BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Preimplantation embryos undergo zygotic genome activation and lineage specification resulting in three distinct cell types in the late blastocyst. The molecular mechanisms underlying this progress are largely unknown in bovines. Here, we sought to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the bovine blastocyst. Using a quantitative microfluidics approach in single cells, we analyzed mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency in parallel in 384 individual cells from bovine preimplantation embryos. The developmental transitions can be distinguished by distinctive gene expression profiles and we identified NOTCH1, expressed in early developmental stages, while T-box 3 (TBX3) and fibroblast growth factor receptor 4 (FGFR4), expressed in late developmental stages. Three lineages can be segregated in bovine expanded blastocysts based on the expression patterns of lineage-specific genes such as disabled homolog 2 (DAB2), caudal type homeobox 2 (CDX2), ATPase H+/K+ transporting non-gastric alpha2 subunit (ATP12A), keratin 8 (KRT8), and transcription factor AP-2 alpha (TFAP2A) for trophectoderm; GATA binding protein 6 (GATA6) and goosecoid homeobox (GSC) for primitive endoderm; and Nanog homeobox (NANOG), teratocarcinoma-derived growth factor 1 (TDGF1), and PR/SET domain 14 (PRDM14) for epiblast. Moreover, some lineage-specific genes were coexpressed in blastomeres from the morula. The commitment to trophectoderm and inner cellmass lineages in bovines occurs later than in the mouse, and KRT8 might be an earlier marker for bovine trophectoderm cells. We determined that TDGF1 and PRDM14 might play pivotal roles in the primitive endoderm and epiblast specification of bovine blastocysts. Our results shed light on early cell fate determination in bovine preimplantation embryos and offer theoretical support for deriving bovine embryonic stem cells.
Summary Sentence
Gene expression analysis of single blastomeres from zygote to blastocyst sheds light on the early cell fate determination in bovine preimplantation embryos and offers theoretical support for deriving bovine embryonic stem cells.
Infertility in lactating dairy cows is explained partially by the metabolic state associated with high milk production. The hypothesis was that lactating and nonlactating cows would differ in endometrial and placental transcriptomes during early pregnancy (day 28 to 42) and this difference would explain the predisposition for lactating cows to have embryonic loss at that time. Cows were either milked or not milked after calving. Reproductive [endometrium (caruncular and intercaruncular) and placenta] and liver tissues were collected on day 28, 35, and 42 of pregnancy. The hypothesis was rejected because no effect of lactation on mRNA abundance within reproductive tissues was found. Large differences within liver demonstrated the utility of the model to test an effect of lactation on tissue gene expression. Major changes in gene expression in reproductive tissues across time were found. Greater activation of the transcriptome for the recruitment and activation of macrophages was found in the endometrium and placenta. Changes in glucose metabolism between day 28 and 42 included greater mRNA abundance of rate-limiting genes for gluconeogenesis in intercaruncular endometrium and evidence for the establishment of aerobic glycolysis (Warburg effect) in the placenta. Temporal changes were predicted to be controlled by CSF1, PDGFB, TGFB1, and JUN. Production of nitric oxide and reactive oxygen species bymacrophages was identified as amechanism to promote angiogenesis in the endometrium. Reported differences in pregnancy development for lactating vs. nonlactating cows could be explained by systemic glucose availability to the conceptus and appeared to be independent of the endometrial and placental transcriptomes.
Summary Sentence
Expression of genes in the pregnant bovine uterus is not affected by lactation.
Endometriosis, a common disorder affecting women of reproductive age, is characterized by ectopic growth of the endometrial tissues, altered steroid hormone response, and inflammation. Previous studies revealed that statins, selective inhibitors of the key step of mevalonate pathway, inhibit growth of endometrial stromal cells in vitro and reduce endometriotic lesions in murine models of endometriosis. This study evaluated the effects of simvastatin on the development of endometriosis in a baboon model of this disease. Sixteen baboons were randomly assigned to the treatment group (simvastatin, 20 mg daily) or to the control group. Endometriotic lesions were evaluated by laparoscopy after 3 months. The volume of red, orange-red, and white endometriotic lesions was significantly reduced by 78% in animals treated with simvastatin. The expression of a marker of proliferation, proliferating cell nuclear antigen (PCNA), was significantly reduced in animals receiving simvastatin in red lesions, white lesions, black lesions, and in adhesions. Simvastatin was also associated with an increase in the expression of estrogen receptor alpha in red lesions, and a decrease in the expression of estrogen receptor beta in black lesions, in adhesions, and in eutopic endometrium. Furthermore, simvastatin significantly reduced the expression of neopterin, amarker of inflammation, oxidative stress, and immune system activation. Collectively, the present findings indicate that the inhibition of the mevalonate pathway by simvastatin reduces the risk of developing endometriosis in the primatemodel of this disease by decreasing the growth of endometrial lesions, by modulating the expression of genes encoding for estrogen receptors, and by reducing inflammation.
Summary Sentence
In the baboon model of endometriosis, simvastatin reduced the volume of active lesions, altered gene expression. and reduced the serum level of neopterin, amarker of immune system activation in the baboon model of endometriosis.
The cuticle is a unique invisible oviduct secretion that protects avian eggs from bacterial penetration through gas exchange pores. Despite its importance, experimental evidence is lacking for where, when, and what is responsible for its deposition. By using knowledge about the ovulatory cycle and oviposition, we have manipulated cuticle deposition to obtain evidence on these key points. Cuticle deposition was measured using staining and spectrophotometry. Experimental evidence supports the location of cuticle deposition to be the shell gland pouch (uterus), not the vagina, and the time of deposition to be within the final hour before oviposition. Oviposition induced by arginine vasotocin or prostaglandin, the penultimate and ultimate factors for the induction of oviposition, produces an egg with no cuticle; therefore, these factors are not responsible for cuticle secretion. Conversely, oviposition induced by GNRH, which mimics the normal events of ovulation and oviposition, results in a normal cuticle. There is no evidence that cuticle deposition differs at the end of a clutch and, therefore, there is no evidence that the ovulatory surge of progesterone affects cuticle deposition. Overall, the results demonstrate that the cuticle is a specific secretion and is not merely an extension of the organicmatrix of the shell. Cuticle deposition was found to be reduced by an environmental stressor, and there is no codependence of the deposition of pigment and cuticle. Defining the basic facts surrounding cuticle deposition will help reduce contamination of hen's eggs and increase understanding of the strategies birds use to protect their eggs.
Summary Sentence
The cuticle is an invisible but important defense against microbes entering avian eggs. Where and when in the oviduct it is deposited on the egg and what influences its deposition have been demonstrated in the paper.
Beatriz Fernandez-Fuertes, Ricardo Laguna-Barraza, Raul Fernandez-Gonzalez, Alfonso Gutierrez-Adan, Alfonso Blanco-Fernandez, Alan M. O'Doherty, Mauro Di Fenza, Alan K. Kelly, Sabine Kölle, Patrick Lonergan
In a recent genome-wide association study, 40 Fleckvieh bulls with exceptionally poor fertility were found to be homozygous for a nonsense mutation in the transmembrane protein 95 (TMEM95) encoding gene. Ejaculates from these individuals exhibited normal sperm concentration, morphology, viability, and motility. However, only 1.7% of inseminations resulted in pregnancies. The aim of this study was to examine the effect of this mutation in TMEM95 on bovine sperm function in vitro. Sperm from homozygous (mt/mt) males had lower in vitro fertility than sperm from wild-type (wt/wt) or heterozygous (wt/mt) bulls (P < 0.01). In addition, early embryo division was affected in the mt/mt group (P < 0.01). This translated into a lower (P < 0.01) blastocyst rate at day 8. Fluorescent staining revealed that TMEM95 is lost after the acrosome reaction. This led us to hypothesize that TMEM95 might be involved in events that lead to sperm-oocyte interaction. After fertilization, a lower number (P < 0.01) of sperm from mt/mt bulls bound to the zona pellucida (ZP). Sperm from mt/mt bulls were also less able to penetrate oocytes with no ZP (P< 0.01). However, when sperm from these animals were injected into mouse oocytes, they could decondense as successfully as sperm from wt/wt bulls. No differences between genotypes were observed in the ability of sperm to retain motility in an ex vivo oviduct, or in the percentage of sperm exhibiting markers for capacitation and acrosomal reaction. These results suggest that fertilization failure in mt/mt bulls is due to the inability of their sperm to interact with the oocyte vestments.
Summary Sentence
Bulls homozygous for a nonsense mutation in TMEM95 exhibit extremely poor fertility in vivo and in vitro. This is due to the inability of sperm from these animals to interact with the vestments of the oocyte.
Acrosin, the trypsin-like serine protease in the sperm acrosome, was long viewed as a key enzyme required for zona pellucida penetration to fertilize eggs. However, gene disruption experiments in mice surprisingly showed that acrosin-disrupted males were fertile. Thus, the acrosin was considered to be not an essential enzyme for fertilization in mice. However, the involvement of acrosin in fertilization has been suggested in various species such as rat, bull, and pig. Moreover, it has been reported that serine protease (including acrosin) activity in mice is significantly weaker compared to other species, including rats.We analyzed the role of acrosin by disrupting the rat acrosin gene. It was found that, unlike in mice, acrosin was almost the sole source of serine protease in rat spermatozoa. Nevertheless, the acrosin-disrupted males were not infertile. However, the litter size from acrosin-disrupted males was decreased compared to heterozygous mutant rats. Further investigation using an in vitro fertilization system revealed that the acrosin-disrupted spermatozoa possessed an equal ability to penetrate the zona pellucida with wild-type spermatozoa, but the cumulus cell dispersal was slower compared to wild-type and heterozygous spermatozoa. This delay was presumed to be the cause of the small litter size of acrosin-disrupted male rats.
Summary Sentence
Acrosin was practically the sole source of serine protease in rat spermatozoa, but its disruption did not produce infertile males.
Chemokines play critical roles in the establishment and maintenance of pregnancy in animals. Cysteine-X-cysteine motif chemokine ligand 9 (CXCL9), CXCL10, and CXCL11 are involved in recruiting immune cells by binding to their shared receptor, CXC receptor 3 (CXCR3), in a variety of tissues. This study examined the expression and regulation of chemokines CXCL9, CXCL10, and CXCL11, their receptor CXCR3, and their role at the maternal-conceptus interface in pigs. The endometrium expressed CXCL9, CXCL10, CXCL11, and CXCR3 stage specifically during pregnancy, with the greatest abundance on Day 15 of pregnancy. It was noted that their expression was primarily localized to stromal cells, endothelial cells, or vascular smooth muscle cells in the endometrium. Interferon-γ increased the abundance of CXCL9, CXCL10, CXCL11 mRNAs, but not CXCR3, in endometrial explants. Furthermore, recombinant CXCL9 (rCXCL9), rCXCL10, and rCXCL11 proteins increased migration of cultured peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner. Recombinant CXCL9 and rCXCL10 caused migration of CD4+, CD8+, CD4+CD8+ T cells, and natural killer (NK) cells, and rCXCL11 increased migration of CD4+ T and NK cells in PBMCs. The present study demonstrated that interferon-γ-induced CXCL9, CXCL10, and CXCL11, and their receptor CXCR3 were expressed in the uterus in stage- and cell-type specific manners and increased the migration of T and NK cells, which showed the greatest endometrial infiltration on Day 15 of pregnancy. These results suggest that CXCL9, CXCL10, and CXCL11 may play an important role in the recruitment of immune cells into the endometrium during the implantation period in pigs.
Summary Sentence
Chemokines CXCL9, 10, and 11 induced by interferon-gamma of conceptus origin in the endometrium are involved in the recruitment of immune cells at the maternal-conceptus interface in pigs.
Pulsatile gonadotropin-releasing hormone (GnRH) secretion, which is indispensable for follicular development, is suppressed in lactating dairy and beef cattle. Neurokinin B (NKB) neurons in the arcuate nucleus of the hypothalamus are considered to play an essential role in generating the pulsatile mode of GnRH/luteinizing hormone (LH) secretion. The present study aimed to clarify the role of NKB-neurokinin 3 receptor (NK3R) signaling in the pulsatile pattern of GnRH/gonadotropin secretion in postpartum lactating cattle.We examined the effects of the administration of an NK3R-selective agonist, senktide, on gonadotropin secretion in lactating cattle. The lactating cattle, at approximately 7 days postpartum, were intravenously infused with senktide (30 or 300 nmol/min) or vehicle for 24 h. The administration of 30 or 300 nmol/min senktide significantly increased LH pulse frequency compared to in the control group during 0–4 or 20–24 h after infusion, respectively. Moreover, LH and follicle-stimulating hormone levels were gradually increased by 300 nmol/min administration of senktide during the 0–4-h sampling period. Ultrasonography of the ovaries was performed to identify the first postpartum ovulation in senktide-administered lactating cattle. The interval from calving to first postpartum ovulation was significantly shorter in the 300 nmol/min senktide-administered group than in the control group. Taken together, these findings suggest that senktide infusion elicits an increase in LH pulse frequency that may stimulate follicular development and, in turn, induce the first postpartum ovulation in lactating cattle.
Summary Sentence
Administration of senktide, an NK3R-selective agonist, elicits an increase in LH pulse frequency that may stimulate follicular development and, in turn, induce the first postpartum ovulation in lactating cattle.
Diminished ovarian reserve (DOR) is defined as decreased number or quality of follicles and oocytes in a woman at childbearing age. It is estimated that up to 10% of women in the general population may suffer from DOR. This study aims to comprehensively characterize microRNA (miRNA) and Piwi-interacting RNA (piRNA) expression profiles in cumulus cells of DOR patients. Cumulus cells were collected from 20 women of similar chronological age who received assisted reproductive technology treatment: 10 with DOR and 10 with normal ovarian reserve (NOR). The small RNAs were extracted from each sample and reverse transcribed. Deep sequencing and bioinformatic analysis were performed to identify the small noncoding RNA profiles. The rRNAs were the most abundant small RNA class in cumulus cells derived from human MII oocytes, following were miRNAs and tRNAs. Twenty-six piRNAs, 79 annotated miRNAs, and 5 novel miRNAs were identified differentially expressed. In DOR group, the chromosomal strand bias patterns of piRNAs on chromosome 1, 3, 5, and X were distinct from its counterpart in NOR group. The involved biological pathways from the putative target genes of differentially expressed miRNAs were enriched by using GO analysis and KEGG pathway annotations, and mTOR pathway and meiosis-associated biological processes were enriched. This study provided additional information on the dysfunctions of cumulus cells in patients with diminished ovarian reserve. Future investigations will involve the characterization of specific functional roles of noncoding small RNA in ovarian reserve regulation.
Summary Sentence
Cumulus cells of patients with diminished ovarian reserve exhibit distinctively different miRNA and piRNA profile from cumulus cells of patients with normal ovarian reserve.
Natural killer (NK) cells are essential for establishment of human and rodent pregnancies. The function of these and other cytotoxic T cells (CTL) is controlled by stimulatory and inhibitory signaling. A role for cytotoxic cells during early pregnancy in cattle has not been described, but regulation of their function at the fetal-maternal interface is thought to be critical for conceptus survival. The hypothesis that the relative abundance of CTL and expression of inhibitory signaling molecules is increased by the conceptus during early pregnancy was tested. The proportions of lymphoid lineage cells and expression of inhibitory signaling molecules in the endometrium during early pregnancy in dairy heifers were determined using flow cytometry, immunofluorescence, and realtime PCR on days 17 and 20 of pregnancy and day 17 of the estrous cycle. Results revealed an increased percentage of NKp46+ and CD8+ cells in the uterus of pregnant heifers. Furthermore, a large percentage of uterine immune cells coexpressed these proteins. Compared to cyclic heifers, CD45+ uterine cells from pregnant heifers exhibited greater degranulation. Endometrium from pregnant heifers had greater mRNA abundance for the inhibitory molecules, CD274 and lymphocyte activating gene 3 (LAG3), and greater cytotoxic T lymphocyte-associated protein 4 (CTLA4), molecules that can interact with receptors on antigen-presenting cells and induce lymphocyte tolerance. This study demonstrates a dynamic regulation of both cytotoxic immune cells and tolerogenic molecules during the peri-implantation period that may be required to support establishment of pregnancy and placentation.
Summary Sentence
Pregnancy increases abundance of natural killer and cytotoxic T cells and expression of immune inhibitory molecules in the endometrium of dairy heifers during early pregnancy
Embryonic diapause is a common reproductive strategy amongst mammals, requiring an intimate cross-talk between the endometrium and the blastocyst. To date, the precise molecular signals responsible are unknown in the mouse or any othermammal. Previous studies in the mink implicate polyamines as major regulators of the control of diapause. In the mouse, inhibiting the ratelimiting enzyme of polyamine synthesis, ornithine decarboxylase (ODC1) during early pregnancy largely prevents implantation, but the fate of the nonimplanted embryos is unknown. To determine whether polyamines control mouse embryonic diapause, we treated pregnant mice with an ODC1 inhibitor from d3.5 to d6.5 postcoitum. At d7.5, 72% of females had no signs of implantation whilst the remaining females exhibited disrupted placental formation and degenerate embryos. In the females with no implantation, we obtained viable blastocysts that had attenuated cell proliferation, indicating a state of diapause. When cultured in vitro, these exhibited trophoblast outgrowth, indicative of reactivation of embryogenesis. In contrast, direct culture of d3.5 blastocysts with an ODC1 inhibitor failed to cause entry into diapause. Examination of the polyamine pathway enzymes and a number of implantation factors indicated inhibition of ODC1 resulted in a uterine phenotype that resembled diapause, with some compensatory increases in crucial genes. Thus, we conclude that an absence or paucity of polyamines induces the uterine quiescence that causes entry of the blastocyst into embryonic diapause.
Summary Sentence
Mouse blastocysts require polyamines to reactivate from embryonic diapause and for subsequent development.
Epidemiological studies suggest that babies born following in vitro fertilization (IVF) and fresh embryo transfer are of lower birthweight than babies born following frozen embryo transfer, although the mechanism responsible for this phenotype is not known.We developed a novel mouse model that isolates the independent effects of embryo freezing and the superovulated environment, which cannot be performed in humans. We transferred blastocysts that had been vitrified and warmed, mixed with with fresh blastocysts, into individual pseudopregnant recipients produced by either natural mating or mating following injection with equine chorionic gonadotropin and human chorionic gonadotropin and hCG (superovulation). We found that superovulation of the recipient dams led to significantly lower fetal weight at term while blastocyst vitrification had no significant effect on fetal weight (1.43 ± 0.24 g fresh-natural, 1.30 ± 0.28 g vitrified-natural vs. 1.09 ± 0.20 fresh-superovulated, 0.93 ± 0.23 g vitrified-superovulated, P < 0.0001). Doppler ultrasound revealed increased median umbilical artery resistance in the placentae of near-term dams exposed to superovulation compared to naturally mated dams (0.927 vs 0.904, P = 0.02). Additionally, placental microvascular density was lower in superovulated compared to naturally mated dams (1.24 × 10-3 vessel/micron vs 1.46 × 10-3 vessels/micron, P = 0.046). Gene expression profiling suggested alterations in fetal genes involved in glucorticoid regulation. These results suggest a potential mechanism for altered birthweight following superovulation in our model and may have implications for human IVF.
Summary Sentence
Mouse pups born to recipients exposed to eCG and hCG prior to implantation are of a lower birthweight and have altered placenta vasculature, regardless of whether the pups arose from blastocysts that had been vitrified-warmed or transferred fresh.
Takafumi Ushida, Shannyn K. Macdonald-Goodfellow, Allegra Quadri, M. Yat Tse, Louise M. Winn, Stephen C. Pang, Michael A. Adams, Tomomi Kotani, Fumitaka Kikkawa, Charles H. Graham
Introduction: Pre-eclampsia is associated with increased risk of subsequent cardiovascular and metabolic disease in the affected mothers. While aberrant inflammation contributes to the pathophysiology of pre-eclampsia, it is unclear whether maternal inflammation contributes to the increased risk of disease. Here, we determined the effect of aberrant inflammation in pregnancy on cardiovascular and metabolic disease risk factors.
Methods: Wistar rats were administered low doses of lipopolysaccharide (LPS) on gestational days (GD) 13.5–16.5 to induce inflammation. Controls included pregnant rats treated with saline and nonpregnant rats treated with LPS or saline. We previously showed that LPS-treated pregnant rats exhibit key features of pre-eclampsia. Echocardiographic parameters, heart weight, blood pressure, blood lipids, pulse-wave velocity, and glucose tolerance, were assessed at 16 weeks postpartum. Messenger RNA levels of transcription factors associated with cardiac growth were measured in left ventricular tissue; histone modifications and global DNA methylation were determined in hearts and livers at GD 17.5 and at 16 weeks postpartum.
Results: Compared with saline-treated pregnant rats and nonpregnant rats treated with LPS or saline, LPS-treated pregnant rats exhibited left ventricular hypertrophy and increased blood cholesterol and low-density lipoprotein levels at 16 weeks postdelivery. LPS-treated rats had increased left ventricular mRNA levels of hypertrophy-associated transcription factors at GD 17.5 and increased levels of modified histones in hearts and livers at GD 17.5 and 16 weeks postpartum. Other parameters remained unchanged.
Conclusion: Aberrant inflammation during pregnancy results in persistent alterations in maternal physiological parameters and epigenetic modifications that could contribute to the pathophysiology of cardiovascular disease.
Summary Sentence
Abnormal inflammation during rat pregnancy leads to persistence of maternal risk factors for cardiovascular disease, including left ventricular hypertrophy and increased levels of cholesterol and low-density lipoprotein.
The current study aimed to define the plasma profile of anti-Müllerian hormone (AMH) and follicle stimulating hormone (FSH) in heifers during postnatal life until achieving puberty, as defined by plasma progesterone (P4) profile, to demonstrate a relationship between AMH and age of puberty onset. Blood samples collected from 11 Japanese Black female calves within 1 week after birth (W 0) and then biweekly until the sixth week after puberty (WP 6) were assayed for AMH, FSH, and P4. The heifers were classified into two groups based on age of puberty onset: ≤42 weeks (early puberty group; EP, n = 4) and ≥44 weeks (late puberty group; LP, n = 7). Minimal plasma AMH concentration occurring at W 0 gradually increased to its peak level by W 10 (fourfold higher than W 0; P < 0.01) before gradually declining to a steady plateau 6 weeks before puberty (WP -6). The AMH peak was preceded by a significant rise in plasma FSH at W 4, W 6, and W 8 compared with W0. Plasma AMH atW16 positively correlated withWP 4 andWP 6 (r = 0.69 and 0.71, respectively; P < 0.05). Overall plasma AMH and FSH was significantly higher and lower in EP compared with LP, respectively. In conclusion, heifers exhibit a characteristic plasma AMH profile during postnatal life, such that plasma AMH at an early prepubertal age could be a biomarker for precocious puberty and postpubertal AMH levels.
Summary Sentence
Plasma anti-Müllerian hormone (AMH) follows a characteristic profile in heifers during the postnatal period until puberty. Quantifying plasma AMH at early prepubertal age could be a useful biomarker for precocious puberty and postpubertal AMH levels.
Yes-associated protein (YAP) and WW-containing transcription regulator 1 (WWTR1) are two functionally redundant transcriptional regulators that are downstream effectors of the Hippo signaling pathway, and that act as major regulators of cell growth and differentiation. To elucidate their role in Sertoli cells, primary Sertoli cell culture from Yapflox/flox; Wwtr1flox/flox animals were infected with a Cre recombinase-expressing adenovirus. Concomitant inactivation of Yap and Wwtr1 resulted in a decrease in the mRNA levels of the male sex differentiation genes Dhh, Dmrt1, Sox9, and Wt1, whereas those of genes involved in female differentiation (Wnt4, Rspo1, and Foxl2) were induced. SOX9, FOXL2, and WNT4 proteins were regulated in the same manner as their mRNAs in response to loss of YAP and WWTR1. To further characterize the role of YAP and WWTR1 in Sertoli cells, we generated a mouse model (Yapflox/flox; Wwtr1flox/flox; Amhcre/+) in which Yap and Wwtr1 were conditionally deleted in Sertoli cells. An increase in the number of apoptotic cells was observed in the seminiferous tubules of 4 dpp mutant mice, leading to a reduction in testis weights and a decrease in the number of Sertoli cells in adult animals. Gene expression analyses of testes from 4 dpp Yapflox/flox; Wwtr1flox/flox; Amhcre/+ mice showed that Sertoli cell differentiation is initially altered, as Dhh, Dmrt1, and Sox9 mRNA levels were downregulated, whereas Wnt4 mRNA levels were increased. However, expression of these genes was not changed in older animals. Together, these results suggest a novel role of the Hippo signaling pathway in the mechanisms of sex differentiation.
Summary Sentence
YAP and WWTR1 are required for the maintenance of Sertoli cell differentiation and the suppression of the female sex determination pathway.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere