BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Heat shock protein (Hsp) 25 is a member of the small Hsp family. High levels of Hsp25 can be detected in skin. During adult epidermis differentiation, the concentration of Hsp25 increases as the distance of keratinocytes from the basal layer increases, in parallel with the extent of keratinization. We previously showed that Hsp25, mouse keratin (MK) 5, and MK14 participated in the formation of characteristic ring-shaped aggregates during the differentiation of the PAM212 keratinocyte cell line. We suggested that Hsp25 was involved in the disorganization of the MK5-MK14 keratin network before the establishment of the MK1-MK10 keratin network at the beginning of epidermis stratification. In this study, we have investigated the distribution of Hsp25 and keratins throughout skin development. We demonstrate that the distribution of Hsp25 and MK5 in the epidermis at the beginning of stratification and before keratinization is similar to that observed in PAM212 keratinocytes. These results indicate that there is a strong correlation between the mechanism we described ex vivo and the events taking place in vivo. Moreover, we show that Hsp25 is produced in different cell types in the epidermis and in the hair follicle at different stages of their development. Thus, our results suggest that Hsp25 is involved in more than one process during skin development.
Folding of secretory proteins is associated with the formation and isomerization of disulfide bonds. ERp72, a protein disulfide isomerase (PDI) family member, possesses 3 thioredoxin homology domains, but the participation of each domain in disulfide-bond formation and isomerization remains to be determined. We analyzed the function of individual domains in the insulin reduction assay system by site-directed mutagenesis with cysteine-to-serine replacement. All domains contributed to apparent steady-state binding (Km) and catalysis at saturating substrate concentrations (kcat) but in different manners. A mutant ERp72 with mutations in domains 1 and 2 (ERp72-mut-1 2) exhibited reductions in kcat of 73.9% when compared with wild type, whereas ERp72-mut-1 3 (mutations in domains 1 and 3) and ERp72-mut-2 3 (mutations in domains 2 and 3) exhibited less substantial reductions in kcat. ERp72-mut-1 3 and ERp72-mut-2 3 showed elevations in Km of 89.9% and 96.2%, respectively, when compared with wild type, whereas ERp72-mut-1 2 exhibited smaller elevations in Km. These results suggest that domains 1 and 2 make greater contributions to catalyzing efficacy and domain 3 to binding affinity. Domain 2 is involved in binding affinity, in combination with domain 3, in addition to its own contribution to catalyzing efficacy. This assignment of functions to individual domains is similar to that observed in other PDI domains, which is consistent with the high sequence homology between ERp and PDI domains.
FKBP65 (65-kDa FK506-binding protein) is an endoplasmic reticulum (ER)–localized peptidyl-prolyl cis-trans isomerase predicted to play a role in the folding and trafficking of secretory proteins. In previous studies, we have shown that FKBP65 is developmentally regulated and associates with the extracellular matrix protein, tropoelastin, during its maturation and transport through the ER. In this study, we show that FKBP65 is expressed in the lung with the same developmental pattern as tropoelastin and other matrix proteins. To test the hypothesis that FKBP65 is upregulated at times when extracellular matrix proteins are being actively synthesized and assembled, adult mice were treated with bleomycin to cause reinitiation of matrix protein production during the ensuing development of pulmonary fibrosis. After bleomycin instillation, FKBP65 expression was reactivated in the lung with a pattern similar to that observed for tropoelastin and type I collagen. Using human lung fibroblast cultures, we showed that FKBP65 does not undergo the unfolded protein response, a response associated with an upregulation of resident ER proteins that occurs after increased ER stress. When fibroblasts were treated with transforming growth factor (TGF)-β1, which is upregulated during the development of pulmonary fibrosis and known to induce matrix production, FKBP65 expression and synthesis was also increased. Similar to type I collagen and tropoelastin, this response was completely inhibited in a dose-dependent manner by GGTI-298, a geranylgeranyl transferase I inhibitor. Treatment of fibroblasts with an inhibitor of ribonucleic acid (RNA) polymerase II after TGF-β1 treatment showed that the effect of TGF-β1 was not because of increased stabilization of the FKBP65 messenger RNA. In summary, we have shown that FKBP65 is highly expressed in lung development, downregulated in the adult, and can be reactivated in a coordinated manner with extracellular matrix proteins after lung injury. The expression pattern of FKBP65, which is atypical for general ER foldases, suggests that FKBP65 has a distinct set of developmentally regulated protein ligands. The response to injury, which may be in part a direct response to TGF-β1, assures the presence of FKBP65 in the ER of cells actively producing components of the extracellular matrix.
We previously reported that, in human heat shock protein (Hsp) 90 (hHsp90), there are 4 highly immunogenic sites, designated sites Ia, Ib, Ic, and II. This study was performed to further characterize their epitopes and to identify the epitope that is potentially common to all members of the Hsp90 family. Panning of a bacterial library carrying randomized dodecapeptides revealed that Glu251-Ser-X-Asp254 constituted site Ia and Pro295-Ile-Trp-Thr-Arg299, site Ic. Site II (Asp701-Pro717) was composed of several epitopes. When 19 anti-hHsp90 monoclonal antibodies (mAbs) were subjected to immunoblotting against recombinant forms of 7 Hsp90-family members, 2 mAbs (K41110 and K41116C) that recognized site Ic bound to yeast Hsp90 with affinity identical to that for hHsp90, and 1 mAb (K3729) that recognized Glu222-Ala231 of hHsp90β could bind to human 94-kDa glucose-regulated protein (Grp94), an endoplasmic reticulum paralog of Hsp90. Among the 5 amino acids constituting site Ic, Trp297 and Pro295 were essential for recognition by all anti–site-Ic mAbs, and Arg299 was important for most of them. The necessity of Ile296, Thr298, and Arg299, which are replaced by Leu, Met/Leu, and Lys, respectively, in some eukaryotic Hsp90, was dependent on the mAbs, and K41110 and K41116C could react with Hsp90s carrying these substitutions. From these data taken together, we propose that the pentapeptide Pro295-Ile-Trp-Thr-Arg299 of hHsp90 functions as an immunodominant epitope common to all eukaryotic Hsp90.
The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (36°C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early–upregulated, early– downregulated, and late–upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock genes were generally found to be upregulated by stress in general.
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock–inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.
Lipopolysaccharide (LPS) is a highly proactive molecule that causes in vivo a systemic inflammatory response syndrome and activates in vitro the inflammatory pathway in different cellular types, including endothelial cells (EC). Because the proinflammatory status could lead to EC injury and apoptosis, the expression of proinflammatory genes must be finely regulated through the induction of protective genes. This study aimed at determining whether an LPS exposure is effective in inducing apoptosis in primary cultures of porcine aortic endothelial cells and in stimulating heat shock protein (Hsp)70 and Hsp32 production as well as vascular endothelial growth factor (VEGF) secretion. Cells between third and eighth passage were exposed to 10 μg/mL LPS for 1, 7, 15, and 24 hours (time-course experiments) or to 1, 10, and 100 μg/mL LPS for 7 and 15 hours (dose-response experiments). Apoptosis was not affected by 1 μg/mL LPS but significantly increased in a dose-dependent manner with the highest LPS doses. Furthermore, apoptosis rate increased only till 15 hours of LPS exposure. LPS stimulated VEGF secretion in a dose-dependent manner; its effect became significant after 7 hours and reached a plateau after 15 hours. Both Hsp70 and Hsp32 expressions were induced by LPS in a dose-dependent manner after 7 hours. Subsequent studies were addressed to evaluate the protective role of Hsp32, Hsp70, and VEGF. Hemin, an Hsp32 inducer (5, 20, 50 μM), and recombinant VEGF (100 and 200 ng/mL), were added to the culture 2 hours before LPS (10 μg/mL for 24 hours); to induce Hsp70 expression, cells were heat shocked (42°C for 1 hour) 15 hours before LPS (10 μg/mL for 24 hours). Hemin exposure upregulated Hsp32 expression in a dose-dependent manner and protected cells against LPS-induced apoptosis. Heat shock (HS) stimulated Hsp70 expression but failed to reduce LPS-induced apoptosis; VEGF addition did not protect cells against LPS-induced apoptosis at any dose tested. Nevertheless, when treatments were associated, a reduction of LPS-induced apoptosis was always observed; the reduction was maximal when all the treatments (HS Hemin VEGF) were associated. In conclusion, this study demonstrates that LPS is effective in evoking “the heat shock response” with an increase of nonspecific protective molecules (namely Hsp70 and Hsp32) and of VEGF, a specific EC growth factor. The protective role of Hsp32 was also demonstrated. Further investigations are required to clarify the synergic effect of Hsp32, Hsp70, and VEGF, thus elucidating the possible interaction between these molecules.
High-altitude illness (HAI) is a potentially fatal condition involving genetic and environmental components. Accumulated experimental evidence suggests that heat shock proteins (Hsps), especially HSP70, can protect cells and organs against different types of damage. We investigated whether genetic variation in constitutive and inducible hsp70 genes could be associated with risk of HAI. The association between polymorphisms of the HSP70 family genes and risk of HAI was determined in 56 patients with HAI and in 100 matched controls by genotyping for the polymorphisms 190 G/C, 1267 A/G, 2437 G/C in the hsp70-1, hsp70-2, and hsp70-hom genes by using polymerase chain reaction–restriction fragment length polymorphism. The data showed that there was no statistically significant difference in the genotype and allele distributions of hsp70-1, in hsp70-2 allele and hsp70-2 A/A and A/B genotypes, and in allele distribution of hsp70-hom among patients with HAI and controls (χ2 test, P > 0.05). However, there was a significantly higher frequency of hsp70-2 B/B and hsp70-hom A/A and B/B genotypes and a significantly lower frequency of the hsp70-hom A/B genotype in the HAI patients compared with the controls (P < 0.05 for all). The risk associated with the hsp70-2 B/B and hsp70-hom A/A, A/B, and B/B genotypes were 4.017 (95% CI = 1.496–10.781; P = 0.004), 2.434 (95% CI = 1.184–5.003; P = 0.012), 0.299 (95% CI = 0.148–0.602, P = 0.001), and 5.880 (95% CI =1.145–30.196, P = 0.026), respectively. Our results suggest that individuals with hsp70-2 B/B and hsp70-hom A/B and B/B genotypes may be more susceptible to HAI, whereas those with hsp70-hom A/B genotype may be tolerant to HAI. Further studies in individuals of different age and sex are warranted to elucidate the underlying mechanisms of this association and the possible functions of different genotypes of hsp70-2 and hsp70-hom under hypoxic stress.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere