BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Tissue-specific (or somatic) stem cells constitute a subset of cells residing in normal adult tissues. By undergoing asymmetric division, they retain their ability to self-renew while producing daughter cells that go on to differentiate and play a role in tissue regeneration and repair. The human uterus consists primarily of endometrium and myometrium (the smooth muscle layer) that rapidly enlarges through its tremendous regenerative and remodeling capacity to accommodate the developing fetus. Such uterine enlargement and remodeling can take place repeatedly and cyclically over the course of a woman's reproductive life. These unique properties of the uterus suggest the existence of endometrial and myometrial stem cell systems. In addition, like somatic cells, tumor stem cells or tumor-initiating cells, a subset of cells within a tumor, retain the ability to reconstitute tumors. Uterine smooth muscle cells are thought to be the origin of leiomyomas that are the most common type of gynecologic tumor. Recent work has identified, isolated, and characterized putative stem/progenitor cells in the myometrium and in leiomyomas. Here, we review current studies of myometrial and leiomyoma stem/progenitor cells and provide a new paradigm for understanding myometrial physiology and pathology and how these cells might contribute to uterine remodeling during pregnancy and the formation of leiomyomas. The role of the WNT/CTNNB1 pathway in the pathogenesis of leiomyoma is also discussed.
Female rats show a distinct attraction for males. This attraction remains consistent without the necessity for the physical presence of the male. However, the identity of the olfactory cues contributing to attraction in rats remains unknown. Rat urine contains copious amounts of major urinary proteins (MUPs). Here, we investigated the hypothesis that MUPs mediate sexual attractiveness in rats. We first demonstrated that a member of a male dyad receiving greater copulatory opportunities in competitive mate choice tests excrete greater amounts of MUPs. Furthermore, the amount of male MUPs positively correlated with both copulatory opportunities received and female exploration of the urine. Using females and a two-choice olfactory attraction test, we demonstrated that urinary fractions containing MUPs were sufficient to induce attraction and that male MUPs activated neurons in the posterodorsal medial amygdala in female rats. Taken together, these results suggest that olfactory cues associated with MUPs act as an attractant to female rats in estrus.
Linlin Sui, Lei An, Kun Tan, Zhuqing Wang, Shumin Wang, Kai Miao, Likun Ren, Li Tao, Shuzhi He, Yong Yu, Jinzhou Nie, Qian Liu, Lei Xing, Zhonghong Wu, Zhuocheng Hou, Jianhui Tian
As the interface between the mother and the developing fetus, the placenta is believed to play an important role in assisted reproductive technology (ART)-induced aberrant intrauterine and postnatal development. However, the mechanisms underlying aberrant placentation remain unclear, especially during extraembryonic tissue development and early stages of placental formation. Using a mouse model, this investigation provides the first comparative proteomic analysis of in vivo (IVO) and in vitro-produced (IVP) extraembryonic tissues and placentas after IVO fertilization and development, or in vitro fertilization and culture, respectively. We identified 165 and 178 differentially expressed proteins (DEPs) between IVO and IVP extraembryonic tissues and placentas on Embryonic Day 7.5 (E7.5) and E10.5, respectively. Many DEPs were functionally associated with genetic information processing, such as impaired de novo DNA methylation, as well as posttranscriptional, translational and posttranslational dysregulation. These novel findings were further confirmed by global hypomethylation, and a lower level of correlation was found between the transcriptome and proteome in the IVP groups. In addition, numerous DEPs were involved in energy and amino acid metabolism, cytoskeleton organization and transport, and vasculogenesis and angiogenesis. These disturbed processes and pathways are likely to be associated with embryonic intrauterine growth restriction, an enlarged placenta, and impaired labyrinth morphogenesis. This study provides a direct and comprehensive reference for the further exploration of the placental mechanisms that underlie ART-induced developmental aberrations.
Endometrial receptivity is a prerequisite for successful embryo implantation and pregnancy. Receptivity involves complex processes promoted by many transcripts that are key components of molecular pathways that depend on ovarian hormones and that contribute to shaping structural, metabolic, and communication properties of endometrial cells toward reception of embryos. MicroRNAs (miRNAs) are important regulators of the expression of these transcripts encoding effector molecules. We acquired miRNA and mRNA signatures, miRNA-mRNA pairs, and regulatory networks linked with the emergence and maintenance of postimplantation pregnancy. Endometrial tissue samples were obtained at Days 3 and 7 of the estrous cycle of cows that did or did not become pregnant after transfer of either in vivo-produced (IVV) or in vitro-produced (IVT) embryos in the next cycle following the biopsy. We report a list of endometrial miRNAs that were differentially expressed between Day 3 and Day 7 of the bovine estrous cycle (including miR-1290, miR-3437, miR-1246, miR-486, miR-3107, and miR-382), that differed with high or low endometrial receptivity (miR-3902-3p, miR-1825, miR-H14-3p, miR-885-3p, miR-504-3p, and miR-186), or that differed among the IVT and IVV transfers (miR-449a/b/c, miR-138, miR-874, miR-4342, miR-2231, and miR-2751). Moreover, mRNA transcripts were also analyzed, and pairs of negatively correlated miRNAs and mRNAs were predicted in silico. The miRNA-mRNA target pairs had roles in response to hormonal stimuli and oxidative stress, chromatin organization, miRNA-mediated epigenetic histone changes, cell proliferation, p53 signaling, and apoptosis. Overall, we identified significant miRNAs, miRNA-mRNA pairs, and functional networks that are associated with the state of pregnancy at Day 28 as a parameter of endometrial receptivity and that are affected by estrous cycle and embryo culture systems.
Provoked vestibulodynia, a female pelvic pain syndrome affecting substantial numbers of women, is characterized by genital hypersensitivity and sensory hyperinnervation. Previous studies have shown that the risk of developing provoked vestibulodynia is markedly elevated following adolescent use of oral contraceptives with high progesterone content. We hypothesized that progesterone, a steroid hormone with known neurotropic properties, may alter genital innervation through direct or indirect actions. Female Sprague Dawley rats received progesterone (20 mg/kg subcutaneously) from Days 20–27; tissue was removed for analysis in some rats on Day 28, while others were ovariectomized on Day 43 and infused for 7 days with vehicle or 17beta estradiol. Progesterone resulted in overall increases in vaginal innervation at both Day 28 and 50 due to proliferation of peptidergic sensory and sympathetic (but not parasympathetic) axons. Estradiol reduced innervation in progesterone-treated and untreated groups. To assess the mechanisms of sensory hyperinnervation, we cultured dissociated dorsal root ganglion neurons and found that progesterone increases neurite outgrowth by small unmyelinated (but not myelinated) sensory neurons, it was receptor mediated, and it was nonadditive with NGF. Pretreatment of ganglion with progesterone also increased neurite outgrowth in response to vaginal target explants. However, pretreatment of vaginal target with progesterone did not improve outgrowth. We conclude that adolescent progesterone exposure may contribute to provoked vestibulodynia by eliciting persistent genital hyperinnervation via a direct effect on unmyelinated sensory nociceptor neurons and that estradiol, a well-documented therapeutic, may alleviate symptoms in part by reducing progesterone-induced sensory hyperinnervation.
The prepartum output of PGF2alpha in the bitch is associated with increased placental PGE2-synthase (PTGES) mRNA levels. Contrasting with this is a decreased expression of PGF2alpha-synthase (PGFS/AKR1C3) in uteroplacental compartments during prepartum luteolysis, suggesting an involvement of alternative synthetic pathways in PGF2alpha synthesis, for example, conversion of PGE2 to PGF2alpha. However, because the expression and possible functions of the respective PTGES proteins remained unknown, no further conclusion could be drawn. Therefore, a canine-specific PTGES antibody was generated and used to investigate the expression, cellular localization, and biochemical activities of canine uteroplacental PTGES throughout pregnancy and at prepartum luteolysis. Additionally, the biochemical activities of these tissues involved in the conversion of PGE2 to PGF2alpha were investigated. The endometrial PTGES was localized in the uterine surface epithelium at preimplantation and in superficial and deep uterine glands, endothelial cells, and myometrium throughout pregnancy and at parturition. Placental signals were mostly in the trophoblast. The biochemical properties of recombinant PTGES protein were confirmed. Additionally, expression of two PGE2-receptors, PTGER2/EP2 and PTGER4/EP4, revealed their decreasing expression during luteolysis. In contrast, the uteroplacental expression of prostaglandin transporter (PGT) was strongly elevated prior to parturition. These localization patterns resembled that of PTGES. The increased expression of PTGES and PGT at parturition, together with the accompanying decreased levels of PGE2-receptors and the capability of canine uterine and placental homogenates to take part in the conversion of PGE2 to PGF2alpha, as found in this study, suggest that PGE2 could be used locally as a substrate for prepartum PGF2alpha synthesis in the dog.
Male infertility is an increasing health issue in today's society for both human and livestock populations. In livestock, male infertility slows the improvement of animal selection programs and agricultural productivity. There is increasing evidence that epigenetic marks play an important role in the production of good-quality sperm. We therefore screened for specific or common epigenetic signatures of livestock infertility. To do so, we compared DNA methylation level in sperm DNA from fertile and infertile boars. We evaluated first the global level of sperm DNA methylation and found no difference between the two groups of boars. We then selected 42 loci of interest, most of them known to be imprinted in human or mice, and assessed the imprinting status of five of them not previously described in swine tissues: WT1, CNTN3, IMPACT, QPCT, and GRB10. DNA methylation level was then quantified in fertile and infertile boars at these 42 loci. Results from fertile boars indicated that the methylation level of the selected loci is highly conserved between pig, human, and mice, with a few exceptions, including the POU5F1 (OCT4) promoter and RTL1. Comparison between fertile and infertile boars revealed that one imprinted region, the GNAS locus, shows an increase in sperm DNA methylation in three out of eight infertile boars with low semen quality. This increase in DNA methylation is associated with an altered expression of the genes belonging to the GNAS locus, suggesting a new role for GNAS in the proper formation of functional gametes.
In many mammals, after semen deposition, a subpopulation of the sperm is transported to the lower oviduct, or isthmus, to form a functional sperm reservoir that provides sperm to fertilize oocytes. The precise molecular interactions that allow formation of this reservoir are unclear. It is proposed that binding of sperm receptors (lectins) to their oviductal cell ligands is accomplished by glycans. Previous results indicated that Lewis trisaccharides are present in glycosphingolipids and O- and N-linked glycans of the porcine isthmus and that LeX-containing molecules bind porcine sperm. Immunohistochemistry indicated that the Lewis structures identified by mass spectrometry were, in fact, Lewis X (LeX) trisaccharides. These motifs were localized to the luminal border of the isthmus. Assays using fluoresceinated glycans showed that 3-O-sulfated LeX (suLeX) bound to receptors localized on the head of nearly 60% of uncapacitated boar sperm but that the positional isomer 3-O-sulfo-LeA (suLeA) bound to <5% of sperm. Sperm also bound preferentially to suLeX made insoluble by coupling to beads. Capacitation reduced the ability of suLeX to bind sperm to <10%, perhaps helping to explain why sperm are released at capacitation. Pretreatment of oviduct cell aggregates with the LeX antibody blocked 57% of sperm binding to isthmic aggregates. Blocking putative receptors on sperm with soluble LeX and suLeX glycans specifically reduced sperm binding to oviduct cells up to 61%. These results demonstrate that the oviduct isthmus contains LeX-related moieties and that sperm binding to these oviduct glycans is necessary and sufficient for forming the sperm reservoir.
In mammalian testes, spermatogonial stem cells (SSCs) maintain spermatogenesis over a long period of time by undergoing self-renewal and differentiation. SSCs are among the most primitive of spermatogenic cells (undifferentiated spermatogonia), and their activities are strictly regulated by extrinsic niche factors. However, the factors that constitute a testicular niche remain poorly understood. In this study, we demonstrate that fibroblast growth factor (FGF) signaling maintains undifferentiated spermatogonia through activating ERK1/2 signaling in vivo. Undifferentiated spermatogonia comprise GFRA1 and NANOS3 subpopulations, which are likely to undergo self-renewal and enter the differentiation pathway, respectively. In the testis, Fgfr1 was expressed in the entire population of undifferentiated spermatogonia, and deleting FGFR1 in spermatogenic cells partially inactivated ERK1/2 and resulted in reduced numbers of both GFRA1 and NANOS3 cells. In addition, Fgf8 was expressed in spermatogenic cells, and loss- and gain-of-function models of FGF8 demonstrated that FGF8 positively regulated the numbers of undifferentiated spermatogonia through FGFR1, particularly among NANOS3 cells. Finally we show a possible involvement of FGF signaling in the reversion from NANOS3 into GFRA1 undifferentiated spermatogonia. Taken together, our data suggest that FGF signaling is an important component of the testicular niche and has a unique function for maintaining undifferentiated spermatogonia.
Equine in vitro fertilization is not yet successful because equine sperm do not effectively capacitate in vitro. Results of previous studies suggest that this may be due to failure of induction of hyperactivated motility in equine sperm under standard capacitating conditions. To evaluate factors directly affecting axonemal motility in equine sperm, we developed a demembranated sperm model and analyzed motility parameters in this model under different conditions using computer-assisted sperm analysis. Treatment of ejaculated equine sperm with 0.02% Triton X-100 for 30 sec maximized both permeabilization and total motility after reactivation. The presence of ATP was required for motility of demembranated sperm after reactivation, but cAMP was not. The calculated intracellular pH of intact equine sperm was 7.14 ± 0.07. Demembranated sperm showed maximal total motility at pH 7. Neither increasing pH nor increasing calcium levels, nor any interaction of the two, induced hyperactivated motility in demembranated equine sperm. Motility of demembranated sperm was maintained at free calcium concentrations as low as 27 pM, and calcium arrested sperm motility at much lower concentrations than those reported in other species. Calcium arrest of sperm motility was not accompanied by flagellar curvature, suggesting a failure of calcium to induce the tonic bend seen in other species and thought to support hyperactivated motility. This indicated an absence, or difference in calcium sensitivity, of the related asymmetric doublet-sliding proteins. These studies show a difference in response to calcium of the equine sperm axoneme to that reported in other species that may be related to the failure of equine sperm to penetrate oocytes in vitro under standard capacitating conditions. Further work is needed to determine the factors that stimulate hyperactivated motility at the axonemal level in equine sperm.
Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy.
Pannexins (PANXs) are channel-forming proteins implicated in cellular communication through the secretion of biomolecules, such as ATP and glutamate. PANX1 and PANX3 are expressed in the male rat reproductive tract and their levels are regulated by androgens in the epididymis. There is currently no information on the regulation of the Panx1 promoter. The objective of the present study was to characterize the Panx1 promoter in order to understand its regulation in the epididymis. RNA ligase-mediated rapid amplification of cDNA ends identified three transcriptional start sites, at positions −443, −429, and −393. In silico analysis revealed that transcription was initiated downstream of binding sites for CREB and ETV4 transcription factors, in a CpG island context. To determine the importance of this region in gene transactivation, a 2-kb fragment of the promoter was cloned into a vector containing a luciferase reporter gene. Deletion constructs indicated that the highest transactivation levels were achieved with shorter constructs (−973 to −346 and −550 to −346). Electrophoretic mobility shift assay and supershifts indicated that both transcription factors were able to bind to the promoter region. Chromatin immunoprecipitation using rat caput epididymis cells confirmed the binding of ETV4 and CREB on the Panx1 promoter. Site mutation of either the ETV4 or CREB binding site decreased the transactivation of the reporter gene. Previous studies indicated that orchidectomy increased epididymal PANX1 levels. Likewise, we observed an increase in both ETV4 and CREB in orchidectomized rats. These results indicate that ETV4 and cAMP response elements play a role in the transcriptional regulation of Panx1 in the epididymis.
Cells in the medial preoptic area (mPOA), arcuate nucleus (ARC), and ventromedial nucleus (VMN) that possess estrogen receptor alpha (ER alpha) mediate estradiol feedback to regulate endocrine and behavioral events during the estrous cycle. A percentage of ER alpha cells located in the ARC and VMN express somatostatin (SST) and are activated in response to estradiol. The aims of the present study were to investigate the location of c-Fos, a marker for activation, in cells containing ER alpha or SST at various times during the follicular phase and to determine whether lipopolysaccharide (LPS) administration, which leads to disruption of the luteinizing hormone (LH) surge, is accompanied by altered ER alpha and/or SST activation patterns. Follicular phases were synchronized with progesterone vaginal pessaries, and control animals were killed at 0, 16, 31, and 40 h (n = 4–6/group) after progesterone withdrawal (PW [time 0]). At 28 h, other animals received LPS (100 ng/kg) and were subsequently killed at 31 h or 40 h (n = 5/group). Hypothalamic sections were immunostained for c-Fos and ER alpha or SST. LH surges occurred only in control ewes with onset at 36.7 ± 1.3 h after PW; these animals had a marked increase in the percentage of ER alpha cells that colocalized c-Fos (%ER alpha/c-Fos) in the ARC and mPOA from 31 h after PW and throughout the LH surge. In the VMN, %ER alpha/c-Fos was higher in animals that expressed sexual behavior than in those that did not. SST cell activation in the ARC and VMN was greater during the LH surge than in other stages in the follicular phase. At 31 or 40 h after PW (i.e., 3 or 12 h after treatment, respectively), LPS decreased %ER alpha/c-Fos in the ARC and the mPOA, but there was no change in the VMN compared to that in controls. The %SST/c-Fos increased in the VMN at 31 h after PW (i.e., 3 h after LPS) with no change in the ARC compared to controls. These results indicate that there is a distinct temporal pattern of ER alpha cell activation in the hypothalamus during the follicular phase, which begins in the ARC and mPOA at least 6–7 h before the LH surge onset and extends to the VMN after the onset of sexual behavior and LH surge. Furthermore, during the surge, some of these ER alpha-activated cells may be SST-secreting cells. This pattern is markedly altered by LPS administered during the late follicular phase, indicating that the disruptive effects of this stressor are mediated by suppressing ER alpha cell activation at the level of the mPOA and ARC and enhancing SST cell activation in the VMN, leading to the attenuation of the LH surge.
The luteinizing hormone preovulatory surge stimulates several signal pathways essential for ovulation, and the regulator of G-protein signaling protein-2 (RGS2) is thought to be involved in this process. The objectives of this study were to characterize the regulation of RGS2 transcripts in equine and bovine follicles prior to ovulation and to determine its transcriptional control in bovine granulosa cells. To assess the regulation of equine RGS2 prior to ovulation, RT-PCR was performed using total RNA extracted from equine follicles collected at various times after human chorionic gonadotropin (hCG) injection. Results showed that RGS2 mRNA levels were very low at 0 h but markedly increased 12–39 h post-hCG (P < 0.05). In the bovine species, results revealed that RGS2 mRNA levels were low in small and dominant follicles and in ovulatory follicles obtained at 0 h, but markedly increased in ovulatory follicles 6–24 h post-hCG (P < 0.05). To study the molecular control of RGS2 expression, primary cultures of bovine granulosa cells were used. Stimulation with forskolin induced an up-regulation of RGS2 mRNA in vitro. Studies using 5′-deletion mutants identified a minimal region containing full-length basal and forskolin-inducible RGS2 promoter activities. Site-directed mutagenesis indicated that these activities were dependent on CRE and ETS1 cis-elements. Electrophoretic mobility shift assays confirmed the involvement of these elements and revealed their interactions with CREB1 and ETS1 proteins. Chromatin immunoprecipitation assays confirmed endogenous interactions of these proteins with the RGS2 promoter in granulosa cells. Forskolin-inducible RGS2 promoter activity and mRNA expression were markedly decreased by PKA and ERK1/2 inhibitors, and treatment with an antagonist of PGR (RU486) and inhibitors of PTGS2 (NS398) and EGFR (PD153035) blocked the forskolin-dependent RGS2 transcript expression, suggesting the importance of RGS2 in ovulation. Collectively, this study reports for the first time the gonadotropin-dependent up-regulation of RGS2 in equine and bovine preovulatory follicles and presents some of the regulatory controls involved in RGS2 gene expression in granulosa cells.
Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted paralogs of the transforming growth factor beta (TGFbeta) superfamily. In mammals, these two growth factors play critical roles in folliculogenesis. As previously reported, an arginine in the pre-helix loop of GDF5 defines the high binding specificity to its type 1 receptor. Interestingly, bioactive mouse GDF9 and human BMP15 share the conserved arginine in the pre-helix loop, but their low-activity counterparts (mouse BMP15 and human GDF9) have a glycine or a proline instead. To address the question of whether the arginine residue defines the different activities of GDF9 and BMP15 homodimers and their heterodimers in human and mouse, we used site-directed mutagenesis to change the species-specific residues in human and mouse proteins, and examined their activities in our in vitro assays. Although amino acid 72 of mature GDF9 is responsible for altered homodimer bioactivities, neither the corresponding BMP15 amino acid 62 nor the intact pre-helix loop is indispensable for BMP15 homodimer activity. However, amino acid 72 in GDF9 only has only subtle effects on GDF9:BMP15 heterodimer activity. Based on previous studies and our recent findings, we provide hypothetical models to understand the molecular mechanism to define activities of the homodimeric and heterodimeric ligands. The arginine residue in the pre-helix loop of GDF9 homodimer may prevent the inhibition from its pro-domain or directly alter receptor binding, but this residue in GDF9 does not significantly affect the heterodimer activity, because of suggested conformational changes during heterodimer formation.
Sma- and Mad-related protein 4 (SMAD4) is the central mediator of the transforming growth factor beta signaling pathway and is closely related to mammalian reproductive ability and the development of ovarian follicles. However, little is currently known about the role of SMAD4 in mammalian follicular granulosa cell (GC) apoptosis or its regulation by miRNAs. Here, we found that the porcine SMAD4 protein was expressed at high levels in GCs and oocytes from primary, preantral, and antral follicles, and only slightly expressed in theca cells; its expression level was down-regulated in apoptotic ovarian GCs, suggesting that SMAD4 may be involved in ovary development and selection. Overexpression and knockdown of SMAD4 increased the proliferation and apoptosis of cultured porcine GCs, respectively. In addition, the use of miRNA mimics and luciferase reporter assays revealed that miRNA-26b (miR-26b) functions as a proapoptotic factor in porcine follicular GCs by targeting the 3′-untranslated region of the SMAD4 gene. Overexpression of miR-26b in follicular GCs suppressed SMAD4 mRNA and protein levels, resulting in down-regulation of the antiapoptotic BCL-2 gene and the promotion of GC apoptosis. Furthermore, transforming growth factor beta 1 (TGF-beta1) down-regulates miR-26b expression in porcine GCs. Taken together, these data suggest that SMAD4 plays a critical role in porcine follicular GC apoptosis and follicular atresia and that miR-26b may have a proapoptotic role in GCs by regulating the expression of SMAD4 in the transforming growth factor beta signaling pathway.
FOXL2 loss of function in goats leads to the early transdifferentiation of ovaries into testes, then to the full sex reversal of XX homozygous mutants. By contrast, Foxl2 loss of function in mice induces an arrest of follicle formation after birth, followed by complete female sterility. In order to understand the molecular role of FOXL2 during ovarian differentiation in the goat species, putative FOXL2 target genes were determined at the earliest stage of gonadal sex-specific differentiation by comparing the mRNA profiles of XX gonads expressing the FOXL2 protein or not. Of these 163 deregulated genes, around two-thirds corresponded to testicular genes that were up-regulated when FOXL2 was absent, and only 19 represented female-associated genes, down-regulated in the absence of FOXL2. FOXL2 should therefore be viewed as an antitestis gene rather than as a female-promoting gene. In particular, the key testis-determining gene DMRT1 was found to be up-regulated ahead of SOX9, thus suggesting in goats that SOX9 primary up-regulation may require DMRT1. Overall, our results equated to FOXL2 being an antitestis gene, allowing us to propose an alternative model for the sex-determination process in goats that differs slightly from that demonstrated in mice.
Cécile Vernochet, François Redelsperger, Francis Harper, Sylvie Souquere, François Catzeflis, Gérard Pierron, Eviatar Nevo, Thierry Heidmann, Anne Dupressoir
Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Multiple independent events of syncytin gene capture were found to have occurred in primates, rodents, lagomorphs, carnivores, and ruminants. In the mouse, two syncytin-A and -B genes are present, which trigger the formation of the two-layered placental syncytiotrophoblast at the maternal-fetal interface, a structure classified as hemotrichorial. Here, we identified syncytin-A and -B orthologous genes in the genome of all Muroidea species analyzed, thus dating their capture back to about at least 40 million years ago, with evidence that they evolved under strong purifying selection. We further show, in the divergent Spalacidae lineage (blind mole rats [Spalax]), that both syncytins have conserved placenta-specific expression, as revealed by RT-PCR analysis of a panel of Spalax galilitissues, and display fusogenic activity, using ex vivo cell-cell fusion assays. Refined analysis of the placental architecture and ultrastructure revealed that the Spalax placenta displays a hemotrichorial organization of the interhemal membranes, as similarly observed for other Muroidea species, yet with only one trophoblastic cell layer being clearly syncytialized. In situ hybridization experiments further localized syncytin transcripts at the level of these differentiated interhemal membranes. These findings argue for a role of syncytin gene capture in the establishment of the original hemotrichorial placenta of Muroidea, and more generally in the diversity of placental structures among mammals.
The dmrt6 gene has been isolated from tetrapods and recently from a coelacanth, Latimeria chalumnae. Its evolutionary history and exact function remain unclear. In the present study, dmrt6 was isolated from Perciformes (five cichlids and stickleback), Siluriformes (southern catfish), and Lepisosteiformes (spotted gar). Syntenic and phylogenetic analyses indicated that dmrt6 experienced gene transposition after the divergence of teleosts from other bony fish as gene loci surrounding dmrt6 were conserved among teleosts (but was completely different from gene loci surrounding dmrt6 in tetrapods and spotted gar), while these gene loci were conserved among nonteleost species. Real-time PCR and in situ hybridization revealed that dmrt6 was highly expressed in the XY gonads from 90 days after hatching (dah) onward and was observed exclusively in spermatocytes of the testes in tilapia. Dmrt6 knockout by CRISPR/Cas9 resulted in fewer spermatocytes, down-regulated Cyp11b2 in testes, and consequently produced a lower level of serum 11-ketotestosterone (11-KT) in Dmrt6-deficient XY fish compared with the XY control at 120 dah. From 150 to 180 dah, spermatogenesis gradually recovered, and cyp11b2 expression and serum 11-KT level were restored to the same levels as those of the XY control fish. In addition, a Dmrt6 mutation was observed in genomic DNA of sperm of G0 mutant fish and F1 fish. Taken together, our data suggest that dmrt6 also exists in bony fish. Its absence in most fish genomes was probably due to incomplete sequencing and/or secondary loss. The dmrt6 gene is highly expressed in spermatocytes and is involved in spermatogenesis in tilapia.
This study compares the impact of obesogenic environment (OE) in six different periods of development on sperm parameters and the testicular structure of adult rats and their correlations with sex steroid and metabolic scenario. Wistar rats were exposed to OE during gestation (O1), during gestation/lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), from gestation to sexual maturity (O5), and after sexual maturation (O6). OE was induced by a 20% fat diet, and control groups were fed a balanced diet (4% fat). Serum leptin levels and adiposity index indicate that all groups were obese, except for O1. Three progressive levels of impaired metabolic status were observed: O1 presented insulin resistance, O2 were insulin resistant and obese, and groups O3, O4, and O5 were insulin resistant, obese, and diabetic. These three levels of metabolic damage were proportional to the increase of leptin and decreased circulating testosterone. The impairment in the daily sperm production (DSP) paralleled these three levels of metabolic and hormonal damage being marginal in O1, increasing in O2, and being higher in groups O3, O4, O5, and O6. None of the OE periods affected the sperm transit time in the epididymis, and the lower sperm reserves were caused mainly by impaired DSP. In conclusion, OE during sexual maturation markedly reduces the DSP at adulthood in the rat. A severe reduction in the DSP also occurs in OE exposure during gestation/lactation but not in gestation, indicating that breast-feeding is a critical period for spermatogenic impairment under obesogenic conditions.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere