Wheat crop response to sulfur (S) depends on nitrogen (N) level, genotype and environmental conditions, demonstrating strong genotype × environment × nutrients interactions. The agronomic-use efficiency of both nutrients has not been evaluated in a wide range of modern genotypes differing in their cycle length and baking quality. The aim of this study was to analyse the effect of N and S fertilisation on yield components and use efficiency of both nutrients in 24 modern, high-yielding bread wheat genotypes (including long and short crop cycles) grown in contrasting environments in the Humid Pampa of Argentina. Two experiments were conducted under contrasting seasonal conditions on a Mollisol in Azul, Buenos Aires. Significant effects of N (range 15–200 kg N ha–1) on grain yield were observed in all genotypes. By contrast, responses to S (30–100 kg S ha–1) were found only at high N level in low soil-fertility environments, differing between long and short cycles. Genotype × fertilisation interaction was significant in the environment with higher soil fertility. Sulfur addition improved N-recovery efficiency (0.15 v. 0.32) and agronomic efficiency of the available N (84 v. 93 g g–1) in the poor-fertility environment, characterised by their N and S deficiency and moderate level of organic matter. Grain N-recovery efficiency was largely explained by increases in grain number, whereas S recovery was also associated with increases in grain nutrient concentration. We conclude that genotype and environment strongly alter fertiliser-use efficiency, providing valuable information for ranking genotypes and optimising site-specific management of wheat crops in the Humid Pampa of Argentina. Grain S percentage may be useful as a physiological marker for selection of bread wheat genotypes with high apparent S recovery.