BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Uterine fibroids (UFs, AKA leiomyoma) are the most important benign neoplastic threat to women's health, with costs up to hundreds of billions of health care dollars worldwide. Uterine fibroids caused morbidities exert a tremendous health toll, impacting the quality of life of women of all ethnicities, especially women of color. Clinical presentations include heavy vaginal bleeding, pelvic pain, bulk symptoms, subfertility, and obstetric complications. Current management strategies heavily lean toward surgical procedures; nonetheless, the choice of treatment is generally subject to patient's age and her desire to preserve future fertility. Women with UF who desire to maintain future fertility potential face a dilemma because of the limited treatment choices that are currently available to help them achieve that goal. Recently, ulipristal acetate the first of the promising family of oral selective progesterone receptor modulators has been approved for UF treatment in Europe, Canada, and several other countries and is under review for possible approval in the USA. In this review article, we discuss recent advances in the management options against UF with a bend toward oral effective long-term treatment alternatives who are particularly suited for those seeking to preserve their future fertility potential. We also explore the transformative concept of primary and secondary UF prevention using these new anti-UF agents. We envision a remarkable shift in the management of UF in future years from surgical/invasive treatment to orally administrated options; clearly, this potential shift will require additional intense clinical research.
Summary Sentence
We focus on oral long term anti-UF treatment options which can benefit those seek to preserve future fertility. We explore the transformative concept of primary/secondary UF prevention using these agents. We envision a futuristic shift in the UF management from invasive treatment to oral one.
Early mammalian embryonic transcriptomes are dynamic throughout the process of preimplantation development. Cataloging of primate transcriptomics during early development has been accomplished in humans, but global characterization of transcripts is lacking in the rhesus macaque: a key model for human reproductive processes. We report here the systematic classification of individual macaque transcriptomes using RNA-Seq technology from the germinal vesicle stage oocyte through the blastocyst stage embryo. Major differences in gene expression were found between sequential stages, with the 4- to 8-cell stages showing the highest level of differential gene expression. Analysis of putative transcription factor binding sites also revealed a striking increase in key regulatory factors in 8-cell embryos, indicating a strong likelihood of embryonic genome activation occurring at this stage. Furthermore, clustering analyses of gene co-expression throughout this period resulted in distinct groups of transcripts significantly associated to the different embryo stages assayed. The sequence data provided here along with characterizations of major regulatory transcript groups present a comprehensive atlas of polyadenylated transcripts that serves as a useful resource for comparative studies of preimplantation development in humans and other species.
Summary Sentence
The embryonic genome is activated at the 8-cell stage in the rhesus macaque.
Despite its importance to reproduction, certain mechanisms of early ovarian development remain amystery. To improve our understanding, we constructed the first cell-based computationalmodel of ovarian development in mice that is divided into two phases: Phase I spans embryonic day 5.5 (E5.5) to E12.5; and Phase II spans E12.5 to postnatal day 2. We used the model to investigate four mechanisms: in Phase I, (i)whether primordial germ cells (PGCs) undergomitosis duringmigration; and (ii) if the mechanism for secretion of KIT ligand from the hindgut resembles inductive cell–cell signaling or is secreted in a static manner; and in Phase II, (iii) that changes in cellular adhesion produce germ cell nest breakdown; and (iv) whether localization of primordial follicles in the cortex of the ovary is due to proliferation of granulosa cells. We found that the combination of the first three hypotheses produced results that aligned with experimental images and PGC abundance data. Results from the fourth hypothesis did not match experimental images, which suggests that more detailed processes are involved in follicle localization. Phase I and Phase II of the model reproduce experimentally observed cell counts and morphology well. A sensitivity analysis identified contact energies,mitotic rates, KIT chemotaxis strength, and diffusion rate in Phase I and oocyte death rate in Phase II as parameters with the greatest impact on model predictions. The results demonstrate that the computational model can be used to understand unknown mechanisms, generate new hypotheses, and serve as an educational tool.
Summary Sentence
We have constructed a cell-based model that simulates the signaling and morphological development involved in early ovarian development in mice, from first detection of primordial germ cells to formation of primordial follicles.
Seipin is an integral endoplasmic reticulum membrane protein encoded by Berardinelli–Seip congenital lipodystrophy type 2 (BSCL2/Bscl2) gene. Seipin deficiency results in lipodystrophy, diabetes, muscle hypertrophy, andmale infertility in both human andmouse. Seipin function in female reproduction is unknown. Bscl2-/- dams had normal embryo implantation and body weight gain during pregnancy but reduced delivery rates from 2nd to 4th pregnancies and reduced numbers of pups delivered from 1st to 4th pregnancies. Characterization of first pregnancy revealed increased gestation period and parturition problems, including uterine prolapse, difficulty in delivery, undelivered fetuses, and undelivered tissues in Bscl2-/- females. Bscl2-/- uterine weight was comparable to control at 3 weeks old but significantly increased with myometrial hypertrophy at 10 months old. In situ hybridization revealed relatively low level of Bscl2 mRNA expression in myometrium throughout pregnancy and postpartum but high level of expression in uterine luminal epithelium, suggesting that systemic effect (e.g. elevated glucose and insulin levels) rather than local seipindeficiency in myometrium might be a main contributing factor to myometrial hypertrophy. On near-term gestation day 18.5 (D18.5), Bscl2-/- females had normal levels of serum progesterone and 17β-estradiol, indicating functional ovary and placenta. Proliferating Cell Nuclear Antigen (PCNA) staining showed minimal myometrial cell proliferation in both D18.5 Bscl2+/+ and Bscl2-/- uteri. There was strong LC3 immunostaining in Bscl2+/+ and Bscl2-/- peripartum myometrium and increased LC3 staining in Bscl2-/- peripartum uterine luminal epithelium, suggesting a potential role of seipin in regulating autophagy in uterine luminal epithelium but not myometrium. This study demonstrates an association of seipin with myometrium and parturition.
Summary Sentence
Our findings that seipin deficiency in mice leads to myometrial hypertrophy and parturition problems reveal a novel in vivo function of seipin in parturition.
Human endometrium undergoes extensive regeneration on a cyclic basis in premenopausal women and likely occurs through the contribution of stem/progenitor cells. Menopause results in the permanent cessation of menstrual cycles and is preceded by perimenopause, a period of several years inwhich endocrine and biological changes occur and is a period of risk for endometrial proliferative disorders. The objectives of this study were to identify endometrial mesenchymal stem cells (eMSC) and endometrial stromal fibroblasts (eSF) in endometrium of perimenopausal women and perform expression profile analysis of perimenopausal eMSC and eSF to gain insight into the biology of stem/progenitor and lineage cell populations during the transition to menopause. Endometrial tissue was collected from perimenopausal and premenopausal women (n = 9 each). Microarray analysis was performed on fluorescence-activated cell sorting-isolated eSF and eMSC, and data were validated by quantitative real-time PCR. Principal component analysis showed that cells clustered into three distinct groups in 3-dimensional space: perimenopausal eMSC and premenopausal eMSC clustered together, while perimenopausal eSF and premenopausal eSF formed two discrete clusters separate from eMSC. Hierarchical clustering revealed a branching pattern consistent with principle clustering analysis results, indicating that eMSC from premenopausal and perimenopausal women exhibit similar transcriptomic signatures. Pathway analysis revealed dysregulation of cytoskeleton, proliferation, and survival pathways in perimenopausal vs. premenopausal eSF. These data demonstrate that cell populations have altered gene expression in perimenopausal vs. premenopausal endometrium, and that perimenopausal eSF had altered pathway activation when compared to premenopausal eSF. This study provides insight into aging endometrium with relevance to function in reproductively older women.
Summary Sentence
The hormonal milieu during the transition to menopause has an effect on endometrial stromal fibroblast gene expression and a minimal effect on the endometrial mesenchymal stem cell population, offering insight into the mechanisms by which the endometrium remains functional after menopause.
The differentiation of endometrial stromal cells into decidual cells, termed decidualization, is an integral step in the establishment of pregnancy. The mitogen-activated protein kinase homolog, WNK lysine deficient protein kinase 1 (WNK1), is activated downstream of epidermal growth factor receptor during decidualization. Primary human endometrial stromal cells (HESCs) were subjected to small interfering RNA knockdown of WNK1 followed by in vitro decidualization. This abrogated expression of the decidual marker genes, insulin like growth factor binding protein 1 (IGFBP1) and prolactin (PRL), and prevented adoption of decidual cell morphology. Analysis of the WNK1-dependent transcriptome by RNA-Seq demonstrated that WNK1 regulates the expression of 1858 genes during decidualization. Gene ontology and upstream regulator pathway analysis showed that WNK1 regulates cell migration, differentiation, and proliferation. WNK1 was required for many of the gene expression changes that drive decidualization, including the induction of the inflammatory cytokines, C-C motif chemokine ligand 8 (CCL8), interleukin 1 beta (IL1B), and interleukin 15 (IL15), and the repression of transforming growth factor-beta (TGF-beta) pathway genes, including early growth response 2 (EGR2), SMAD family member 3 (SMAD3), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 4 (ITGA4), and integrin subunit beta 3 (ITGB3). In addition to abrogating decidualization, WNK1 knockdown decreased the migration and proliferation of HESCs. Furthermore, mitogen-activated protein kinase 7 (MAPK7), a known downstream target of WNK1, was activated during decidualization in a WNK1-dependent manner. Small interfering RNA knockdown of MAPK7 demonstrated that MAPK7 regulates a subset of WNK1-regulated genes and controls the migration and proliferation of HESCs. These results indicate that WNK1 and MAPK7 promote migration and proliferation during decidualization and regulate the expression of inflammatory cytokines and TGF-beta pathway genes in HESCs.
Summary Sentence
WNK1 and MAPK7 signaling are required for multiple decidual cell functions, including proliferation, migration, induction of inflammatory cytokines, and repression of TGF-beta pathway genes.
The aim of this study was to test the hypothesis that the metabolic stresses associated with lactation alter the ability of the endometrium to respond appropriately to the conceptus by examining endometrial gene expression on day 19 of pregnancy. Immediately after calving, primiparous Holstein cows with similar production and fertility estimated breeding values were randomly divided into two groups and either dried off (i.e. never milked) immediately or milked twice daily. Approximately 65–75 days postpartum, grade 1 blastocysts recovered from superovulated Holstein heifer donors (n = 5) were transferred (1 per recipient) into lactating (n = 11) and nonlactating (n = 11) recipients. Control nulliparous Holstein heifers (n = 6) were artificially inseminated. RNAsequencing was performed on intercaruncular endometrial samples recovered at slaughter from confirmed pregnant animals on day 19 (n = 5 lactating and nonlactating cows; n = 4 heifers). Differentially expressed genes (DEGs) were identified between both postpartum groups compared to heifers and between lactating and nonlactating cows. Functional annotation of DEGs between cows and heifers revealed over-representation of categories, including endosome, cytoplasmic vesicle, endocytosis, regulation of exocytosis, and cytokine receptor activity. Functional categories including transcription factor binding sites, cell motility, and cell migration were enriched for DEGs between endometria from lactating and nonlactating cows. In conclusion, while the evidence for a major effect of lactation on the endometrial transcriptome is relatively weak, these data suggest that the metabolic status of the animal (heifer vs cow) modulates the response of the endometrium to the developing conceptus.
Summary Sentence
The endometrial response to a high quality embryo following transfer is minimal in lactating dairy rows compared to non-lactating cows but differs in its response to a conceptus in lactating cows compared to heifers.
Hyperthermia or heat stress (HS) occurs when heat dissipation mechanisms are overwhelmed by external and internal heat production. Hyperthermia negatively affects reproduction and potentially compromises oocyte integrity and reduces developmental competence of ensuing embryos. Autophagy is the process by which cells recycle energy through the reutilization of cellular components and is activated by a variety of stressors. Study objectives were to characterize autophagyrelated proteins in the ovary following cyclical HS during the follicular phase. Twelve gilts were synchronized and subjected to cyclical HS (n = 6) or thermal neutral (n = 6) conditions for 5 days during the follicular phase. Ovarian protein abundance of Beclin 1 and microtubule associated protein light chain 3 beta II were each elevated as a result of HS (P = 0.001 and 0.003, respectively). The abundance of the autophagy related (ATG)12–ATG5 complex was decreased as a result of HS (P = 0.002). Regulation of autophagy and apoptosis occurs in tight coordination, and B-cell lymphoma (BCL)2 and BCL2L1 are involved in regulating both processes. BCL2L1 protein abundance, as detected via immunofluorescence, was increased in both the oocyte (∼1.6-fold; P < 0.01) and granulosa cells of primary follicles (∼1.4-fold P < 0.05) of HS ovaries. These results suggest that ovarian autophagy induction occurs in response to HS during the follicular phase, and that HS increases anti-apoptotic signaling in oocytes and early follicles. These data contribute to the biological understanding of how HS acts as an environmental stress to affect follicular development and negatively impact reproduction.
Summary Sentence
Heat stress induces autophagy in the pig ovary during the follicular stage, and autophagy is a potential mechanism by which the ovary mitigates cellular stress.
Iron is an essential nutrient that may exert toxic effects when it accumulates in tissues. Little is known regarding its effects on gonadal function. Both Fe2+ and Fe3+ could be released from iron deposition. We employed mouse nonluteinized granulosa cell for in vitro studies and human ovarian tissues for Prussian blue and immunohistochemical staining to identify the iron deposition and effect in vivo. After treatment with FeSO4-7H2O or FeCl3 in granulosa cell cultured with folliclestimulating hormone (FSH) for 48 h, we found that Fe2+ significantly suppressed FSH-induced granulosa cell proliferation and arrested the cell cycle at the G2/M phase by cell proliferation assay and flow cytometry. Fe2+ significantly increased intracellular reactive oxygen species (ROS) and ferritin levels of mouse granulosa cells. The increases in p21 and p53 messenger RNA and protein expression facilitated by Fe2+ treatment in mouse granulosa cells were significantly suppressed by separate treatments with p53 small interfering RNA and p38 mitogen-activated protein kinase (MAPK) inhibitors. An ROS inhibitor downregulated Fe2+-induced increases in p38MAPK expression in mouse granulosa cells. Quantitative analysis of immunohistochemical staining revealed that human ovarian tissue sections with positive Prussian blue staining had lower levels of proliferating cell nuclear antigen expression, but higher levels of p21, p53, and CDC25C expression than those with negative Prussian blue staining. Conclusively, Fe2+ could directly arrest the cell cycle and inhibit granulosa cell proliferation by regulating the ROS-mediated p38MAPK/p53/p21 pathway. Therefore, iron can directly affect female gonadal function.
Summary Sentence
Deposited iron on the ovary can suppress granulosa cell proliferation through arresting the cell cycle and regulating the p38MAPK/p53/p21 pathway.
Chemotherapy can cause early menopause or infertility in women and have a profound negative impact on the quality of life of young female cancer survivors. Various factors are known to influence the risk of chemotherapy-induced ovarian failure, including the drug dose and treatment duration; however, the scheduling of dose administration has not yet been evaluated as an independent risk factor. We hypothesized that low-dose metronomic (LDM) chemotherapy scheduling would be less detrimental to ovarian function than the traditional maximum tolerated dose (MTD) strategy. In vitro, MTD cyclophosphamide exposure resulted in decreased proliferation and increased granulosa cell apoptosis, while cells treated with LDM cyclophosphamide were not different from untreated controls. Treatments of MTD cyclophosphamide induced high levels of follicle atresia and enhanced follicle recruitment inmice. In contrast, LDM delivery of an equivalent dose of cyclophosphamide reduced growing follicle numbers, but was not associated with higher levels of follicle atresia or recruitment. MTD cyclophosphamide induced significant vascular disruption and DNA damage in vivo, while LDM chemotherapy with equal cumulative amounts of cyclophosphamide was not different from controls. MTD chemotherapy also had a negative effect on mouse-fertility outcomes. Our findings suggest that LDM scheduling could potentially minimize the long-term effects of cyclophosphamide on female fertility by preventing follicle depletion from enhanced activation.
Summary Sentence
Metronomic chemotherapy scheduling has an ovary-sparing effect compared to maximum tolerated dose chemotherapy in the mouse.
Brooke C. Matson, Stephanie L. Pierce, Scott T. Espenschied, Eric Holle, Imani H. Sweatt, Eric S. Davis, Robert Tarran, Steven L. Young, Trudy A. Kohout, Marcel van Duin, Kathleen M. Caron
Implantation is a complex event demanding contributions from both embryo and endometrium. Despite advances in assisted reproduction, endometrial receptivity defects persist as a barrier to successful implantation in women with infertility. We previously demonstrated that maternal haploinsufficiency for the endocrine peptide adrenomedullin (AM) in mice confers a subfertility phenotype characterized by defective uterine receptivity and sparse epithelial pinopode coverage. The strong link between AM and implantation suggested the compelling hypothesis that administration of AM prior to implantation may improve fertility, protect against pregnancy complications, and ultimately lead to better maternal and fetal outcomes. Here, we demonstrate that intrauterine delivery of AM prior to blastocyst transfer improves the embryo implantation rate and spacing within the uterus. We then use genetic decrease-of-function and pharmacologic gain-of-function mouse models to identify potential mechanisms by which AM confers enhanced implantation success. In epithelium, we find that AM accelerates the kinetics of pinopode formation and water transport and that, in stroma, AM promotes connexin 43 expression, gap junction communication, and barrier integrity of the primary decidual zone. Ultimately, our findings advance our understanding of the contributions of AM to uterine receptivity and suggest potential broad use for AM as therapy to encourage healthy embryo implantation, for example, in combination with in vitro fertilization.
Summary Sentence
Intrauterine administration of the endocrine peptide adrenomedullin promotes pinopode formation and cell junctions in the peri-implantation endometrium, bolstering fertility after blastocyst transfer in mice.
Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cellswas significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1,MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1.
Summary Sentence
Human trophoblast-derived endogenous H2S mediates trophoblast-endothelial cell interaction in stimulating placental artery endothelial cell angiogenesis in vitro.
Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies tomiRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile.
Summary Sentence
We report a novel digital quantitative PCR method for single-cell small RNA analyses.
As somatic cells in the testis seminiferous tubule, Sertoli cells provide the medium for spermatogenesis. One of the important functions of Sertoli cells is synthesizing and secreting cell factors to affect the production of sperm; however, much of those molecular regulation mechanisms remain unknown. Here, we confirm the localization of protein SPATA2 (spermatogenesis-associated protein 2), which had previously been shown to be highly expressed in Sertoli cells of the adult mouse testis. To further conduct a functional study, we generated SPATA2 global knockout mice via use of the CRISPR/Cas9n gene editing technology. The 120-day-old knockout mice testes showed almost a 40% decrease in size and weight and variations in the histomorphology of the seminiferous epithelium, with a 40% decrease in sperm count. Further examination revealed that the proliferation of germ cells in the seminiferous tubules was attenuated by 28%. In addition, we found that SPATA2 deletion led to an approximately 70% increase in the inhibin alpha-subunitmRNA and protein level in the testes compared to that of wild-type mice. Our data revealed the impact of SPATA2 on male fertility and suggested that SPATA2 ensures the normal secretory function of Sertoli cells.
Summary Sentence
The deficiency of spermatogenesis-associated protein 2, a protein which is highly expressed in Sertoli cells, causes attenuated reproduction ability inmales and increased inhibin alpha expression in testis.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere