BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Errors in chromosome segregation in oocytes and early embryos lead to embryo aneuploidy, which contributes to early pregnancy loss. At the heart of chromosome segregation is the spindle, a dynamic biomechanical machine fashioned from microtubules, which is tasked with gathering and sorting chromosomes and dispatching them to the daughter cells at the time of cell division. Understanding the causes of segregation error in the oocyte and early embryo will undoubtedly hinge on a thorough understanding of the mechanism of spindle assembly and function in these highly specialized cellular environments. The recent advent of live imaging approaches to observe chromosome segregation in real-time in oocytes and embryos, paired with gene-silencing techniques and specific inhibition for assessing the function of a protein of interest, has led to a substantial advance in our understanding of chromosome segregation in early mammalian development. These studies have uncovered numerous mechanistic differences between oocytes, embryos, and traditional model systems. In addition, a flurry of recent studies using naturally aged mice as the model for human aging have begun to shed light on the increased levels of aneuploidy seen in embryos from older mothers. Here we review these recent developments and consider what has been learned about the causes of chromosome missegregation in early development.
Endogenous folate stores are required in preimplantation embryos of several species, but how folates are accumulated and whether they can be replenished has not been determined. Folates are generally taken up into cells by specific transporters, mainly the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptors FOLR1 and FOLR2. Quantitative RT-PCR showed that Slc19a1 mRNA was expressed in mouse cumulus-oocyte complexes (COCs) and oocytes, whereas Folr1 showed expression only in preimplantation embryos, increasing from the 2-cell stage onward. The mRNAs encoding Folr2 and the intestinal folate transporter Slc46a1 were not detected. Methotrexate (MTX), an antifolate often used as a model substrate for folate transport, exhibited saturable transport in COCs and in preimplantation embryos starting at the 2-cell stage. However, folate transport characteristics differed between COCs and embryos. In COCs, transport of MTX and the reduced folate leucovorin was inhibited by the anion transport inhibitor SITS that blocks RFC1 but was insensitive to dynasore, a specific dynamin inhibitor that instead inhibits folate receptor-receptor mediated endocytosis, whereas the opposite was found in 2-cell embryos and blastocysts. The inhibitor profile and transport properties of MTX and leucovorin in COCs correspond to established transport characteristics of RFC1 (SLC19A1), whereas those in 2-cell embryos and blastocysts correspond with those of FOLR1, consistent with the mRNA expression patterns. Considerable folate was accumulated in COCs via RFC1, but the presence of cumulus cells did not enhance folate accumulation in the enclosed oocyte, indicating a lack of transfer from cumulus to oocyte.
Fertilization and development of the preimplantation embryo is under genetic control. The present goal was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from 93 bulls using in vitro procedures (n = 3–6 replicates per bull) and relate cleavage rate (CR) and development of cleaved embryos to the blastocyst stage (BDRC) to the genotype for each SNP. Bulls were selected to have either high or low estimates for predicted transmitted ability for daughter pregnancy rate (DPR), an estimate of female fertility. The repeatability was 0.84 for CR and 0.55 for BDRC. Semen extender affected CR, with lower results for milk extender than yolk extender. There was no significant correlation between DPR and either CR or BDRC. A total of 100 SNPs had a minor allele frequency sufficiently high (>5%) to allow association analysis. There were nine genes with SNPs associated with CR (AVP, DEPP, EPAS1, HSD17B6, NT5E, SERPINE2, SLC18A2, TBC1D24, and a noncharacterized gene) and 12 genes with SNPs associated with BDRC (C1QB, FAM5C, HSPA1A, IRF9, MON1B, PARM1, PCCB, PMM2, SLC18A2, TBC1D24, TTLL3, and WBP1). Results demonstrate that in vitro fertilization and blastocyst development are under genetic control and point out the potential importance of some previously unknown genes in these processes. Selection of cattle based on the genotype at one or more of these 19 loci may prove useful in conjunction with other genetic markers for improving genetic ability for fertility.
During embryo culture, ammonium is generated by amino acid metabolism and from the spontaneous deamination of amino acids at 37°C. Although ammonium has been shown to be embryo toxic, few studies have investigated the mechanism(s) by which the early embryo can regulate ammonium. Whilst 20% oxygen represents a source of stress to the developing embryo, it is not known how oxygen affects the physiology of the embryo in the presence of other sources of stress. The aim of this study was, therefore, to investigate possible pathways involved in ammonium sequestration in the preimplantation embryo and the effect of oxygen on the regulation of these pathways. Glutamine and alanine were investigated as possible ammonium sequestration pathways. Amino acid utilization by blastocysts was determined after culture from the postcompaction stage with 0, 150, or 300 μM ammonium (in either 5% or 20% oxygen) and with or without 500 μM L-methionine sulfoximine (MSO), an inhibitor of glutamine synthetase. In the presence of MSO, ammonium production was significantly increased and glutamate was no longer consumed. Glutamine synthetase inhibition with MSO significantly decreased glutamine formation. Ammonium and oxygen independently altered overall amino acid turnover. Together, 5% oxygen and ammonium promoted glutamine production, whereas in the presence of 20% oxygen and ammonium, glutamine was consumed. Data reveal that both oxygen and ammonium affect amino acid utilization by the developing embryo, however, 20% oxygen appears to have the greater impact. Mouse blastocysts can alleviate ammonium stress by its transamination to both glutamine and alanine, but only under physiological conditions.
Throughout the estrous cycle the oviduct epithelium undergoes dramatic morphological and functional changes. To elucidate cyclic cellular events and associated regulation mechanisms of 17beta estradiol (E2) and progesterone (P4), we mimicked estrous cycle stages in vitro using a culture system of primary porcine oviduct epithelium cells (POEC). Cells were polarized in an air/liquid interface and then treated with E2 and P4 for physiological time periods: In experiment 1, high concentration of P4 with low concentration of E2 for 10 days resembled diestrus; in experiment 2, following the previous diestrus, sequential high E2 with low P4 for 2.5 days represented estrus. Histomorphometry and electron microscopy showed cyclic changes in cellular height, cell population, and cilia density under the influence of hormone stimulation. Transepithelial electrical resistance was high in simulated diestrus but reduced in estrus. Thus, E2 and P4 affect cellular polarity, transformation of ciliated and secretory cells, as well as electrical conductivity of oviduct epithelium. Simulation of diestrus led to significant decrease in expression of hormone receptors (PGR and ESR1) and other epithelial markers (MUC16, OVGP1, and HSP90B1), while sequential simulated estrus caused an increase in these markers. The hormonal regulation of some marker genes was clearly time-dependent. Furthermore, POEC showed increased sperm-binding capacity in simulated estrus. In this study, we also present a novel approach based on the AndroVision software, which can be routinely utilized as a parameter for ciliary activity, and for the first time, we showed fluid movement patterns along the epithelium lining in vitro.
Meiotic maturation in many species is initiated by the activation of maturation-promoting factor (MPF) with concomitant inactivation of counteracting phosphatases, most notably protein phosphatase 2A (PP2A). Recently, Greatwall (GWL) has been identified as a cell cycle regulator that inhibits PP2A activity. In this study, we demonstrate that GWL is required for meiotic maturation in porcine oocytes. GWL expression increases from germinal vesicle (GV) to metaphase II (MII) stages of porcine oocytes and dramatically decreases with progression of the meiotic cell cycle. GWL is initially localized in the nucleus of GV oocytes and is associated with spindle fibers following GV breakdown. Depletion of GWL inhibited or delayed meiotic maturation secondary to defects in chromosome congression and spindle formation. Conversely, overexpression of GWL overcame meiotic arrest and initiated progression to MII stage. However, these oocytes had severe spindle defects. Furthermore, MII oocytes depleted of GWL progressed to pronuclear formation. Taken together, our data demonstrate that GWL is required not only for meiotic maturation but also for maintenance of MII arrest in porcine oocytes.
Meiosis is a unique and critical process in reproduction. Although the key molecular components of meiosis have been identified, the molecular mechanisms regulating the entry into this pathway remain unclear. We previously demonstrated that a progestin in teleost fish, 17alpha, 20beta-dihydroxy-4-pregnen-3-one, is essential for meiotic initiation, and up-regulates taurine synthesis and the production of trypsin in Sertoli cells. In the present study, we found that trypsin promotes the uptake of taurine into germ cells through the up-regulation of solute carrier family 6 (neurotransmitter transporter, taurine), member 6 (Slc6a6) expression. We further found that this up-regulation of the taurine signal is required for Spo11a expression and meiotic initiation.
The basic tenets of germ cell development are conserved among metazoans. Following lineage commitment in the embryo, germ cells proliferate, transition into meiosis, and then differentiate into gametes capable of fertilization. In lower organisms such as Drosophila and C. elegans, germline stem cells make the decision to proliferate or enter meiosis based in large part on the regulated expression of genes by translational control. This study undertakes a direct characterization of mRNAs that experience translational control and their involvement in similar decisions in the mammalian testis. We previously showed that translation of mRNA encoding the germ cell-specific gene Rhox13 was suppressed in the fetal and neonatal testis. By investigating changes in message utilization during neonatal testis development, we found that a large number of mRNAs encoding both housekeeping and germ cell-specific proteins experience enhanced translational efficiency, rather than increase in abundance, in the testis as quiescent gonocytes transition to mitotic spermatogonia. Our results indicate that translational control is a significant regulator of the germ cell proteome during neonatal testis development.
Oviduct fluid increases the time required for digestion of the zona pellucida (ZP) by proteolytic enzymes (ZP hardening). This effect has been associated with levels of monospermy after in vitro fertilization (IVF) in the pig and cow, but the possible existence of a directly proportional relationship between hardening and monospermy remains unknown. To investigate whether variations in hardening of different oviductal fluids (OFs) are correlated with variations in levels of monospermy after IVF, porcine oocytes were incubated with three batches of OFs known to produce different ZP hardening effects (3, 7, and 25 min); after IVF, monospermy levels were 0%, 14.58% ± 5.14%, and 35.14% ± 7.95%, respectively. These results could partially explain the lack of polyspermy found during in vivo fertilization in pigs (with a hardened oviductal ZP) compared with levels found during IVF (with no hardened ZP). Using the bovine model, OF was fractionated by heparin affinity chromatography, and the hardening effect on the ZP was tested for each fraction obtained from a linear gradient of sodium chloride concentration. The highest effect was obtained with the fraction eluted with 0.4 M sodium chloride. Fractions with high-level or low-level effects were processed by on-chip electrophoresis and high-performance liquid chromatography-tandem mass spectrometry. A list of potential proteins responsible for this effect includes OVGP1 and members of the HSP and PDI families.
Cecilia Dieci, Valentina Lodde, Federica Franciosi, Irina Lagutina, Irene Tessaro, Silvia C. Modina, David F. Albertini, Giovanna Lazzari, Cesare Galli, Alberto M. Luciano
In the pig, the efficiency of in vitro embryo production and somatic cell nuclear transfer (SCNT) procedures remains limited. It has been suggested that prematuration treatments (pre-IVM) based on the prolongation of a patent, bidirectional crosstalk between the oocyte and the cumulus cells through gap junction mediate communication (GJC), with the maintenance of a proper level of cAMP, could improve the developmental capability of oocytes. The aim of this study was to assess: 1) dose-dependent effects of cilostamide on nuclear maturation kinetics, 2) the relationship between treatments on GJC functionality and large-scale chromatin configuration changes, and 3) the impact of treatments on developmental competence acquisition after parthenogenetic activation (PA) and SCNT. Accordingly, cumulus-oocyte complexes were collected from 3- to 6-mm antral follicles and cultured for 24 h in defined culture medium with or without 1 μM cilostamide. GJC functionality was assessed by Lucifer yellow microinjection, while chromatin configuration was evaluated by fluorescence microscopy after nuclear staining. Cilostamide administration sustained functional coupling for up to 24 h of culture and delayed meiotic resumption, as only 25.6% of cilostamide-treated oocytes reached the pro-metaphase I stage compared to the control (69.7%; P < 0.05). Moreover, progressive chromatin condensation was delayed before meiotic resumption based upon G2/M biomarker phosphoprotein epitope acquisition using immunolocalization. Importantly, cilostamide treatment under these conditions improved oocyte developmental competence, as reflected in higher blastocyst quality after both parthenogenetic activation and SCNT.
Our objective was to determine whether oxidative damage of rhesus macaque sperm induced by reactive oxygen species (ROS) in vitro would affect embryo development following intracytoplasmic sperm injection (ICSI) of metaphase II (MII) oocytes. Fresh rhesus macaque spermatozoa were treated with ROS as follows: 1 mM xanthine and 0.1 U/ml xanthine oxidase (XXO) at 37°C and 5% CO2 in air for 2.25 h. Sperm were then assessed for motility, viability, and lipid peroxidation. Motile ROS-treated and control sperm were used for ICSI of MII oocytes. Embryo culture was evaluated for 3 days for development to the eight-cell stage. Embryos were fixed and stained for signs of cytoplasmic and nuclear abnormalities. Gene expression was analyzed by RNA-Seq in two-cell embryos from control and treated groups. Exposure of sperm to XXO resulted in increased lipid peroxidation and decreased sperm motility. ICSI of MII oocytes with motile sperm induced similar rates of fertilization and cleavage between treatments. Development to four- and eight-cell stage was significantly lower for embryos generated with ROS-treated sperm than for controls. All embryos produced from ROS-treated sperm demonstrated permanent embryonic arrest and varying degrees of degeneration and nuclear fragmentation, changes that are suggestive of prolonged senescence or apoptotic cell death. RNA-Seq analysis of two-cell embryos showed changes in transcript abundance resulting from sperm treatment with ROS. Differentially expressed genes were enriched for processes associated with cytoskeletal organization, cell adhesion, and protein phosphorylation. ROS-induced damage to sperm adversely affects embryo development by contributing to mitotic arrest after ICSI of MII rhesus oocytes. Changes in transcript abundance in embryos destined for mitotic arrest is evident at the two-cell stage of development.
The mammary gland undergoes development and regression over the course of the ovarian cycle under the regulation of ovarian hormones. Macrophages are implicated as local mediators of this tissue remodeling and may also affect immune surveillance and tumor incidence. To investigate cycle-related changes in macrophage phenotype, mammary gland cells from naturally cycling Cfms-Gfp mice recovered at estrus, metestrus, diestrus, and proestrus were analyzed by flow cytometry. Macrophage expression of MHCII was highest in the proestrus phase, with a 1.6-fold increase compared to the metestrus phase. Similarly, macrophage expression of CD204 was 1.9-fold higher at proestrus compared to estrus. Conversely, macrophage expression of NKG2D was increased at metestrus and diestrus by 7-fold and 5-fold, respectively, compared to estrus. To investigate hormonal regulation of macrophage phenotype, an ovariectomy and hormone replacement model was utilized. Ovariectomized mice were stimulated with exogenous estradiol and progesterone to induce early alveolar development, then given progesterone receptor antagonist RU486 to elicit alveolar bud regression. Progesterone and estradiol in combination reduced macrophage expression of MHCII and CD204 by 5-fold and 3-fold, respectively, and increased macrophage expression of NKG2D by 4-fold. Administration of RU486, following estradiol and progesterone, reversed the macrophage phenotype. These results reveal an essential requirement for ovarian hormones in regulating macrophage phenotype in the mammary gland and indicate that progesterone is particularly critical for controlling macrophage antigen presentation and immune surveillance capacity.
Interleukin (IL)-15 plays a major role in accumulation of unique CD16(−) natural killer (NK) cells in the human endometrium, partly via selective extravasation of peripheral blood (PB) counterparts from local microvascular circulation. While IL-15 exhibits a chemotactic activity for PB CD16(−) NK cells, IL-15 attenuates their binding capacity to dermatan sulfate, the major CD62L ligand expressed on human uterine microvascular endothelial cells (HUtMVECs). These findings suggest that premature action of IL-15 interferes with CD62L-dependent tethering/rolling of PB CD16(−) NK cells on HUtMVECs, which is an early critical process of leukocyte extravasation. In this study, we investigated the mechanisms underlying the IL-15 regulation in the initial CD62L-dependent contact between PB CD16(−) NK cells and HUtMVECs. Unlike other candidate molecules, recombinant IL-15 downregulated CD62L expression on freshly isolated PB CD16(−) NK cells. IL-12 and IL-10, the two known upregulators of CD62L on CD16(−) NK cells, were not detectable in HUtMVECs and endometrial perivascular stromal cells. Binding to immobilized dermatan sulfate increased surface IL-15 receptor-alpha chain expression on CD16(−) NK cells. Under ovarian steroid stimulation, IL-15 was detectable on the surface, but not in the supernatant, of cultured HUtMVECs. Ovarian steroid-induced IL-15 expression on HUtMVECs was not attenuated by chondroitinase ABC (which degrades chondroitin sulfate-A and -C and dermatan sulfate) or sodium acetate buffer (which dissociates cytokines from their cognate receptors). These results suggest that HUtMVECs secrete a less soluble form of IL-15 into local microcirculation. Instead, HUtMVECs bear a membrane-bound form IL-15 under the influence of ovarian steroids, which may be favorable for preventing downregulation of CD62L on PB CD16(−) NK cells and facilitating their initial contact with HUtMVECs.
Tali Lang, Maria Dechant, Victoria Sanchez, Joachim Wistuba, Michele Boiani, Adrian Pilatz, Angelika Stammler, Ralf Middendorff, Gerhard Schuler, Sudhanshu Bhushan, Svetlin Tchatalbachev, Frank Wübbeling, Martin Burger, Trinad Chakraborty, Con Mallidis, Andreas Meinhardt
Uropathogenic Escherichia coli (UPEC)-associated epididymitis is commonly diagnosed in outpatient settings. Although the infection can be successfully cleared using antimicrobial medications, 40% of patients unexplainably show persistent impaired semen parameters even after treatment. Our aim was to investigate whether pathogenic UPEC and its associated virulence factor hemolysin (hlyA) perturb the structural and functional integrity of both the epididymis and sperm, actions that may be responsible for the observed impairment and possibly a reduction of fertilization capabilities. Semen collected from patients diagnosed with E. coli-only related epididymitis showed that sperm counts were low 14 days postantimicrobial treatment regardless of hlyA status. At Day 84 following treatment, hlyA production correlated with approximately 4-fold lower sperm concentrations than in men with hlyA-negative strains. In vivo experiments with the hlyA-producing UPEC CFT073 strain in a murine epididymitis model showed that just 3 days postinfection, structural damage to the epididymis (epithelial damage, leukocyte infiltration, and edema formation) was present. This was more severe in UPEC CFT073 compared to nonpathogenic E. coli (NPEC 470) infection. Moreover, pathogenic UPEC strains prematurely activated the acrosome in vivo and in vitro. Raman microspectroscopy revealed that UPEC CFT073 undermined sperm integrity by inducing nuclear DNA damage. Consistent with these observations, the in vitro fertilization capability of hlyA-treated mouse sperm was completely abolished, although sperm were motile. These findings provide new insights into understanding the possible processes underlying clinical manifestations of acute epididymitis.
In preparation for embryo implantation and pregnancy, the uterine epithelium undergoes a genomic and biological transition that mediates adhesion and invasion of the blastocyst. These events resemble an inflammatory response, and the immune system likely takes an active role in the establishment and maintenance of pregnancy. Although glucocorticoids are primary mediators of the immune system, the functional role of glucocorticoid signaling in the uterine epithelium is not well defined. To investigate the dynamic relationship between glucocorticoids and reproductive hormones, we performed whole-genome microarray analysis in a human uterine endometrial cancer cell line (ECC1 cells) treated with the synthetic glucocorticoid dexamethasone (Dex) alone or in combination with estradiol (E2). Over 10 000 genes were significantly regulated in the presence of Dex and/or E2. Surprisingly, unique targets of Dex and E2 together represented the largest group of regulated genes. Ingenuity pathway analysis found both overlapping and independent regulated networks for each hormone. Several hundred genes were found to be coregulated by Dex and E2, including several that were antagonistically regulated. The effects of glucocorticoids and E2 are mediated primarily through the glucocorticoid receptor (NR3C1) and estrogen receptor (ESR1), respectively. In silico promoter analysis revealed that NR3C1 and ESR1 response elements are enriched in antagonistically regulated genes, and signaling through these receptors was required for antagonism. Glucocorticoid and E2 antagonism of target genes may represent a critical junction between the immune system and female reproductive system. Moreover, identification and ontology analysis of glucocorticoid-regulated genes in a uterine epithelial-like cell line suggests that glucocorticoid signaling regulates important biological functions, including immune cell trafficking and embryonic development.
This study examined the role of CRH-induced ovarian cell apoptosis in the restraint stress (RS)-induced impairment of oocyte competence. Oocyte percentages of apoptotic cumulus cells (CCs) did not differ between stressed and control mice before in vitro maturation (IVM) but became significantly higher in stressed mice after IVM without serum, growth factor, and hormone. The level of Bcl2 mRNA decreased significantly in mural granulosa cells (MGCs) and ovarian homogenates after RS. Whereas ovarian estradiol, testosterone, and IGF1 decreased, cortisol and progesterone increased significantly following RS. RS increased the level of CRH in serum, ovary, and oocyte while enhancing the expression of CRHR1 in CCs, MGCs, and thecal cells. RS down-regulated ovarian expression of glucocorticoid receptor and brain-derived neurotrophic factor. Furthermore, CRH supplementation to IVM medium impaired oocyte developmental potential while increasing apoptotic CCs, an effect that was completely overcome by addition of the CRHR1 antagonist antalarmin. Results suggest that RS impaired oocyte competence by increasing CRH but not glucocorticoids. Increased CRH initiated a latent apoptotic program in CCs and oocytes during their intraovarian development, which was executed later during IVM to impair oocyte competence. Thus, elevated CRH interacted with increased CRHR1 on thecal cells and MGCs, reducing the production of testosterone, estrogen, and IGF1 while increasing the level of progesterone. The imbalance between estrogen and progesterone and the decreased availability of growth factors triggered apoptosis of MGCs and facilitated CC expression of CRHR1, which interacted with the oocyte-derived CRH later during IVM to induce CC apoptosis and reduce oocyte competence.
In the zebrafish, the dynamic expression of the activin-inhibin-follistatin system during folliculogenesis and its exclusive localization (except follistatin) in follicle cells suggests that the system plays important roles in follicle development and that its expression is subject to tight controls, probably by external factors including those derived from the oocyte. We have previously identified zebrafish bone morphogenetic proteins (BMPs) as oocyte factors that may act on follicle cells; however, the targets of BMPs in the follicle cells remain unknown. Considering their spatiotemporal expression in the follicle, we hypothesized that members of the activin-inhibin-follistatin system in follicle cells could be potential target genes of BMPs. In the present study, we developed a novel coculture system to co-incubate zebrafish bone morphogenetic protein 2b or 4 (zfBMP2b/4)-producing Chinese hamster ovary (CHO) cells with zebrafish follicle cells. During incubation, the zfBMPs secreted from the CHO cells would act directly on the follicle cells in a paracrine manner. Our results showed that all activin beta subunits (inhbaa, inhbab, and inhbb) were down-regulated by both zfBMP2b and zfBMP4, while follistatin (fst, an activin-binding protein) and inhibin alpha (inha, an activin antagonist) were significantly up-regulated. The specificity of bone morphogenetic protein (BMP) actions was confirmed by short interfering RNA knockdown of zfBMP4 expression in the CHO cells. The robust response of inha to zfBMPs, together with our previous observation that inha expression surged at the full-grown stage prior to oocyte maturation, led us to hypothesize that the full-grown oocyte may signal upper levels of the hypothalamic-pituitary-gonadal axis its readiness to mature by releasing BMPs, which in turn stimulate inhibin production. As an ovarian hormone and activin antagonist, inhibin may suppress the action of activin in the pituitary to reduce follicle-stimulating hormone but increase luteinizing hormone (LH) biosynthesis. Meanwhile, by increasing the local follistatin level and reducing the activin production, BMPs could help prevent precocious maturation before preovulatory LH surge.
Oocyte-secreted factors (OSFs) maintain the low incidence of cumulus cell apoptosis. In this report, we described that the presence of oocytes suppressed the expression of proapoptotic protein BCL-2-interacting mediator of cell death-extra long (BIMEL) in porcine cumulus cells. Atretic (terminal deoxynu cleotidyl transferase dUTP nick end labeling-positive) cumulus cells strongly expressed BIMEL protein. The healthy cumulus- oocyte complex exhibited a low BIMEL expression in cumulus cell while the removal of oocyte led to an about 2.5-fold (P < 0.5) increased expression in oocytectomized complex (OOX). Coculturing OOXs with denuded oocytes decreased BIMEL expression to the normal level. The similar expression pattern could also be achieved in OOXs treated with exogenous recombinant mouse growth differentiation factor 9 (GDF9), a well-characterized OSF. This inhibitory action of GDF9 was prevented by the addition of a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Luciferase assay further demonstrated that BIM gene expression was forkhead box O3a (FOXO3a)-dependent because mutation of FOXO3a-binding site on the BIM promoter inhibited luciferase activities. Moreover, the activity of BIM promoter encompassing the FOXO3a-binding site could be regulated by GDF9. Additionally, we found that GDF9 elevated the levels of phosphorylated AKT and FOXO3a, and this process was independent of the SMAD signal pathway. Taken together, we concluded that OSFs, particularly GDF9, maintained the low level of BIMEL expression in cumulus cell through activation of the PI3K/FOXO3a pathway.
Postmenopausal women are at a higher risk of ovarian cancer due, in part, to increased levels of gonadotropins such as luteinizing hormone (LH). Gonadotropins and other stimuli are capable of activating two pathways, PKA and PKC, that are altered in ovarian cancer. To determine the role of LH on ovarian cancer, we explored the effects of human chorionic gonadotropin (hCG), an LH mimic, and an activator of the PKC pathway, phorbol-12-myristate 13-acetate (PMA), on ovarian cancer cell-cycle kinetics and apoptosis in Ovcar3 cells. PMA treatment increased cells in the S phase of the cell cycle and initially increased apoptosis after 4 h before diminishing apoptosis after 8 h. Treatment of ovarian cancer cells with hCG had no effect on these parameters. The PKC pathway is known to differentially regulate matrix metalloproteinase (MMP) expression. Results showed that ovarian cancer cells treated with PMA increased MMP7 and MMP10 mRNA levels after 8 h of treatment, and expression remained high after 12 h before decreasing at 24 h. The mRNA expression of extracellular matrix metalloproteinase inducer (BSG), an activator of MMPs, was unaffected by PMA. Due to the role that MMPs play in migration, we investigated the effect of PMA activation of MMPs on ovarian cancer cell migration. The use of the MMP inhibitor GM6001 blocked the increased migratory effects of PMA on ovarian cancer cells. Together, these studies show that activating the PKC pathway causes significant changes in cell cycle kinetics and selective expression of MMPs that are involved in enhancing ovarian cancer cell proliferation and migration.
Maternal diet can significantly skew the secondary sex ratio away from the expected value of 0.5 (proportion males), but the details of how diet may do this are unclear. Here, we altered dietary levels of salt (4% salt in the feed) and/or fructose (10% in the drinking water) of pregnant rats to model potential effects that consumption of a “Western diet” might have on maternofetal growth, development, and sex ratio. We demonstrate that excess fructose consumption before and during pregnancy lead to a marked skew in the secondary sex ratio (proportion of males, 0.60; P < 0.006). The effect was not mediated by selective developmental arrest of female embryos or influenced by fetal position in the uterine horn or sex-specific effects on sperm motility, suggesting a direct effect of glycolyzable monosaccharide on the maternal ovary and/or ovulated oocyte. Furthermore, combined excess maternal consumption of salt and fructose-sweetened beverage significantly reduced fertility, reflected as a 50% reduction in preimplantation and term litter size. In addition, we also noted birth order effects in the rat, with sequential implantation sites tending to be occupied by the same sex.
The level of endothelin (ET)-1, a uterotonin, increases in amniotic fluid during labor. The known metallopeptidases include ET-converting enzyme (ECE), which converts inactive precursor to potent ET-1, and neutral endopeptidase (NEP), which inactivates ET-1. These enzymes are present in fetal membranes, and the aims of this study were to establish the protein expression of the enzymes within the amnion of human fetal membranes. Expressions were compared between amnions obtained before and after term labor using a Western blot analysis and enzyme-linked immunosorbent assay, respectively. The localization of these enzymes was determined using immunohistochemistry. The protein expression of the enzymes and output of bioactive ET-1 in human amnion epithelial cells (HAECs) and mesenchymal cells (HAMCs) were investigated with and without proinflammatory cytokines, oxytocin, and prostaglandin treatment. The effects of sphingosine-1-phosphate (S1P), a bioactive lipid, were also examined. The protein expression of ECE-1 was significantly increased (P < 0.01), whereas that of NEP was significantly decreased, followed by increased ET-1 (P < 0.01), in the amnion obtained after labor (P < 0.01). HAECs and HAMCs primarily expressed ECE-1 and NEP, respectively. The protein expression of ECE-1 was significantly induced (P < 0.01). However, the NEP levels were significantly reduced (P < 0.05) by treatment with TNFalpha and IL1beta followed by the 7.5-fold and 6.5-fold increase of ET-1 (P < 0.01), respectively, in the HAECs. ET-1 was increased 2-fold by S1P (P < 0.01). These results suggest that the altered expression of enzymes regulating the activity of ET-1 during parturition is controlled by inflammatory cytokines.
Cristina Camprubí, Isabel Iglesias-Platas, Alex Martin-Trujillo, Cristina Salvador-Alarcon, Maria Angeles Rodriguez, Dalia Rodriguez Barredo, Franck Court, David Monk
For the past three decades, assisted reproductive technologies (ART) have revolutionized infertility treatments. The use of ART is thought to be safe. However, early investigations suggested that children born as a result of ART had higher risk of diseases with epigenetic etiologies, including imprinting disorders caused by a lack of maternal methylation at imprinting control elements. In addition, large epidemiology studies have highlighted an increased risk of obstetric complications, including severe intrauterine growth restriction (IUGR) in babies conceived using ART. It is plausible that the increased frequency of IUGR may be due to abnormal imprinting because these transcripts are key for normal fetal growth and development. To address this, we have collected a large cohort of placenta and cord blood samples from ART conceptions and compared the imprinting status with appropriate non-ART population. Using a custom DNA methylation array that simultaneously quantifies 25 imprinted differentially methylated regions, we observed similar epigenetic profiles between groups. A multiplex Sequenom iPLEX allelic expression assay revealed monoallelic expression for 11 imprinted transcripts in our placenta cohort. We also observe appropriate gestational age-dependent methylation dynamics at retrotransposable elements and promoters associated with growth genes in ART placental biopsies. This study confirms that children conceived by ART do not show variability in imprinted regulation and that loss-of-imprinting is not commonly associated with nonsyndromic IUGR or prematurity.
Because of recent advancements in reproductive technology, oocytes have attained an increasingly enriched value as a unique cell population in the production of offspring. The growing oocytes in the ovary are an immediate potential source that serve this need; however, complete oocyte growth before use is crucial. Our research objective was to create in vitro-grown (IVG) oocytes that would have the ability to perform specialized activities, including nuclear reprogramming, as an alternative to in vivo-grown oocytes. Bovine oocyte–granulosa cell complexes with a mean oocyte diameter of approximately 100 μm were cultured on Millicell membrane inserts, with culture medium supplemented with 4% polyvinylpyrrolidone (molecular weight, 360 000), 20 ng/ml androstenedione, 2 mM hypoxanthine, and 5 ng/ml bone morphogenetic protein 7. Oocyte viability after the 14-day culture period was 95%, and there was a 71% increase in oocyte volume. Upon induction of oocyte maturation, 61% of the IVG oocytes extruded a polar body. Eighty-four percent of the reconstructed IVG oocytes that used cumulus cells as donor cells underwent cleavage, and half of them became blastocysts. DNA methylation analyses of the satellite I and II regions of the blastocysts revealed a similar highly methylated status in the cloned embryos derived from in vivo-grown and IVG oocytes. Finally, one of the nine embryos reconstructed from the IVG oocytes developed into a living calf following embryo transfer. Fertility of the offspring was confirmed. In conclusion, the potential of a proportion of the IVG oocytes was comparable to that of in vivo-grown oocytes.
To date, in the human seminiferous epithelium, only six associations of cell types have been distinguished, subdividing the epithelial cycle into six stages of very different duration. This hampers comparisons between studies on human and laboratory animals in which the cycle is usually subdivided into 12 stages. We now propose a new stage classification on basis of acrosomal development made visible by immunohistochemistry (IHC) for (pro)acrosin. IHC for acrosin gives results that are comparable to periodic acid Schiff staining. In the human too, we now distinguish 12 stages that differ from each other in duration by a factor of two at most. B spermatogonia are first apparent in stage I, preleptotene spermatocytes are formed in stage V, leptonema starts in stage VII, and spermiation takes place at the end of stage VI. A similar timing was previously observed in several monkeys. Stage identification by way of IHC for acrosin appeared possible for tissue fixed in formalin, Bouin fixative, diluted Bouin fixative, Cleland fluid, and modified Davidson fixative, indicating a wide applicability. In addition, it is also possible to distinguish the 12 stages in glutaraldehyde/osmium-tetroxide fixed/plastic embedded testis material without IHC for acrosin. The new stage classification will greatly facilitate research on human spermatogenesis and enable a much better comparison with results from work on experimental animals than hitherto possible. In addition, it will enable a highly focused approach to evaluate spermatogenic impairments, such as germ cell maturation arrests or defects, and to study details of germ cell differentiation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere