorous insects and mites. Typhlodromus athenas Swirski and Ragusa is an indigenous mite in the Mediterranean region and data on its temperature dependent development are lacking. In the current study, temperature-dependent development and survival of T. athenas immature stages were evaluated on eggs and all stages of Tetranychus urticae Koch, as well as on almond (Prunus amygdalis Batsch) pollen, under seven constant temperatures ranging from 15 to 35°C, 65% RH, and a photoperiod of 16:8 (L:D) h. On both diets survival was considerably high at all temperatures. The longest developmental period of immature stages was recorded at 15°C, whereas the shortest was at 30°C Female immatures on almond pollen had shorter developmental time compared to that on twospotted spider mites. Food had a significant effect on female total developmental time at temperatures lower than 25°C The lower developmental thresholds, estimated by a linear model, for egg-to-adult of females and males fed on pollen were 8.60 and 8.77°C, respectively, whereas on T. urticae they were 10.15 and 10.62°C, respectively. Higher values of tmin for total development were estimated by a nonlinear model (Lactin-2), and ranged from 10.21°C for both females and males on almond, to 11.07 for females and 10.78°C for males on prey. Moreover, this model estimated optimal and lethal temperatures accurately. The results of this study indicate that T. athenas appears better adapted to higher temperatures that occur in the Mediterranean region and may be a useful biological control agent.
Western corn rootworm (Diabrotica virgifera virgifera LeConte) resistance management for transgenic (or Bt) corn hinges on understanding the mating behavior and biology of this adaptable insect pest. During mating, the male transfers sperm and additional, previously uncharacterized material, to the female in the form of a spermatophore. We investigated the composition of rootworm spermatophores. Proteins were found to be a major component, and the stable isotope 15N was used to assess the fate of spermatophore nitrogen in mated female beetles and their eggs. We also performed longevity studies on mated and virgin females under three different diet treatments and investigated the relationships between morphometric characteristics and spermatophore volume of mating pairs of beetles. The stable isotope analysis determined that nitrogen provided to the female in the spermatophore was incorporated into the eggs. We found that virgin female beetles on a corn diet lived significantly longer than mated female beetles on the same diet. There were significant positive relationships between male size parameters (head capsule width, pronotum width, and elytral length) and spermatophore volume, and ampulla and spermatophylax volume.
A simple molecular tool was developed and tested to identify seven mealybug species found in North American vineyards: Pseudococcus maritimus Ehrhorn, Pseudococcus viburni (Signoret), Pseudococcus longispinus (Targioni-Tozzeti), Pseudococcus calceolariae (Maskell), Planococcus ficus (Signoret), Planococcus citri (Risso), and Ferrisia gilli Gullan. The developed multiplex PCR is based on the mitochondrial cytochrome c oxidase subunit one gene. In tests, this single-step multiplex PCR correctly identified 95 of 95 mealybug samples, representing all seven species and collected from diverse geographic regions. To test the sensitivity, single specimen samples with different Pl. ficus developmental stages (egg to adult female and adult male) were processed PCR and the resulting output provided consistent positive identification. To test the utility of this protocol for adult males caught in sex baited pheromone traps, Pl. ficus adult males were placed in pheromone traps, aged at a constant temperature of 26 ± 2°C, and processed with the multiplex each day thereafter for 8 d. Results showed consistent positive identification for up to 6 d (range, 6–8 d). Results are discussed with respect to the usefulness of this molecular tool for the identification of mealybugs in pest management programs and biosecurity of invasive mealybugs.
Many mycophagous species of Drosophila can tolerate the mushroom poison α-amanitin in wild mushrooms and in artificial diet. We conducted feeding assays with sixteen Drosophila species and α-amanitin in artificial diet to better determine the phylogenetic distribution of this tolerance. For eight tolerant and one related susceptible species, we sequenced the gene encoding the large subunit of RNA Polymerase II, which is the target site of α-amanitin. We found no differences in the gene that could account for differences in susceptibility to the toxin. We also conducted feeding assays in which α-amanitin was combined with chemical inhibitors of cytochrome P450s or glutathione S-transferases (GSTs) in artificial diet to determine if either of these enzyme families is involved in tolerance to α-amanitin. We found that an inhibitor of GSTs did not reduce tolerance to α-amanitin, but that an inhibitor of cytochrome P450s reduced tolerance in several species. It is possible that the same cytochrome P450 activity that produces tolerance of α-amanitin might produce tolerance of other mushroom toxins as well. If so, a general detoxification mechanism based on cytochrome P450s might answer the question of how tolerance to α-amanitin arose in mycophagous Drosophila when this toxin is found in relatively few mushrooms.
The insidious flower bug, Orius insidiosus (Say) (Heteroptera: Anthocoridae) is an important surrogate species for assessing potential effects of plant-incorporated protectants (PIPs) on nontarget heterotrophic predators. In this study, a continuous dietary exposure system was optimized by assessing the effect of diet composition and age on the survival and development of nymphs of O. insidiosus. Greater than 85% control survival and an acceptable rate of development from nymph hatching to adult was achieved using 5-d-old nymphs at test initiation and a bee pollen-based diet supplemented with 25% Ephestia eggs. There was an unacceptable level of mortality (>40%) and/or a significantly prolonged development time when nymphs were <5 d old at test initiation. When 5-d-old nymphs were fed a bee pollen diet containing 25% Ephestia eggs and 100 μg/g potassium arsenate, time-dependent mortality was observed with a median lethal time (LT50) of 4.4 d and 100% mortality was observed after 10 d of feeding, indicating the effectiveness of the test system to detect adverse effects by dietary exposure. It is recommended that well-defined 5-d-old nymphs and an encapsulated bee pollen-based diet containing 25% ground Ephestia eggs be used in a Tier-I dietary feeding exposure assay for detecting potential effects of PIPs on O. insidiosus nymphs.
Plant carotenoid derived β-ionone has been shown to have diverse biological effects on some insect herbivores and herbivore parasitoids. In this study, Arabidopsis transgenic plants over-expressing a carotenoid cleavage dioxygenasel gene (AtCCD1) were generated to test whether β-ionone emissions could be enhanced and used to control feeding by the crucifer flea beetle (Phyllotreta cruciferae Goeze). The transgenic plants exhibited a morphological phenotype indistinguishable from the wild type (WT) control over their complete life cycle. Gas chromatography and mass spectrometry analyses of headspace volatiles collected from 6-wk-old intact flowering plants revealed substantially enhanced β-ionone emission from transgenic plants compared with WT, but no β-ionone enhancement occurred at a young vegetative stage (4-wk-old seedlings). Bioassays in an enclosed environment showed that ATCCD1 over-expression resulted in ≈50% less leaf area damage by flea beetles on transgenic plants compared with WT plants. The mean number of damaged transgenic leaves per plant also was significantly lower in transgenic plants (P < 0.05). Our results indicate that AtCCD1 over-expression and induced β-ionone emission might find application in the control of pests for Brassica crops grown in greenhouse operations. Potentially, β-ionone also could be used on crops grown in open-air ecosystems if this allomone is released in sufficient quantities to discourage herbivore foragers.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere