BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The number of primordial follicles in the ovarian reserve is an important determinant of the length of the ovarian lifespan, and therefore the fertility of an individual. This reserve contains all of the oocytes potentially available for fertilization throughout the fertile lifespan. The maximum number is set during pregnancy or just after birth in most mammalian species; current evidence does not support neofolliculogenesis after the ovarian reserve is established, although this is increasingly being reexamined. Under physiological circumstances, this number will be influenced by the number of primordial germ cells initially specified in the epiblast of the developing embryo, their proliferation during and after migration to the developing gonads, and their death during oogenesis and formation of primordial follicles at nest breakdown. Death of germ cells during the establishment of the ovarian reserve occurs principally by autophagy or apoptosis, although the triggers that initiate these remain elusive. This review outlines the regulatory steps that determine the number of primordial follicles and thus the number of oocytes in the ovarian reserve at birth, using the mouse as the model, interspersed with human data where available. This information has application for understanding the variability in duration of fertility that occurs between normal individuals and with age, in premature ovarian insufficiency, and after chemotherapy or radiotherapy.
Successful embryo implantation requires a synchronized dialogue between a competent blastocyst and the receptive endometrium, which occurs in a limited time period known as the “window of implantation.” Recent studies suggested that down-regulation of olfactomedin 1 (OLFM1) in the endometrium and fallopian tube is associated with receptive endometrium and tubal ectopic pregnancy in humans. Interestingly, the human chorionic gonadotropin (hCG) induces miR-212 expression, which modulates OLFM1 and C-terminal binding protein 1 (CTBP1) expressions in mouse granulosa cells. Therefore, we hypothesized that embryo-derived hCG would increase miR-212 expression and down-regulate OLFM1 and CTBP1 expressions to favor embryo attachment onto the female reproductive tract. We found that hCG stimulated the expression of miR-212 and down-regulated OLFM1 but not CTBP1 mRNA in both human endometrial (Ishikawa) and fallopian (OE-E6/E7) epithelial cells. However, hCG suppressed the expression of OLFM1 and CTBP1 proteins in both cell lines. The 3′UTR of both OLFM1 and CTBP1 contained binding sites for miR-212. The miR-212 precursor suppressed luciferase expression, whereas the miR-212 inhibitor stimulated luciferase expression of the wild-type (WT)-OLFM1 and WT-CTBP1 reporter constructs. Furthermore, hCG (25 IU/ml) treatments stimulated trophoblastic (Jeg-3) spheroid (blastocyst surrogate) attachment onto Ishikawa and OE-E6/E7 cells. Transfection of miR-212 precursor increased Jeg-3 spheroid attachment onto Ishikawa cells and decreased OLFM1 and CTBP1 protein expressions, whereas the opposite occurred with miR-212 inhibitor. Taken together, hCG stimulated miR-212, which in turn down-regulated OLFM1 and CTBP1 expression in fallopian and endometrial epithelial cells to favor spheroid attachment.
While estrogen action is the major driver of uterine development, androgens acting via the androgen receptor (AR) may also promote uterine growth as suggested by uterine phenotypes in global AR knockout (ARKO) female mice. Because AR is expressed in uterine endometrial glands, we generated (Cre/loxP) uterine gland epithelium-specific ARKO (ugeARKO) to determine the role of endometrial gland-specific androgen actions. However, AR in uterine gland epithelium may not be required for normal uterine development and function because ugeARKO females had normal uterine development and fertility. To determine if exogenous androgens acting via AR can fully support uterine growth in the absence of estrogens, the ARKO and ugeARKO females were ovariectomized and treated with supraphysiological doses of testosterone or dihydrotestosterone (nonaromatizable androgen). Both dihydrotestosterone and testosterone supported full uterine regrowth in wild-type females while ARKO females had no regrowth (comparable to ovariectomized only). These findings suggest that androgens acting via AR can promote full uterine regrowth in the absence of estrogens. The ugeARKO had 50% regrowth when compared to intact uterine glands, and histomorphologically, both the endometrial and myometrial areas were significantly (P < 0.05) reduced, suggesting glandular epithelial AR located in the endometrium may indirectly modify myometrial development. Additionally, to confirm Cre function in endometrial glands, we generated uge-specific PTEN knockout mouse model. The ugePTEN knockout females developed severe endometrial hyperplasia and therefore present a novel model for future research.
TREK-1, an outward-rectifying potassium channel activated by stretch, is found in the myometrium of pregnant women. Decreased expression of TREK-1 near term suggests that TREK-1 may contribute to uterine quiescence during gestation. Five alternatively spliced TREK-1 variants were identified in the myometrium of mothers who delivered spontaneously preterm (<37 wk), leading to the hypothesis that these TREK-1 variants could interfere with TREK-1 function or expression. To investigate a potential role for these variants, immunofluorescence, cell surface assays, Western blots, and patch clamp were employed to study TREK-1 and TREK-1 variants expressed in HEK293T cells. The results of this study demonstrate that coexpression of TREK-1 with TREK-1 variants alters TREK-1 expression and suppresses channel function. Each variant affected TREK-1 in a disparate manner. In HEK293T cells coexpressing TREK-1 and each variant, TREK-1 membrane expression was diminished with compartmentalization inside the cell. When expressed alone, individual variants displayed channel properties that were significantly decreased compared to full-length TREK-1. In coexpression studies using patch clamp, basal TREK-1 currents were reduced by ∼64% (4.3 vs. 12.0 pA/pF) on average at 0 mV when coexpressed with each variant. TREK-1 currents that were activated by intracellular acidosis were reduced an average of ∼77% (21.4 vs. 94.5 pA/pF) at 0 mV when cells were transfected with TREK-1 and any one of the splice variants. These data correlate the presence of TREK-1 variants to reduced TREK-1 activity, suggesting a pathological role for TREK-1 variants in preterm labor.
Lpar3 encodes LPA3, the third G protein-coupled receptor for lysophosphatidic acid (LPA). Lpar3−/− female mice had delayed embryo implantation. Their serum progesterone and estrogen levels were comparable with control on Gestation Day 3.5 (D3.5) at 1100 h. There was reduced cell proliferation in D3.5 and D4.5 Lpar3−/− stroma. Progesterone receptor (PGR) disappeared from D4.5 Lpar3 / uterine luminal epithelium (LE) but remained highly expressed in D4.5 Lpar3−/− LE. Pgr and PGR- target genes but not estrogen receptor alpha (ERalpha [Esr1]) or ESR target genes, were upregulated in D4.5 Lpar3−/− LE. It was hypothesized that suppression of PGR activity in LE could restore on-time uterine receptivity in Lpar3−/− mice. A low dose of RU486 (5 μg/mouse) given on D3.5 at 900 h rescued delayed implantation in all pregnant Lpar3−/− females and significantly increased number of implantation sites compared to vehicle-treated pregnant Lpar3−/− females detected on D4.5. E2 (25 ng/mouse) had a similar effect as 5 μg RU486 on embryo implantation in Lpar3−/− females. However, when the ovaries were removed on late D2.5 to create an experimentally induced delayed implantation model, 25 ng E2 activated implantation in Lpar3 / but not Lpar3−/− females detected on D4.5. These results demonstrate that deletion of Lpar3 leads to an increased ratio of progesterone signaling/estrogen signaling that can be optimized by low doses of RU486 or E2 to restore on-time implantation in Lpar3−/− females.
In the Pacific oyster, spermatozoa are characterized by a remarkably long movement phase (i.e., over 24 h) sustained by a capacity to maintain intracellular ATP level. To gain information on oxidative phosphorylation (OXPHOS) functionality during the motility phase of Pacific oyster spermatozoa, we studied 1) changes in spermatozoal mitochondrial activity, that is, mitochondrial membrane potential (MMP), and intracellular ATP content in relation to motion parameters and 2) the involvement of OXPHOS for spermatozoal movement using carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The percentage of motile spermatozoa decreased over a 24 h movement period. MMP increased steadily during the first 9 h of the movement phase and was subsequently maintained at a constant level. Conversely, spermatozoal ATP content decreased steadily during the first 9 h postactivation and was maintained at this level during the following hours of the movement phase. When OXPHOS was decoupled by CCCP, the movement of spermatozoa was maintained 2 h and totally stopped after 4 h of incubation, whereas spermatozoa were still motile in the control after 4 h. Our results suggest that the ATP sustaining flagellar movement of spermatozoa may partially originate from glycolysis or from mobilization of stored ATP or from potential phosphagens during the first 2 h of movement as deduced by the decoupling by CCCP of OXPHOS. However, OXPHOS is required to sustain the long motility phase of Pacific oyster spermatozoa. In addition, spermatozoa may hydrolyze intracellular ATP content during the early part of the movement phase, stimulating mitochondrial activity. This stimulation seems to be involved in sustaining a high ATP level until the end of the motility phase.
Infertility affects about 15% of couples of reproductive age. The male factor is involved in nearly 50% of infertility cases. Defective human sperm function has been associated with evidence of high levels of reactive oxygen species (ROS) and a resultant loss of fertilizing potential in vivo and in vitro. Analogous to what has been observed in somatic cells, mitochondria are likely the major sources of ROS in sperm cells. In this study, we analyzed mitochondrial function using high-resolution respirometry, ROS production, and footprints of oxidative and nitrative stress processes in intact human sperm cells. We showed that mitochondrial dysfunction (measured through the respiratory control ratio) was correlated with a decrease in human sperm motility. The samples analyzed presented nitro-oxidative modifications of proteins, such as protein 3-nitrotyrosine, that were observed mainly in the mid-piece (where mitochondria are localized) and in the sperm head. Semen samples presenting lower percentage of motile sperm showed higher amounts of nitro-oxidative protein modifications than those with larger quantities of motile sperm. When spermatozoa were exposed to inhibitors of the respiratory mitochondrial function, in the presence of a nitric oxide flux, sperm produced potent nitro-oxidative species (i.e., peroxynitrite). This effect was observed in more than 90% of intact living sperm cells and in sperm mitochondrial fractions. These data suggest that dysfunctional mitochondria in sperm cells produce oxidants that may contribute to male infertility. These data provide the rationale for testing the potential of compounds that improve sperm mitochondrial function to treat male infertility.
The sperm acrosome reaction is a unique, regulated exocytosis characterized by the secretion of the acrosomal content and the release of hybrid vesicles formed by patches of the outer acrosomal and plasma membranes. In previous reports, we have shown that inward invaginations of the acrosomal membrane delineate ring-shaped membrane microdomains that contact the plasma membrane. We have postulated that the opening and expansion of fusion pores along these rings trigger acrosomal exocytosis. The invaginations of the acrosomal membrane topologically resemble the deformations of the endosomal membrane leading to the assembly of luminal vesicles in multivesicular bodies. In fact, intra-acrosomal vesicles are also formed during acrosomal exocytosis. Endosomal sorting complex required for transport (ESCRT) participates in the organization of membrane microdomains that are invaginated and released as intraluminal vesicles in endosomes. We report here that members of ESCRT I (TSG101), ESCRT III (CHMP4), and the AAA ATPase VPS4 are present in the acrosomal region of the human sperm. Perturbing the function of these factors with antibodies or recombinant proteins inhibited acrosomal exocytosis in permeabilized cells. A similar effect was observed with a dominant-negative mutant of VPS4A cross-linked to a cell-penetrating peptide in nonpermeabilized sperm stimulated with a calcium ionophore. When the function of ESCRTs was inhibited, acrosomes showed abnormal deformation of the acrosomal membrane, and SNARE proteins that participate in acrosomal exocytosis failed to be stabilized in neurotoxin-resistant complexes. However, the growing of membrane invaginations was not blocked, and numerous intra-acrosomal vesicles were observed. These observations indicate that ESCRT-mediated processes are essential for acrosomal secretion, implicating these multifunctional complexes in an exocytic event crucial for sperm-egg fusion.
The goal of the current study was to characterize the immune cell types within the primate corpus luteum (CL). Luteal tissue was collected from rhesus females at discrete intervals during the luteal phase of the natural menstrual cycle. Dispersed cells were incubated with fluorescently labeled antibodies specific for the immune cell surface proteins CD11b (neutrophils and monocytes/macrophages), CD14 (monocytes/macrophages), CD16 (natural killer [NK] cells), CD20 (B-lymphocytes), and CD3epsilon (T-lymphocytes) for analysis by flow cytometry. Numbers of CD11b-positive (CD11b) and CD14 cells increased significantly 3 to 4 days after serum progesterone (P4) concentrations declined below 0.3 ng/ml. CD16 cells were the most abundant immune cell type in CL during the mid and mid-late luteal phases and were 3-fold increased 3 to 4 days after serum P4 decreased to baseline levels. CD3epsilon cells tended to increase 3 to 4 days after P4 decline. To determine whether immune cells were upregulated by the loss of luteotropic (LH) support or through loss of LH-dependent steroid milieu, monkeys were assigned to 4 groups: control (no treatment), the GnRH antagonist Antide, Antide plus synthetic progestin (R5020), or Antide plus the estrogen receptor agonists diarylpropionitrile (DPN)/propyl-pyrazole-triol (PPT) during the mid-late luteal phase. Antide treatment increased the numbers of CD11b and CD14 cells, whereas progestin, but not estrogen, replacement suppressed the numbers of CD11b, CD14, and CD16 cells. Neither Antide nor steroid replacement altered numbers of CD3epsilon cells. These data suggest that increased numbers of innate immune cells in primate CL after P4 synthesis declines play a role in onset of structural regression of primate CL.
There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells.
Chromatin remodeling influences gene expression in developing and adult organisms. Active and repressive marks of histone methylation dictate the embryonic expression boundaries of developmentally regulated genes, including the Hox gene cluster. Drosophila ash1 (absent, small or homeotic discs 1) gene encodes a histone methyltransferase essential for regulation of Hox gene expression that interacts genetically with other members of the trithorax group (TrxG). While mammalian members of the mixed lineage leukemia (Mll) family of TrxG genes have roles in regulation of Hox gene expression, little is known about the expression and function of the mammalian ortholog of the Drosophila ash1 gene, Ash1-like (Ash1l). Here we report the expression of mouse Ash1l gene in specific structures within various organs and provide evidence that reduced Ash1l expression has tissue-specific effects on mammalian development and adult homeostasis. Mutants exhibit partially penetrant postnatal lethality and failure to thrive. Surviving mutants have growth insufficiency, skeletal transformations, and infertility associated with developmental defects in both male and female reproductive organs. Specifically, expression of Hoxa11 and Hoxd10 are altered in the epididymis of Ash1l mutant males and Hoxa10 is reduced in the uterus of Ash1l mutant females. In summary, we show that the histone methyltransferase Ash1l is important for the development and function of several tissues and for proper expression of homeotic genes in mammals.
CALCB, ADM, and ADM2 are potent vasodilators that share a seven-transmembrane GPCR, calcitonin receptor-like receptor (CALCRL), whose ligand specificity is dictated by the presence of one of the three receptor activity-modifying proteins (RAMPs). We assessed the relative pharmacologic potency of these peptides in mesenteric artery smooth muscle cells (VSMCs) and the specific RAMP that mediates the effect of ADM in VSMCs. VSMCs, with or without RAMP knockdown, were treated with CALCB, ADM, or ADM2 in the presence or absence of their antagonists, CALCB8-37, ADM22-52, and ADM217-47, respectively, to assess the relative effect of peptides on cAMP production and their pharmacologic potency. Proximity ligation assay was used to assess the specific RAMP that associates with CALCRL to mediate the actions of ADM in VSMCs. All three peptides induced cAMP generation in VSMCs and the order of their potency is CALCB > ADM > ADM2. Effects of CALCB were blocked by CALCB8-37, ADM effects were blocked by CALCB8-37 and ADM217-47 but not ADM22-52, and ADM2 effects were blocked by all three antagonists. Knockdown of RAMP2 was ineffective, whereas knockdown of RAMP3 inhibited ADM-induced cAMP production in VSMCs, suggesting involvement of RAMP3 with CALCRL to mediate ADM effects. Absence of both RAMP2 and RAMP3 further increased CALCB-induced cAMP synthesis compared to control (P < 0.05). ADM increased CALCRL and RAMP3 association and RAMP3 knockdown inhibited the interaction of ADM with CALCRL.
Depletion of oocytes from the embryonic ovary is a key feature of mammalian oogenesis; however, the rational and molecular bases for this phenomenon remain poorly understood. Presently in the field, the most systematic analysis used to understand the effect of a given molecular pathway on fetal oocyte attrition is to count the number of oocytes in ovaries at different stages of development. This analysis is commonly done using a sampling method based on sectioning of the ovary, a technique that includes many laborious steps culminating in an inaccurate estimate of oocyte number contained within that ovary. This inability to generate data that are directly comparable between labs hinders the field and raises questions about the timing and rate of oocyte depletion. Therefore, we set out to implement a robust method that can be easily used by most research laboratories to study the dynamics of oogenesis during fetal mouse ovary development in both normal and experimental conditions. Here we describe an approach to accurately count the total number of oocytes in embryonic ovaries. This method is based on whole-mount immunofluorescence, tissue clearing with sucrose and ScaleA2 reagent, and automatic detection and counting of germ cells in intact ovaries using confocal microscopy and three-dimensional software analyses. We demonstrate the power of the method by assessing variation of fetal oocyte numbers between left and right ovaries and between litters of mice. Finally, we anticipate that the method could be adopted to the analysis of substages of meiotic prophase I and ovarian somatic cells.
Expansion of the cumulus complex surrounding the oocyte is critical for ovulation of a fertilizable egg. The ovulation-inducing surge of luteinizing hormone leads to an increased expression of genes such as prostaglandin-endoperoxide synthase 2 (Ptgs2), pentraxin-related protein 3 (Ptx3), and tumor necrosis factor alpha-induced protein 6 (Tnfaip6) that support cumulus expansion. Factors released by mural granulosa and cumulus granulosa cells into the follicular fluid induce paracrine signaling within the follicular compartment. The follicular fluid that separates these distinct granulosa cell types is an enriched fluid containing numerous proteins, nucleic acids, and other macromolecules. Extracellular vesicles (EVs) are also present; however, no physiologically relevant functions of follicular EVs have yet been demonstrated. In our study, the effect of follicular EVs on cumulus-oocyte complex (COC) expansion and relevant gene expression was assayed. Follicular EVs were isolated using ultracentrifugation from follicular fluid of small (3–5 mm) and large (>9 mm) antral bovine follicles, then characterized by nanoparticle tracking analysis, electron microscopy, and Western blot analysis. To test for bioactivity, mouse and bovine COCs were cultured with follicular EVs. Cumulus expansion and Ptgs2, Ptx3, and Tnfaip6 gene expression were measured following COC maturation culture. The results demonstrated that follicular EVs can support both measurable cumulus expansion and increased gene expression.
Kisspeptins are key players in the neuroendocrine control of puberty and other reproductive processes in mammals. Several studies have demonstrated that the KISS/GPR54 system is expressed by gonadotrophs, but in vitro studies assessing the direct stimulatory effects of kisspeptin on gonadotropin secretion in the pituitary have provided conflicting results. In this study, we investigated whether kisspeptin directly influences the reproductive function of sea bass pituitary. First, the highly active peptides Kiss1-15 and Kiss2-12 were used to stimulate dispersed sea bass pituitary cells obtained from mature males. Our results show that, first, Kiss2-12 induced luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) release, whereas Kiss1-15 had no effect on gonadotropin secretion at full spermiation stage. Second, the distribution and nature of Kiss2 and its potential interactions with the gonadotropin-releasing hormone 1 (Gnrh1) system in the pituitary were analyzed using dual fluorescence immunohistochemistry. Kiss2 cells were found in the proximal pars distalis and colocalized with gonadotropin-immunoreactive cells. In summary, our results provide, for the first time in a teleost species, functional and neuroanatomical evidence that Kiss2 may act through different routes to directly modulate the activity of gonadotrophs, either as a hypophysiotropic neuropeptide or as an autocrine/paracrine factor.
In utero exposure to some phthalate esters adversely affects the development of the rat seminiferous cord, causing germ cell loss and increasing the number of multinucleated germ cells (MNGs). To understand the timing of MNG formation and determine whether it requires nuclear division, timed pregnant Sprague Dawley rats were exposed to 500 mg/kg di-n-butyl phthalate (DBP) or corn oil vehicle by oral gavage on Gestational Day (GD) 17 or 18 (0 h) and euthanized after 2, 4, 6, or 24 h or given a second dose at 24 h and euthanized 48 h after the initial dose. Dams were simultaneously exposed to 0.3 M 5-bromo-2′-deoxycitidine (BrdC; converted to 5-bromo-2′-deoxyuridylate [BrdU] in vivo) through a subcutaneous micro-osmotic pump implanted at −2 h. In the testes of male fetuses, DBP induced MNGs significantly beginning at 4–6 h and dramatically by 24 h when exposure began on GD 18 but not GD 17. Seminiferous cord diameter was significantly elevated in testes of rats treated with DBP at 24 and 48 h, and cell death, measured by TUNEL assay, was significantly elevated by DBP only at 48 h, when treatment began on GD 18. TUNEL-labeled MNGs were rare. Overall BrdU labeling rate in the testis was unaffected by DBP. Only one of 606 MNGs in BrdU-labeled sections had a strongly positive nucleus, confirming a nonproliferative mechanism of MNG formation, which is a degenerative process with the potential to adversely affect testis development.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere