Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these “atypical” Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.
Elena Savvateeva-Popova, Andrei Popov, Abraham Grossman, Ekaterina Nikitina, Anna Medvedeva, Alexander Peresleni, Leonid Korochkin, James G. Moe, Eliot Davidowitz, Konstantin Pyatkov, Elena Myasnyankina, Olga Zatsepina, Natalia Schostak, Elena Zelentsova, Michael Evgen'ev
Protein aggregation is a hallmark of many neurodegenerative diseases. RNA chaperones have been suggested to play a role in protein misfolding and aggregation. Noncoding, highly structured RNA recently has been demonstrated to facilitate transformation of recombinant and cellular prion protein into proteinase K-resistant, congophilic, insoluble aggregates and to generate cytotoxic oligomers in vitro. Transgenic Drosophila melanogaster strains were developed to express highly structured RNA under control of a heat shock promoter. Expression of a specific construct strongly perturbed fly behavior, caused significant decline in learning and memory retention of adult males, and was coincident with the formation of intracellular congophilic aggregates in the brain and other tissues of adult and larval stages. Additionally, neuronal cell pathology of adult flies was similar to that observed in human Parkinson's and Alzheimer's disease. This novel model demonstrates that expression of a specific highly structured RNA alone is sufficient to trigger neurodegeneration, possibly through chaperone-like facilitation of protein misfolding and aggregation.
Phage P22 wild-type (WT) coat protein does not require GroEL/S to fold but temperature-sensitive–folding (tsf) coat proteins need the chaperone complex for correct folding. WT coat protein and all variants absolutely require P22 scaffolding protein, an assembly chaperone, to assemble into precursor structures termed procapsids. Previously, we showed that a global suppressor (su) substitution, T166I, which rescues several tsf coat protein variants, functioned by inducing GroEL/S. This led to an increased formation of tsf:T166I coat protein:GroEL complexes compared with the tsf parents. The increased concentration of complexes resulted in more assembly-competent coat proteins because of a shift in the chaperone-driven kinetic partitioning between aggregation-prone intermediates toward correct folding and assembly. We have now investigated the folding and assembly of coat protein variants that carry a different global su substitution, F170L. By monitoring levels of phage production in the presence of a dysfunctional GroEL we found that tsf:F170L proteins demonstrate a less stringent requirement for GroEL. Tsf:F170L proteins also did not cause induction of the chaperones. Circular dichroism and tryptophan fluorescence indicate that the native state of the tsf: F170L coat proteins is restored to WT-like values. In addition, native acrylamide gel electrophoresis shows a stabilized native state for tsf:F170L coat proteins. The F170L su substitution also increases procapsid production compared with their tsf parents. We propose that the F170L su substitution has a decreased requirement for the chaperones GroEL and GroES as a result of restoring the tsf coat proteins to a WT-like state. Our data also suggest that GroEL/S can be induced by increasing the population of unfolding intermediates.
We describe an approach to produce an autologous therapeutic antitumor vaccine using hydroxyapatite (HA) for vaccinating cancer patients. The novel approach involved (1) the purification of part of the self-tumor antigens/ adjuvants using column chromatography with HA, (2) the employ of HA as a medium to attract antigen-presenting cells (APCs) to the vaccination site, and (3) the use of HA as a vector to present in vivo the tumor antigens and adjuvants to the patient's APCs. The vaccine was prepared using and combining HA particles, with at least 3 heat shock proteins (gp96 was one of them possibly with chaperoned proteins/peptides as shown in the slot blots) and with proteins from the cell membrane system (including Hsp70, Hsp27, and membrane proteins). The timing of HA degradation was tested in rats; the HA particles administered under the skin attracted macrophages and were degraded into smaller particles, and they were totally phagocytized within 1 week. In patients (n = 20), the vaccine was then administered weekly and showed very low toxicity, causing minor and tolerable local inflammation (erythema, papule, or local pain); only 1 patient who received a larger dose presented hot flashes, and there were no systemic manifestations of toxicity or autoimmune diseases attributed to the vaccine. Our study suggests that this therapeutic vaccine has shown some efficacy producing a positive response in certain patients. Stable disease was noted in 25% of the patients (renal carcinoma, breast carcinoma, and astrocytoma), and a partial response was noted in 15% of the patients (breast carcinoma and astrocytoma). The most encouraging results were seen in patients with recurrent disease; 4 patients in these conditions (20%) are disease free following the vaccine administration. However, we do not want to overstate the clinical efficacy in this small number of patients. The therapeutic vaccine tested in our study is working by activating the T-cell response as was shown in the comparative histological and immunohistochemical study performed in the pre- and postvaccine biopsy taken from a patient with inflammatory breast carcinoma. However, we cannot ruled out that the vaccine could also be producing an antibody(ies)-mediated response. In conclusion, this therapeutic vaccine based on HA ceramic particles and self-antigens can be safely administered and is showing some encouraging clinical results in cancer patients.
Cadmium is a heavy metal toxic for living organisms even at low concentrations. It does not have any biological role, and since it is a permanent metal ion, it is accumulated by many organisms. In the present paper we have studied the apoptotic effects of continuous exposure to subacute/sublethal cadmium concentrations on a model system: Paracentrotus lividus embryos. We demonstrated, by atomic absorption spectrometry, that the intracellular amount of metal increased during exposure time. We found, using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, that long treatments with cadmium triggered a severe DNA fragmentation. We demonstrated, by immunocytochemistry on whole-mount embryos, that treatment with cadmium causes activation of caspase-3 and cleavage of death substrates α-fodrin and lamin A. Incubating the embryos since fertilization with Z-DEVD FMK, a caspase-3 inhibitor, we found, by immunocytochemistry, that cleavage by caspase-3 and cleavage of death substrates were inactivated.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed “protein misfolding disorders.” These diseases differ widely in frequency and impact different classes of neurons. Heat shock proteins provide a line of defense against misfolded, aggregation-prone proteins and are among the most potent suppressors of neurodegeneration in animal models. Analysis of constitutively expressed heat shock proteins revealed variable levels of Hsc70 and Hsp27 in different classes of neurons in the adult rat brain. The differing levels of these constitutively expressed heat shock proteins in neuronal cell populations correlated with the relative frequencies of the previously mentioned neurodegenerative diseases.
In Saccharomyces cerevisiae, Sgt2 was thought to be the homologue of vertebrate SGT (small glutamine tetratricopeptide repeat–containing protein). SGT has been known to interact with both Hsp70 and Hsp90. However, it was not clear whether Sgt2 might have a similar capacity. Here, we showed that Ssa1/Ssa2 (yeast heat shock cognate [Hsc]70), Hsc82 (yeast Hsp90), and Hsp104 coprecipitated with Sgt2 from yeast lysates. Another molecular chaperone, Ydj1, known to interact with Ssa1 and Hsc82, also coprecipitated with Sgt2. Synthetic lethality between SGT2 and YDJ1 was observed after the cells were under stress, although Sgt2 might not interact physically with Ydj1. We also found that Mdy2 interacted with the N-terminal region of Sgt2 and that Mdy2 appeared to interact physically with Ydj1. Mdy2 therefore may mediate the association of Ydj1 and Sgt2. In addition, the mating efficiency of mdy2Δ, sgt2Δ, and mdy2Δsgt2Δ strains was reduced to a similar extent. Compared with mdy2Δ and ydj1Δ cells, ydj1Δmdy2Δ cells, however, showed a further suppression in mating efficiency. Moreover, MDY2 interacted genetically with YDJ1. These results suggest that protein complexes containing Sgt2 and Mdy2 bring molecular chaperones together to carry out certain chaperoning functions.
High-dose gp96 has been shown to inhibit experimental autoimmune disease by a mechanism that appears to involve immunoregulatory CD4 T cells. This study tested the hypothesis that high-dose gp96 administration modifies allograft rejection and associated inflammatory events. Wistar cardiac allografts were transplanted into Lewis recipient rats and graft function was monitored daily by palpation. Intradermal administration of gp96 purified from Wistar rat livers (100 μg) at the time of transplantation and 3 days later significantly prolonged allograft survival (14 vs 8 days in phosphate-buffered saline [PBS]-treated recipients; P = 0.009). Rejected allografts from gp96-treated animals were significantly less enlarged than allografts from their PBS-treated counterparts (2.8 vs 4.3 g; P < 0.004). Gp96 was also effective when administered on days 1 and 8 (13 vs 7 days), but not if it was derived from recipient (Lewis) liver tissue or administered on days 0, 3, and 6. In parallel studies, CD3 T cells from gp96-treated untransplanted animals secreted less interleukin (IL)-4, IL-10, and interferon (IFN)-γ after in vitro polyclonal stimulation than CD3 T cells from PBS-treated animals. Gp96 administration might therefore influence the induction of immunity to coencountered antigenic challenges and inflammatory events by inducing what appears to be a state of peripheral T-cell hyporesponsiveness.
Expression of Hsp70 is an endogenous mechanism by which living cells adapt to stress and the protection of Hsp70 may interfere with the apoptotic machinery in a variety of ways. Here, we observed the change of Hsp70 expression in rat myocardium under stress and explored the protective effect of Hsp70 on the Fas-mediated pathway to cardiomyocyte apoptosis. The results showed that restraint stress led to cardiac dysfunction and structural damage of the myocardium, as well as activation of the Fas pathway. A similar increase in the Fas expression level, caspase-8/3 activity, and the apoptotic rate of the cardiomyocyte also were found, which indicated that Fas-mediated apoptosis of cardiomyocytes might be one of the mechanisms of cardiomyocyte injury induced by stress. Changes in Hsp70 levels and distribution occurred during the stress process, which correlated with the severity of myocardium injury. Heat preconditioning induced the upregulation of Hsp70 synthesis, which in turn may have mitigated subsequent restraint stress–induced damage, including electrocardiography (ECG) abnormality, myocardium damage, and cell death. Moreover, Hsp70 overexpression induced by heat preconditioning had no effect on Fas expression in the cardiomyocyte, but could inhibit activation of caspase-8/3 induced by the Fas signaling pathway and, as a result, prevent cell apoptosis. These results suggest that Hsp70 is capable of protecting the cardiomyocyte from stress-induced injury by inhibiting Fas-mediated apoptosis, and Hsp70 could be considered a target in future drugs to prevent cardiovascular injury caused by stress.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere