Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Founder parents have contributed significantly to the improvement of wheat. Beijing 8 has been used as a founder parent in developing many outstanding improved cultivars in China. The widely grown cultivars Beijing 8 and 6 additional derivatives both derived from the cross ‘Bima 4 × Early Premium’ in China, were characterised using seven morphological traits and 537 microsatellite markers. Phenotypic comparisons revealed that Beijing 8 was similar for certain characteristics to the widely grown cultivars Shijiazhuang 54 and Jinan 2, hinting that acceptable performance for yield components may be the basis for Beijing 8 serving as a founder parent. Simple sequence repeat analysis indicated that Bima 4 contributed more genome information to the derivatives than Early Premium. Fifty-nine unique simple sequence repeat alleles, present in Beijing 8 and absent in other cultivars, were observed. Nearly all loci were in close proximity to the positions of known genes conferring important traits. Furthermore, pedigree tracking found that the frequencies of alleles unique to Beijing 8 varied from 0 to 0.96 in its 51 descendants, suggesting that some of them underwent rigorous selection during breeding.
Grain quality is an important determinant of market value of wheat in southern Australia and in many other parts of the world. Identification of the genes that influence grain quality traits and estimation of effects of alleles of these genes can improve the effectiveness of wheat breeding. An efficient method for estimating the effects of alleles of recently discovered genes is to use mixed-model analyses in large plant breeding datasets that have already been characterised for previously known genes. We used this method to estimate the effects of two alleles of Spa-B1, a storage protein activator gene that is linked to Glu-B1, on grain quality traits. Alleles of the two genes tracked together as haplotypes for generations, but recombination events were identified. These recombination events were used to enhance confidence in identification of the alleles. The effects of the alleles of Spa-B1 were small and statistically not significant for all of the grain quality traits in our population.
Life Cycle Assessment (LCA) has become an increasingly common approach across different industries, including agriculture, for environmental impact assessment. A single-issue LCA focusing on greenhouse gas emissions was conducted to determine the emissions profile and total carbon footprint of wheat produced in the Central Zone (East) of New South Wales. Greenhouse gas emissions (in carbon dioxide equivalents; CO2-e) from all stages of the production process, both pre-farm and on-farm, were included. Total emissions were found to be 200 kg CO2-e per t of wheat at the farm gate, based on a 3.5 t/ha grain yield. The relative contribution of greenhouse gas emissions from different components of the production system was determined, with most emissions (37%) coming from pre-farm production and transport of fertiliser (30%) and lime (7%) and from the nitrous oxide (N2O) emitted from the nitrogenous fertiliser applied to the crop (26%). Other important emissions included the CO2 emissions from the use of fertiliser and lime (15%) and the production, transport and use of diesel (16%). The relative importance of other minor emissions is also discussed. For a higher yielding crop (5.0 t/ha), total emissions were found to be 150 kg CO2-e per t of wheat. This paper considers the effect of different management scenarios on the emissions profile and the effect of adopting a N2O emissions factor, which is based on current New South Wales field research, rather than the current Australian National Greenhouse Accounts National Inventory Report default value. This LCA provides a template from which comparative farming systems LCA can be developed and provides data for the Australian Life Cycle Inventory.
High stearic-high oleic sunflower oil presents high thermal stability. This oil is an alternative to the hydrogenation process which produces trans fatty acids. The effect of intercepted solar radiation (ISR) per plant during grain filling on oil yield components and oil fatty acid composition was investigated in three sunflower high stearic-high oleic genotypes. Three field experiments were conducted and treatments to modify ISR per plant were applied during grain filling: shading, defoliating and thinning plants. Increasing ISR per plant linearly increased grain number per capitulum, weight per grain and in some cases palmitic and stearic acid percentages. In the hybrid, grain oil percentage and oleic acid concentration increased with a decreasing rate, reaching a maximum value at high levels of ISR per plant. Linoleic acid percentage decreased with a decreasing rate, reaching a minimum value at high levels of ISR per plant. Oil yield components presented heterosis. This information contributes to explain the effects of environment on yield and oil quality in high stearic-high oleic genotypes and could be used to design management practices that optimise these traits.
Blackleg disease, caused by the fungus Leptosphaeria maculans, is the major disease of canola (Brassica napus) worldwide. A set of 12 Australian L. maculans isolates was developed and used to characterise seedling resistance in 127 Australian cultivars and advanced breeding lines. Plant mortality data used to assess the effectiveness of seedling resistance in canola growing regions of Australia showed that Rlm3 and Rlm4 resistance genes were less effective than other seedling resistance genes. This finding was consistent with regional surveys of the pathogen, which showed the frequency of Rlm4-attacking isolates was >70% in fungal populations over a 10-year period. Differences in adult plant resistance were identified in a subset of Australian cultivars, indicating that some adult gene resistance is isolate-specific.
Yellow stunt and root rot caused by Embellisia astragali are major factors contributing to declining yields of standing milkvetch (Astragalus adsurgens). The resistance of ten varieties of standing milkvetch to E. astragali was evaluated under laboratory, greenhouse, and field conditions. Seed germination/emergence, shoot and root length, plant dry weight, disease incidence, mortality, and disease severity index were monitored. The results show that Shanxi and Zhongsha No. 1 varieties had the best agronomic traits and lowest levels of disease in all experiments, while the varieties Neimeng and Ningxia had the highest susceptibility to disease. Germination/emergence differed significantly (P < 0.05) between varieties after inoculation, and compared with the control, germination/emergence of inoculated treatments of nine varieties decreased on average by 1.5% in laboratory experiments and by 4.1% in greenhouse experiments at 15 days after inoculation. Inoculation reduced shoot length by an average of 24.4% and 41.5% (P < 0.05) in laboratory and greenhouse experiments, respectively, in six of ten varieties. All varieties showed significantly (P < 0.05) lower plant dry weight following inoculation, with reductions ranging from 0.3 to 0.6 mg in the laboratory and from 82.6 to 149.4 mg in the greenhouse. Resistance to the pathogen was evaluated on the basis of disease incidence, a disease severity index (DSI), and mortality; varieties showing different resistance were grouped using cluster analysis. There were significant correlations between the results of laboratory and greenhouse experiments (r = 0.79; P < 0.01) and between greenhouse and field experiments (r = 0.83; P < 0.01) across all varieties. Multiple regression analysis between laboratory/greenhouse and field experiments on DSI suggested that screening in the laboratory/greenhouse could be an alternative method of rapidly estimating DSI under field conditions.
Development of drought-tolerant cultivars is hampered by a lack of effective selection criteria. In this research, drought tolerance of 75 genotypes of tall fescue in three sets (25 parental, 25 early, 25 late-flowering progenies) was evaluated under no soil moisture stress and soil moisture stress in the field during 2009 and 2010. Five drought-tolerance indices were calculated: stress tolerance (TOL), mean productivity (MP), geometric mean productivity (GMP), stress susceptibility index (SSI), and stress tolerance index (STI). These calculations were based on forage yield (dry matter basis) under drought (Ys) and non-drought (Yp) conditions. Soil moisture stress caused significant reduction in forage yield. Considerable genetic variation for drought tolerance was found among genotypes. A moderately high relationship was found between Yp and Ys using regression analysis, with a clear relationship in the second year. Indices GMP and STI were found to be valuable aids in the selection of drought-tolerant, high-yielding genotypes. Plots of the first and second principal components identified drought-tolerant genotypes in each set. Results indicated that selection for drought-tolerant genotypes should be planned separately for first year (establishment stage) and second year (productive stage) in tall fescue.
Melilotus albus is recognised as an important source of forage for ruminant animals in rangelands, particularly some of the germplasm of Melilotus collected in Argentina. This study was designed to evaluate the effects of 2 years of selection in M. albus for late flowering and branching on forage yield in a 2-year field plot experiment and to evaluate the effects of selection for late flowering on photoperiodic requirements in a 1-year pot experiment under natural and artificial lighting conditions. Three populations were evaluated, namely original population (T), a population selected for late flowering and greater number of basal branches (ET1), and a population selected only for late-flowering plants (ET2).
The field plot experiment showed that total DM yield per year was higher for ET1 and T than for ET2 in Year 1 and higher for ET1 than T and ET2 in Year 2. Relative leaf yield was higher for ET1 and ET2 than for T in both years. Leaf number was greater for ET1 than for ET2 and T in both years. The number of new basal and total branches was greater in ET1 than in ET2 and T for both years.
The pot experiment showed that days to flowering, calculated as the average of natural and artificial lighting treatments, were higher in ET2 and ET1 (83.4 days ± 15 and 72.8 days ± 19, respectively), than in T (61.2 days ± 21). Supplementary lighting reduced days to flowering compared with natural lighting conditions for all populations (58.7 days ± 13 v. 86.1 days ± 12).
Results showed that 2 years of selection proved to be efficient in breeding for late flowering and greater number of basal branches in M. albus. The longer vegetative stage observed in the improved populations can be explained by the selection of plants which require a longer photoperiod to flower. Selection for late flowering and greater number of basal branches resulted in a population with more leaves and higher relative leaf yield.
Non-Ladino Italian white clover wild populations are widespread in hill and mountain areas of the Alps and northern Apennines. The agronomic value of these populations is unknown. This study was based on results of four experiments and had the following objectives: (i) comparing 11 small-leaved or medium-leaved wild populations from these areas with eight medium-leaved or large-leaved varieties of different origin and one wild population from Sardinia, for forage yield in a mown association with cocksfoot, forage yield under sheep grazing, seed yield, forage quality, and 14 vegetative or reproductive traits; (ii) investigating the relationships among traits; (iii) assessing the association of individual trait expression with the environments of origin of the wild populations. Clover competitive ability was greater in large-leaved material, tended to imply higher total yield of the association, and was unrelated to clover yield under grazing. Most wild populations from northern Italy were acyanogenic, several exhibited high yield under grazing and high seed yield, and one medium-leaved wild population outperformed any medium-leaved variety for forage and seed yield traits. Higher altitude of collecting site of these populations was related to lower forage yield and smaller size of some traits. Pasture collecting habitat implied greater adaptation to grazing than woodland, greater competitive ability than wasteland, and several morphophysiological differences relative to populations collected from wasteland or meadow. The Sardinian wild population displayed low seed yield and high cyanogenic potential, whereas the Ladino variety Giga was top-performing for forage yield in association and seed yield. Several vegetative and reproductive traits showed covariation. The generated results can drive the exploitation of non-Ladino genetic resources from northern Italy.
Recruitment of new perennial grass plants within existing grassland ecosystems is determined by seed availability, suitable microsites, nutrients and climatic conditions, water and temperatures. This paper reports on the development of criteria to predict recruitment events using modelled soil moisture conditions associated with recruitment of species in five field experiments at Orange (Phalaris aquatica), Trunkey Creek (Austrodanthonia spp.), and Wellington (Bothriochloa macra) in central New South Wales, Australia, and the frequency of those conditions during the past 30 years. Recruitment events were recorded when a rainfall event (median 68 mm across the three sites) kept the surface volumetric soil moisture (0–50 mm) above the permanent wilting point for at least 15 continuous days, allowing for, at most, two ‘dry days’ in between. A key finding from our study is that rainfall events creating favourable soil moisture conditions for seedling emergence typically occurred in the second half of February, sometimes extending to early March. Previously it was thought that recruitment would more likely occur through autumn, winter, and spring when rainfall in southern Australia is more reliable. The 30 years’ data (1975–2004) showed that the P. aquatica site had a median of 20 continuous moist days each year in February–March, whereas, there were 16 and 10 days for the Austrodanthonia and B. macra sites, respectively. The probabilities of exceeding seven or 15 continuous days of moist surface soil were 98% and 78% at the P. aquatica site, 91% and 49% at the Austrodanthonia site, and 73% and 30% at the B. macra site, and indicated that some recruitment is possible in most years. These analyses were extended to several sites across New South Wales, Victoria, and Tasmania to estimate the frequency with which recruitment could occur within natural swards. Across these sites, the probabilities of exceeding seven continuous days of soil moisture were >55% and of exceeding 15 continuous days were lower, which showed that suitable climatic conditions exist during late summer–early autumn across south-eastern Australia for a recruitment event to occur. Future research may show that the criteria developed in this paper could have wider regional application.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere