James R. Hunt
Crop and Pasture Science 68 (6), 501-515, (13 July 2017) https://doi.org/10.1071/CP17173
KEYWORDS: photoperiod, sowing time, thermal time, vernalisation, yield
Winter wheat cultivars are defined as those that have an obligate vernalisation requirement that must be met before they will progress from the vegetative to reproductive phase of development i.e. they must experience a true winter before they will flower. Historically, very little breeding effort has been applied to the selection of winter cultivars suited to southern Australia, with the notable exception of the New South Wales Agriculture breeding program based in Wagga and Temora that ran from the 1960s until 2002.
A shift by growers to earlier sowing, increased usage of dual-purpose cereals, and research highlighting the whole-farm benefits of winter cultivars to average farm wheat yield has increased grower interest and demand for winter cultivars. Three major wheat breeding companies operating in southern Australia have responded by commencing selection for milling quality winter cultivars, the first of which was released in 2017.
Existing research relating to winter wheats in southern Australian farming systems is reviewed here, including interactions with agronomic management, environment and weeds and disease. It is concluded that winter wheats can offer significant production and farming system benefits to growers by allowing earlier establishment, which increases water-limited potential yield (PYw) by ∼15% relative to later sown spring wheats, and makes forage available for dual-purpose grazing during vegetative development. Winter wheats sown early require agronomic management different to that of later sown spring wheats, including greater attention to control of grass weeds and certain diseases.
There are significant research gaps that will prevent growers from maximising the opportunities from new winter cultivars once they are released. The first of these is a well-defined establishment window for winter cultivars, particularly in medium-low rainfall environments of South Australia, Victoria and Western Australia that have not historically grown them. There is circumstantial evidence that the yield advantage of early established winter wheats over later sown spring wheats is greatest when stored soil water is present at establishment, or the soil profile fills during the growing season. Explicit confirmation of this would allow growers to identify situations where the yield advantage of winter wheats will be maximised.
Given the imminent release of several new winter wheat cultivars and the increases in PYw that they embody, it is critical to experimentally define the management and environmental conditions under which performance of these new genotypes are optimised, before their release and availability to growers. Optimising the genotype × environmental × management interactions possible with these cultivars will empower growers to make the best use of the technology and better realise the gains in water limited potential yield possible with these genotypes.