BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlikemitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) inmost somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Summary Sentence
Recent finding in meiotic spindle formations of mammalian oocyte uncover new insights into the molecular mechanism of human infertility.
Folliculogenesis is remarkably similar in cattle and humans. In this review, we consider the known differences and provide a possible explanation for the greater success of oocyte in vitro maturation in cattle. Two different parallel processes that are critical for oocyte competence acquisition are examined. The first occurs in the follicle and in turn influences the oocyte, the second occurs within the oocyte itself and involves the gradual cessation of the transcription machinery with additional changes observable in the chromatin structure. We expect this insight to contribute to the improvement of human fertility programs based on in vitro fertilization, and particularly to the development of controlled ovarian stimulation protocols that yield more high-quality oocytes and thereby improve the clinical performance of treatments for infertility.
Summary Sentence
Successful in vitro maturation in cattle and humans starts with an optimally differentiated ovarian follicle.
The morula-stage embryo is transformed into a blastocyst composed of epiblast, hypoblast, and trophectoderm (TE) through mechanisms that, in the mouse, involve the Hippo signaling and mitogen-activated kinase (MAPK) pathways. Using the cow as an additional model, we tested the hypotheses that TE and hypoblast differentiation were regulated by the Hippo pathway regulators, yes-associated protein 1 (YAP1) and angiomotin (AMOT), and MAPK kinase 1/2 (MAPK1/2). The presence of YAP1 and CDX2 in the nucleus and cytoplasm of MII oocytes and embryos was evaluated by immunofluorescence labeling. For both molecules, localization changed from cytoplasmic to nuclear as development advanced. Inhibition of YAP1 activity, either by verteporfin or a YAP1 targeting GapmeR, reduced the percent of zygotes that became blastocysts, the proportion of blastocysts that hatched and numbers of CDX2+ cells in blastocysts. Moreover, the YAP1-targeting GapmeR altered expression of 15 of 91 genes examined in the day 7.5 blastocyst. Treatment of embryos with an AMOT targeting GapmeR did not affect blastocyst development or hatching but altered expression of 16 of 91 genes examined at day 7.5 and reduced the number of CDX2+ nuclei and YAP1+ nuclei in blastocysts at day 8.5 of development. Inhibition of MAPK1/2 with PD0325901 did not affect blastocyst development but increased the number of epiblast cells. Results indicate a role for YAP1 and AMOT in function of TE in the bovine blastocyst. YAP1 can also affect function of the epiblast and hypoblast, and MAPK signaling is important for inner cell mass differentiation by reducing epiblast numbers.
Summary Sentence
The cell differentiation regulators, AMOT, MAP2K1/2, and YAP1, are involved in differentiation of the bovine blastocyst.
Inflammation may be a mechanism of maternal programming because it has the capacity to alter the maternal environment and can persist postnatally in offspring tissues. This study evaluated the effects of restricted- and over-feeding on maternal and offspring inflammatory gene expression using reverse transcription (RT)-PCR arrays. Pregnant ewes were fed 60% (Restricted), 100% (Control), or 140% (Over) of National Research Council requirements beginning on day 30.2 ± 0.2 of gestation. Maternal (n = 8–9 ewes per diet) circulating nonesterified fatty acid (NEFA) and expression of 84 inflammatory genes were evaluated at five stages during gestation. Offspring (n = 6 per diet per age) inflammatory gene expression was evaluated in the circulation and liver at day 135 of gestation and birth. Throughout gestation, circulating NEFA increased in Restricted mothers but not Over. Expression of different proinflammatory mediators increased in Over and Restricted mothers, but was diet-dependent. Maternal diet altered offspring systemic and hepatic expression of genes involved in chemotaxis at late gestation and cytokine production at birth, but the offspring response was distinct from the maternal. In the perinatal offspring, maternal nutrient restriction increased hepatic chemokine (CC motif) ligand 16 and tumor necrosis factor expression. Alternately, maternal overnutrition increased offspring systemic expression of factors induced by hypoxia, whereas expression of factors regulating hepatocyte proliferation and differentiation were altered in the liver. Maternal nutrient restriction and overnutrition may differentially predispose offspring to liver dysfunction through an altered hepatic inflammatory microenvironment that contributes to immune and metabolic disturbances postnatally.
Summary Sentence
Restricted- and over-feeding differentially alter maternal inflammation and metabolism and indirectly promote systemic and hepatic inflammation in the perinatal offspring, which may contribute to liver dysfunction postnatally.
Anti-Müllerian hormone (AMH) plays a key role during ovarian follicular development, with local actions associated with a dynamic secretion profile by growing follicles. While results for AMH effects on antral follicle growth and function are consistent among studies in various species, any effects on preantral follicle development remain controversial. Therefore, experiments were conducted to investigate the direct actions and role of AMH during follicle development at the preantral stage. Macaque-specific short-hairpin RNAs (shRNAs) targeting AMH mRNA were incorporated into adenoviral vectors to decrease AMH gene expression in rhesus macaque follicles. Secondary follicles were isolated from adult macaque ovaries and cultured individually in the ultra-low-attachment dish containing defined medium supplemented with follicle-stimulating hormone and insulin for 5 weeks. Follicles were randomly assigned to treatment groups: (a) control, (b) nontargeting control shRNA-vector, (c) AMH shRNA-vector, (d) AMH shRNA-vector + recombinant human AMH, and (e) recombinant human AMH. Follicle survival and growth were assessed. Culture media were analyzed for steroid hormone and paracrine factor concentrations. For in vivo study, the nontargeting control shRNA-vector and AMH shRNA-vector were injected into macaque ovaries. Ovaries were collected 9 days postinjection for morphology and immunohistochemistry assessment. Decreased AMH expression reduced preantral follicle survival and growth in nonhuman primates. Supplemental AMH treatment in the culture media promoted preantral follicle growth to the small antral stage in vitro with increased steroid hormone and paracrine factor production, as well as oocyte maturation. These data demonstrate that AMH is a critical follicular paracrine/autocrine factor positively impacting preantral follicle survival and growth in primates.
Summary Sentence
Anti-Müllerian hormone is a survival factor for preantral follicles in nonhuman primates, and promotes preantral follicle growth to the small antral stage with increased steroid hormone and paracrine factor production, as well as oocyte maturation.
Premature decidual senescence is a contributing factor to preterm birth. Fatty acid amide hydrolase mutant females (Faah−/−) with higher endocannabinoid levels are also more susceptible to preterm birth upon lipopolysaccharide (LPS) challenge due to enhanced decidual senescence; this is associated with mitogen-activated protein kinase p38 activation. Previous studies have shown that mechanistic target of rapamycin complex 1 (mTORC1) contributes to decidual senescence and promotes the incidence of preterm birth. In this study, we sought to attenuate premature decidual aging in Faah−/− females by targeting mTORC1 and p38 signaling pathways. Because metformin is known to inhibit mTOR and p38 signaling pathways, Faah−/− females were treated with metformin. These mice had a significantly lower preterm birth incidence with a higher rate of live birth after an LPS challenge on day 16 of pregnancy; metformin treatment did not affect placentation or neonatal birth weight. These results were associated with decreased levels of p38, as well as pS6, a downstream mediator of mTORC1 activity, in day 16 Faah−/− decidual tissues. Since metformin treatment attenuates premature decidual senescence with limited side effects during pregnancy, careful use of this drug may be effective in ameliorating specific adverse pregnancy events.
Summary Sentence
Metformin treatment attenuates premature decidual senescence caused by higher endocannabinoid levels and susceptibility to inflammation-induced preterm birth in mice.
Mechanisms for postovulatory aging (POA) of oocytes and for spontaneous activation (SA) of rat oocytes are largely unknown. Expression of calcium-sensing receptor (CaSR) in rat oocytes and its role in POA remain unexplored. In this study, expression of CaSR in rat oocytes aging for different times was detected by immunofluorescencemicroscopy, and western blotting and the role of CaSR in POA was determined by observing the effects of regulating its activity on SA susceptibility and cytoplasmic calcium levels. The results showed that CaSR was expressed in rat oocytes. Oocytes recovered 19 h post human chorionic gonadotropin (hCG) injection were more susceptible to SA and expressed more functional CaSR than oocytes recovered 13 h after hCG injection, although both expressed the same level of total CaSR protein. Treatment with CaSR antagonist significantly suppressed cytoplasmic calcium elevation and SA of oocytes. Activation of Na-Ca2+ exchangerwith NaCl inhibited SA to a greater extent than suppression of CaSR with NPS-2143, suggesting that calcium sources other than CaSR-controlled channels contributed to the elevation of cytoplasmic calcium. Treatment with T- or L-type calcium channel blockers significantly reduced SA. Suppression of all calcium channels tested reduced SA to minimum. It is concluded that the level of CaSR functional dimer protein, but not that of the total CaSR protein, was positively correlated with the SA susceptibility during POA of rat oocytes confirming that CaSR is involved in POA regulation. Blocking multiple calcium channels might be a better choice for efficient control of SA in rat oocytes.
Summary Sentence
Calcium-sensing receptor is involved in regulating postovulatory aging of oocytes, and blocking multiple calcium channels may be used for efficient control of spontaneous activation in rat oocytes.
The pivotal role of androgen receptor (AR) in regulating male fertility has attracted much research attention in the past two decades. Previous studies have shown that total AR knockout would lead to incomplete spermatogenesis and lowered serum testosterone levels in mice, resulting in azoospermia and infertility. However, the precise physiological role of ar in controlling fertility of male fish is still poorly understood. In this study, we have established an ar knockout zebrafish line by transcription activator-like effectors nucleases. Homozygous ar mutant male fish with smaller testis size were found to be infertile when tested by natural mating. Intriguingly, a small amount of mature spermatozoa was observed in the ar mutant fish. These mature spermatozoa could fertilize healthy oocytes, albeit with a lower fertilization rate, by in vitro fertilization. Moreover, the expression levels of most steroidogenic genes in the testes were significantly elevated in the ar mutants. In contrast, the levels of estradiol and 11-ketotestosterone (11-KT) were significantly decreased in the ar mutants, indicating that steroidogenesis was defective in the mutants. Furthermore, the protein level of LHβ in the serum decreased markedly in the ar mutants when compared with wild-type fish, probably due to the positive feedback from the diminished steroid hormone levels.
Summary Sentence
In summary, our results provided unequivocal in vivo evidence for the requirement of functional ar in maintaining normal spermatogenesis and steroidogenesis, in ensuring normal fertility in male zebrafish.
Exposure to endocrine disrupting chemicals has been associated with compromised testosterone production leading to abnormal male reproductive development and altered spermatogenesis. In vitro high-throughput screening (HTS) assays are needed to evaluate risk to testosterone production, yet the main steroidogenesis assay currently utilized is a human adrenocortical carcinoma cell line, H295R, which does not synthesize gonadal steroids at the same level as the gonads, thus limiting assay sensitivity. Here, we propose a complementary assay using a highly purified rat Leydig cell assay to evaluate the potential for chemical-induced alterations in testosterone production by the testis.We evaluated a subset of chemicals that failed to decrease testosterone production in the HTS H295R assay. The chemicals examined fit into one of two categories based on changes in substrates upstream of testosterone in the adrenal steroidogenic pathway (17α-hydroxyprogesterone and 11-deoxycorticosterone) that we predicted should have elicited a decrease in testosterone production. We found that 85% of 20 test chemicals examined inhibited Leydig cell testosterone production in our assay. Importantly, we adopted a 96-well format to increase throughput and efficiency of the Leydig cell assay. We identified a selection criterion based on the AC50 values for 17α-hydroxyprogesterone and 11-deoxycorticosterone generated from the HTS H295R assay that will help prioritize chemicals for further testing in the Leydig cell screen. We hypothesize that the greater dynamic range of testosterone production and sensitivity of the Leydig cell assay permits the detection of small, yet significant, chemical-induced changes not detected by the HTS H295R assay.
Summary Sentence
The greater dynamic range of testosterone production in a primary rat Leydig cell assay permitted detection of chemical-induced testosterone inhibition that was not detected by the high-throughput screening format of the H295R steroidogenesis assay.
Bisphenol A (BPA) is an industrial material used for many plastic products and is considered an endocrine disruptor. BPA can be released into the environment and can spread through the food chain. It is well known that BPA exposure leads to lesions, especially in the reproductive system. According to previous studies, BPA reduces newborn numbers in pregnant mice and affects placentation. The placenta is a special endocrine organ during pregnancy. It secretes important hormones, such as progesterone and estrogen, to maintain gestation. In steroid hormone synthesis, two specific enzymes are important: P450scc (CYP11A1) converts cholesterol to pregnenolone and aromatase (CYP19) induces androgen conversion to estrogen. To determine the effects of a low dose of BPA on hormone synthesis in the placenta, we used JEG-3 cells as a model. We found that the steroidogenic genes CYP11A1 and CYP19 were downregulated in human tissues by detectable concentrations of BPA (1–1000 nM), which do not affect cell viability. Furthermore, we demonstrated that BPA influenced the ERK signaling pathway and resulted in hormone reductions. An analysis of trophoblasts in primary culture from a term human placenta showed the same phenomena. Our data demonstrate that treatment with a low dose of BPA does not affect human placental cell survival, but decreases hormone production via to the downregulation of steroidogenic genes and ERK signaling pathway changes.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere