BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Vaccination of mice with tumor-derived stress proteins, such as Hsp70 and gp96 (GRP94), can elicit antitumor immune responses, yielding a marked suppression of tumor growth and metastasis. The molecular basis for this response is proposed to reflect a peptide-binding function for these proteins. In this view, stress proteins bind the antigenic peptide repertoire of their parent cell, and when provided to the immune system, tumor-derived stress protein– peptide complexes are processed by antigen-presenting cells (APCs) to yield the subsequent activation of tumor-directed cytotoxic T lymphocyte activity. This model predicts that stress proteins, whose primary intracellular function concerns the proper folding and assembly of nascent polypeptides, intersect with the cellular pathways responsible for the generation, processing, or assembly (or all) of peptide antigens onto nascent major histocompatability class I molecules. Recent insights into the pathways for peptide generation now allow this hypothesis to be critically examined, which is the subject of this review.
We cloned the complementary deoxyribonucleic acid (cDNA) of the heat shock cognate 70 (hsc70) gene of tiger shrimp (Penaeus monodon). It was 2207 bp long and included a 1959-bp coding region, a 40-bp flanking region at the 5′ end, and a 208-bp flanking region at the 3′ end. The deduced, 652–amino acid sequence had a molecular mass of 71 481 Da and an estimated isoelectric point (pI) of 5.2. Based on phylogenetic analysis, the gene is clustered with the hsc70 proteins of invertebrates and vertebrates. In native gel electrophoresis, recombinant P monodon hsc70 expressed in an Escherichia coli system is tightly associated with carboxymethylated α-lactalbumin (CMLA), which indicates that hsc70 probably functions as a chaperone. In an in vitro adenosine triphosphatase assay, recombinant hsc70 hydrolyzed adenosine triphosphate to adenosine-5′-diphosphate and increased hydrolysis activity by binding to unfolded peptide, CMLA. In situ hybridization using an antisense riboprobe revealed that the hsc70 gene was active in most tissues of unstressed shrimp. The expression of hsc70 messenger ribonucleic acid (mRNA) in hemocytes increased 2- to 3-fold at the first hour after shrimp experienced heat shock and 0.5-hour recovery. Hsc70 mRNA decreased gradually to the background level. Cloning and characterizing the P monodon hsc70 gene is the first, crucial step in studying the relationship of heat shock proteins with the stress or immune responses of shrimp.
Type 2 diabetes patients are subject to oxidative stress as a result of hyperglycemia. The aim of this study was to determine whether administration of the antioxidant folic acid, previously shown to reduce homocysteine levels, would reduce circulating levels of Hsp70 while improving the condition of type 2 diabetes patients with microalbuminuria. Plasma homocysteine fell from pretreatment values of 12.9 to 10.3 μM (P < 0.0001). The urine albumin-creatinine ratio fell from 12.4 to 10.4 mg/mM (P = 0.38). Pretreatment Hsp70 levels were higher in patients not taking insulin (5.32 ng/mL) compared with those on insulin (2.44 ng/mL) (P = 0.012). Folic acid supplementation resulted in a significant fall in Hsp70 (5.32 to 2.05 ng/mL) (P = 0.004). There was no change in Hsp70 in those receiving insulin. Folic acid supplementation in non–insulin-treated type 2 diabetes patients, therefore, resulted in a fall in Hsp70, reflecting an improvement in oxidative stress. The data shows that improvement in homocysteine status can lead to a reduction in Hsp70, indicating the possibility of its use as a marker for severity of disease.
Temperature-dependent changes of growth rate and protein components were investigated for primary cultured cells derived from goldfish caudal fin. When the culture temperature was shifted from 20°C to 35°C and 40°C, the growth rate was increased at 35°C as compared with that at 20°C, but no cell growth was observed at 40°C. The differential scanning calorimetry demonstrated the onset of the endothermic reaction for goldfish cellular components at 40°C. Therefore, the temperature shift to 40°C was found to be of severe heat shock for goldfish cultured cells. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis revealed that, although expression of 70-kDa components was slightly induced at 35°C, the temperature shift to 40°C markedly induced the expression of the 30-kDa component in addition to that of 70-kDa component. The N-terminal amino acid sequencing identified the 30- and 70-kDa components to be heat shock protein (Hsp)–30 and Hsp70, respectively. Northern blot analysis revealed that the enhanced Hsp30 messenger ribonucleic acid (mRNA) levels were only observed at 40°C, whereas Hsp70 mRNA was slightly accumulated at 35°C. These results indicated that Hsp30 might have important functions under severe heat stress condition.
The Hsp90 chaperone cycle involves sequential assembly of different Hsp90-containing multiprotein complexes, the accessory proteins (“cochaperones”) that are associated with these complexes being exchanged as the cycle proceeds from its early to its late stages. To gain insight as to whether the 2-hybrid system could be used to probe the interactions of this Hsp90 system, yeast transformants were constructed that express the Gal4p deoxyribonucleic acid–binding domain (BD) fused to the 2 Hsp90 isoforms and the various Hsp90 system cochaperones of yeast. These “bait” fusions were then introduced by mating into other transformants expressing nearly all the 6000 proteins of yeast expressed as fusions to the Gal4p activation domain (AD). High throughput 2-hybrid screening revealed the ability of Hsp90 and Hsp90 system cochaperones to engage in stable interactions in vivo, both with each other and with the various other proteins of the yeast proteome. Consistent with the transience of most chaperone associations, interactions to Hsp90 itself were invariably weak and generally influenced by stress. Mutations within a Hsp90-BD bait fusion and an AD-Cdc37 “prey” fusion were used to provide in vivo confirmation of the in vitro data that shows that Cdc37p is interacting with the “relaxed” conformation of Hsp90 and also to provide indications that Cdc37p needs to be phosphorylated at its N-terminus for any appreciable interaction with Hsp90. A number of potentially novel cochaperone interactions were also identified, providing a framework for these to be analyzed further using other techniques.
The blood-brain barrier (BBB) is a specialized structure in the central nervous system (CNS), which participates in maintenance of a state of cerebrospinal fluid homeostasis. The endothelial cells of the cerebral capillaries and the tight junctions between them form the basis of the BBB. Research has shown that destruction of the BBB is associated with diseases of the CNS. However, there is little research on how the BBB might be protected. In this study, we used a high osmotic solution (1.6 M d-mannitol) to open the BBB of rats and Evans blue dye as a macromolecular marker. The effect of heat shock treatment was evaluated. The results show that increased synthesis of heat shock protein 72 (Hsp72) was induced in the heated group only. BBB permeability was significantly less in the heat shock–treated group after hyperosmotic shock. The major tight junction proteins, occludin and zonula occludens (ZO)-1, were significantly decreased after d-mannitol treatment in the nonheated group, whereas they were preserved in the heated group. The coimmunoprecipitation studies demonstrated that Hsp72 could be detected in the precipitates of brain extract interacting with anti–ZO-1 antibodies as well as those interacting with anti–occludin antibodies in the heated group. We conclude that the integrity of tight junctions could be maintained by previous heat shock treatment, which might be associated with the increased production of Hsp72.
Heat shock proteins (HSPs) are induced by various physical, chemical, and biological stresses. HSPs are known to function as molecular chaperones, and they not only regulate various processes of protein biogenesis but also function as lifeguards against proteotoxic stresses. Because it is very useful to discover nontoxic chaperone-inducing compounds, we searched for them in herbal medicines. Some herbal medicines had positive effects on the induction of HSPs (Hsp70, Hsp40, and Hsp27) in cultured mammalian cells. We next examined 2 major constituents of these herbal medicines, glycyrrhizin and paeoniflorin, with previously defined chemical structures. Glycyrrhizin had an enhancing effect on the HSP induction by heat shock but could not induce HSPs by itself. In contrast, paeoniflorin had not only an enhancing effect but also an inducing effect by itself on HSP expression. Thus, paeoniflorin might be termed a chaperone inducer and glycyrrhizin a chaperone coinducer. Treatment of cells with paeoniflorin but not glycyrrhizin resulted in enhanced phosphorylation and acquisition of the deoxyribonucleic acid–binding ability of heat shock transcription factor 1 (HSF1), as well as the formation of characteristic HSF1 granules in the nucleus, suggesting that the induction of HSPs by paeoniflorin is mediated by the activation of HSF1. Also, thermotolerance was induced by treatment with paeoniflorin but not glycyrrhizin. Paeoniflorin had no toxic effect at concentrations as high as 80 μg/ mL (166.4 μM). To our knowledge, this is the first report on the induction of HSPs by herbal medicines.
Mark A. Febbraio, Jose L. Mesa, Jason Chung, Adam Steensberg, Charlotte Keller, Henning B. Nielsen, Peter Krustrup, Peter Ott, Niels H. Secher, Bente K. Pedersen
Heat shock protein (Hsp) 72 is a cytosolic stress protein that is highly inducible by several factors including exercise. Hsp60 is primarily mitochondrial in cellular location, plays a key role in the intracellular protein translocation and cytoprotection, is increased in skeletal muscle by exercise, and is found in the peripheral circulation of healthy humans. Glucose deprivation increases Hsp72 in cultured cells, whereas reduced glycogen availability elevates Hsp72 in contracting human skeletal muscle. To determine whether maintained blood glucose during exercise attenuates the exercise-induced increase in intramuscular and circulating Hsp72 and Hsp60, 6 males performed 120 minutes of semirecumbent cycling at ∼65% maximal oxygen uptake on 2 occasions while ingesting either a 6.4% glucose (GLU) or sweet placebo (CON) beverage throughout exercise. Muscle biopsies, obtained before and immediately after exercise, were analyzed for Hsp72 and Hsp60 protein expression. Blood samples were simultaneously obtained from a brachial artery, a femoral vein, and the hepatic vein before and during exercise for the analysis of serum Hsp72 and Hsp60. Leg and hepatosplanchnic blood flow were measured to determine Hsp72-Hsp60 flux across these tissue beds. Neither exercise nor glucose ingestion affected the Hsp72 or Hsp60 protein expression in, or their release from, contracting skeletal muscle. Arterial serum Hsp72 increased (P < 0.05) throughout exercise in both trials but was attenuated (P < 0.05) in GLU. This may have been in part because of the increased (P < 0.05) hepatosplanchnic Hsp72 release in CON, being totally abolished (P < 0.05) in GLU. Serum Hsp60 increased (P < 0.05) after 60 minutes of exercise in CON before returning to resting levels at 120 minutes. In contrast, no exercise-induced increase in serum Hsp60 was observed in GLU. We detected neither hepatosplanchnic nor contracting limb Hsp60 release in either trial. In conclusion, maintaining glucose availability during exercise attenuates the circulating Hsp response in healthy humans.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere