BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The study by Agbor et al. in this issue of Biology of Reproduction provides a novel approach to determine the functions of Sertoli cell and germ cell-expressed Dmrt1.
The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are mainly under the control of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates male and female gonadal function. GnRH is released in a pulsatile manner from the hypothalamus, and the frequency of GnRH pulses determines the dominance of output of LH and FSH from pituitary gonadotrophs. That is, more rapid pulses of GnRH preferentially increase synthesis and secretion of LH, whereas FSH is preferentially stimulated by slower GnRH pulses. The detailed mechanisms underlying this phenomenon remain unknown. Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally identified as a hypothalamic activator of cAMP production in pituitary cells. PACAP is produced within the pituitary gonadotroph as well as in the central nervous system. PACAP stimulates gonadotropin alpha-, LHbeta-, and FSHbeta-subunits as well as receptors for GnRH in the pituitary gonadotropin-secreting cells. In addition, its own receptor, PACAP type I receptor (PAC1R), is also regulated by PACAP in gonadotrophs. GnRH stimulates expression of PACAP as well as PAC1R, and lower frequencies of GnRH pulses preferentially increase PACAP and PAC1R expression in gonadotrophs. Increasing concentrations of PACAP further increase the levels of gonadotropin subunit and that increasing amounts of PAC1R in gonadotrophs potentiates the effects of PACAP or GnRH on gonadotropin subunit expression. In addition, we have observed that GnRH-increased FSHbeta-subunit expression was prevented in the presence of PAC1R antagonist. These observations suggest the involvement of locally produced PACAP and its PAC1R in the differential regulation of specific gonadotropin subunit expression by pulsatile GnRH stimulation. Here, we review the possible involvement of PACAP and its PAC1R in gonadotropin control on the basis of our observations with gonadotroph cell lines.
During early mammalian embryogenesis, there is a wave of DNA demethylation postfertilization and de novo methylation around implantation. The paternal genome undergoes active DNA demethylation, whereas the maternal genome is passively demethylated after fertilization in most mammals except for sheep and rabbits. However, the emerging genome-wide DNA methylation landscape has revealed a regulatory and locus-specific DNA methylation reprogramming pattern in mammalian preimplantation embryos. Here we optimized a bisulfite sequencing protocol to draw base-resolution DNA methylation profiles of several selected genes in gametes, early embryos, and somatic tissue. We observed locus-specific DNA methylation reprogramming in early porcine embryos. First, some pluripotency genes (POU5F1 and NANOG) followed a typical wave of DNA demethylation and remethylation, whereas CpG-rich regions of SOX2 and CDX2 loci were hypomethylated throughout development. Second, a differentially methylated region of an imprint control region in the IGF2/H19 locus exhibited differential DNA methylation which was maintained in porcine early embryos. Third, a centromeric repeat element retained a moderate DNA methylation level in gametes, early embryos, and somatic tissue. The diverse DNA methylation reprogramming during early embryogenesis is thought to be possibly associated with the multiple functions of DNA methylation in transcriptional regulation, genome stability and genomic imprinting. The latest technology such as oxidative bisulfite sequencing to identify 5-hydroxymethylcytosine will further clarify the DNA methylation reprogramming during porcine embryonic development.
Transient exposure to methoxychlor (MXC), an environmental endocrine-disrupting chemical, during fetal and neonatal stages causes ovarian dysfunction in pubertal, adult, and aging animals. Adult animals have reduced number of ovulations and abnormal follicular composition associated with altered gene expression and DNA methylation patterns. To test the hypothesis that the ovarian epigenomic changes induced by MXC are detectable following the exposure period, leading to altered gene expression by adulthood, we conducted a targeted genome-wide methylation study using Nimblegen 3x720K CpG Island Plus RefSeq Promoter Arrays. Control (vehicle), low-dose MXC (20 μg/kg/day), or high-dose MXC (100 mg/kg/day) treatments were administered between Embryonic Day 19 and Postnatal Day (PND) 7. Ovaries were collected at PND 7 immediately after exposure or at adulthood, PND 60. Array hybridizations were conducted with genomic DNA after methylated DNA immunoprecipitation and the array data were analyzed. DNA methylation events were functionally annotated, and candidate loci common to all the treatments or unique to some treatments were identified. Specific loci encoding signaling molecules such as the regulatory subunit p85 of phosphoinositide-3-kinase, insulin-like growth factor-1 receptor, Harvey rat sarcoma viral oncogene, insulin receptor, and forkhead box protein O3 were identified to be hypermethylated in MXC-treated ovaries at PND 7 and/or PND 60. Examination of gene expression changes with TaqMan low-density arrays revealed that nearly 25% of the genes that were assayed were downregulated. These data demonstrate that key molecules in specific signaling pathways such as PTEN signaling, IGF-1 signaling, or rapid estrogen signaling are epigenetically altered in MXC-exposed ovaries, which is associated with ovarian dysfunction and female infertility.
Endometriosis is associated with aberrant gene expression in the eutopic endometrium of women with disease. To determine if the development of endometriotic lesions directly impacts eutopic endometrial gene expression, we sequentially analyzed the eutopic endometrium across the time course of disease progression in a baboon model of induced disease. Endometriosis was induced in baboons (n = 4) by intraperitoneal inoculation of autologous menstrual endometrium. Eutopic endometria were collected during the midsecretory phase (Days 9–11 postovulation) at 1, 3, 6–7, 10–12, and 15–16 mo after disease induction and compared with tissue from disease-free baboons. RNA was hybridized to Human Genome U133 Plus 2.0 Arrays, and data were extracted using Gene-Chip Operating Software. Subsequently, both Gene Set Enrichment Analysis and Ingenuity Pathways Analysis were used to find biological states that have a statistically significant enrichment concomitant with pairwise comparison of human endometriosis arrays. Within 1 mo of induction of the disease, 4331 genes were differentially expressed (P < 0.05). Hierarchical clustering revealed self-segregation into two groups—a) 1, 3, and 10–12 mo and b) 6–7 and 15–16 mo—together with controls. Clustering analysis at each stage of disease validated dysregulation of several signaling pathways, including Nodal-like receptor, EGF, ERK/MAPK, and PI3/AKT. Sequential analysis of the same animals during disease progression demonstrated an early disease insult and a transitory dominance of an estrogenic phenotype; however, as the disease progressed, a progesterone-resistant phenotype became evident. Furthermore, we demonstrate a 38.6% differential gene expression overlap with endometrial samples in the midsecretory phase from women with endometriosis, concomitant with similar dysregulation in human disease candidate genes Fos, Nodal, Suclg2, and Kras, among others. Molecular changes in the eutopic endometrium, associated with endometriosis, are directly impacted by endometriotic lesions, providing strong evidence that it is the disease rather than inherent defective endometrium that results in aberrant gene expression in the eutopic endometrium. Furthermore, this baboon model provides a powerful means whereby the early events associated with the pathology of disease and the resulting infertility may be elucidated.
It is becoming clear that reduced chromosome cohesion is an important factor in the rise of maternal age-related aneuploidy. This reduction in cohesion has been observed both in human and mouse oocytes, and it can be measured directly by an increase with respect to maternal age in interkinetochore (iKT) distance between a sister chromatid pair. We have observed variations in iKT distance even in oocytes from young mice and wondered if such differences may predispose those oocytes displaying the greatest iKT distances to be becoming aneuploid. Therefore, we used two methods, one pharmacological (Aurora kinase inhibitor) and one genetic (Fzr1 knockout), to raise aneuploidy rates in oocytes from young mice (age, 1–3 mo) and to examine if those oocytes that were aneuploid had greater iKT distances. We observed that for both Aurora kinase inhibition and Fzr1 knockout, iKT distances were significantly greater in those oocytes that became aneuploid compared to those that remained euploid. Based on these results, we propose that individual oocytes undergo loss in chromosomal cohesion at different rates and that the greater this loss, the greater the risk for becoming aneuploid.
The epigenetic status of germ cells changes dynamically during development. In this study, we analyzed the dynamics of histone H3 lysine 9 dimethylation (H3K9me2), a highly conserved mark of epigenetic silencing, and the expression of two lysine methyltransferases, G9a/Ehmt2/KMT1C and GLP/Ehmt1/KMT1D, in murine male embryonic germ cells after sex determination. Our previous studies established that G9a and GLP are the primary enzymes for H3K9me2 and predominantly exist as a G9a-GLP heteromeric complex that appears to be a functional H3K9 methyltransferase in vivo. During the period from Embryonic Day (E) 13.5 to E18.5 in mice, gonadal H3K9me2 levels were substantially lower in germ cells than in cells of nongerm lineage. Immunohistochemical analysis showed that during this phase in development, GLP level, but not G9a level, was also significantly lower in male germ cells. However, GLP mRNA was present in E13 and E16 male germ cells, with levels similar to those in cells of nongerm lineage. Interestingly, GLP is upregulated in embryonic male germ cells deficient for Nanos2, which encodes a germ cell-specific RNA-binding protein. Our data suggest that GLP protein expression is posttranscriptionally regulated in murine embryonic male germ cells after sex determination and that low H3K9me2 level results from the absence of GLP (severe reduction of the G9a-GLP heteromeric complex).
The fibrous sheath (FS) is a flagellar cytoskeletal structure unique to sperm that surrounds the outer dense fibers and axoneme. Its primary components are A-kinase anchoring proteins (AKAPs) 3 and 4, which suggests that the FS affects flagellar beating via the scaffolding of signaling pathways necessary for motility. Sperm proteins ROPN1 and ROPN1L bind AKAP3. To determine the role of ROPN1 and ROPN1L in sperm function, we created mice deficient in ROPN1 (RKO), mice deficient in ROPN1L (RLKO), and double knockout mice (DKO). All three strains of mice had normal testicular morphology and spermatogenesis. Only the DKOs had obvious defects in sperm morphology (thinning and shredding of the principal piece), which was accompanied by a reduction in AKAP3 levels. RLKO mice had slightly reduced sperm motility and increased levels of ROPN1. RKO mice had moderately impaired motility and increased levels of ROPN1L. DKO sperm were immotile. We have previously determined that RKO male mice are subfertile, and DKO males are infertile. Together these data indicate that ROPN1L and ROPN1 compensate for each other in the absence of the opposing protein, possibly to maintain AKAP3 incorporation in the FS. Sperm from mice lacking ROPN1L exhibited reductions in both cAMP-dependent protein kinase (PKA) phosphorylation of a 270-kDa protein (perhaps FSCB), and in capacitation-induced tyrosine phosphorylation. Sperm from mice lacking ROPN1 had reduced levels of FSCB and increased tyrosine phosphorylation of noncapacitated sperm. These data demonstrate that mutations in ROPN1 and ROPN1L can cause defects in FS integrity, sperm motility, and PKA-dependent signaling processes, leading to male infertility.
In some animals, such as fish, insects, and cephalopods, the thick egg coat has a narrow canal—a micropyle—through which spermatozoa enter the eggs. In fish, there is no indication that spermatozoa are attracted by eggs from a distance, but once spermatozoa come near the outer opening of the micropyle, they exhibit directed movement toward it, suggesting that a substance exists in this defined region to attract spermatozoa. Since Coomassie Blue (CB) binds preferentially to the micropyle region in flounder, herring, steelhead, and other fish, it probably stains this sperm guidance substance. This substance—a glycoprotein based on lectin staining—is bound tightly to the surface of the chorion, but can be removed readily by protease treatment. Although fertilization in fish (flounder) is possible after removal of this substance, its absence makes fertilization inefficient, as reflected by a drastic reduction in fertilization rate. The sperm “attraction” to the micropyle opening is species specific and is dependent on extracellular Ca2 . Eggs of some insects, including Drosophila, have distinct micropyle caps with CB affinity, which also may prove to assist sperm entry. Our attempts to fertilize fly eggs in vitro were not successful.
Ejaculated bovine spermatozoa retain a pool of RNAs that may have a function in early embryogenesis and be used as predictors of male fertility. The bovine spermatozoal transcript profile remains incomplete because previous studies have relied on hybridization-based techniques, which evaluate a limited pool of transcripts and cannot identify full-length transcripts. The goal of this study was to sequence the complete cryopreserved bovine spermatozoal transcript profile using Illumina RNA-Sequencing (RNA-Seq). Spermatozoal RNA was pooled from nine bulls with conception rate scores ranging from −2.9 to 3.5 and confirmed to exclude genomic DNA and somatic cell mRNA. After selective amplification of poly(A) RNA and high-throughput sequencing, 6166 transcripts were identified via alignment to the bovine genome (UMD 3.1/bosTau6). RNA-Seq transcript levels (n = 9) were highly correlated with quantitative PCR copy number (r2 = 0.9747). The bovine spermatozoal transcript profile is a heterogeneous population of degraded and full-length predominantly nuclear-encoded mRNAs. Highly abundant spermatozoal transcripts included PRM1, HMGB4, and mitochondrial-encoded transcripts. Full-length transcripts comprised 66% of the top 368 transcripts (fragments per kilobase of exon per million fragments mapped [FPKM] > 100) and amplification of the full-length transcript or 5′ and 3′ ends was confirmed for selected transcripts. In addition to the identification of transcripts not previously reported in spermatozoa, several known spermatozoal transcripts from various species were also found. Gene ontology analysis of the FPKM > 100 spermatozoal transcripts revealed that translation was the most predominant biological process represented. This is the first report of the spermatozoal transcript profile in any species using high-throughput sequencing, supporting the presence of mRNA in spermatozoa for further functional and fertility studies.
The present work aimed at evaluating the potential of intramuscular injection of a hormone-coding gene as an approach for gene therapy in fish. A plasmid containing luteinizing hormone (Lh) in a single-chain (sc) form, pCMV-scLh, was chosen as the coding gene, and sea bass was chosen as the target species. In vivo injection of pCMV-scLh in muscle of juvenile sea bass rendered plasma Lh levels higher than 50 ng/ml in 40% of the injected fish, while these Lh levels were only detected in 4% of controls. Injections performed on spermiating broodstock demonstrated that this strategy produced an active Lh able to increase sperm production without affecting its quality, in terms of density. Compared with the injection of a recombinant single-chain Lh, plasmid injection provoked longer-lasting and higher plasma Lh levels. These results show that sea bass skeletal muscle is able to uptake plasmid DNA and to secrete the encoded protein to the bloodstream. Therefore, we propose somatic gene transfer as a realistic approach for hormone therapy of dysfunctions due to low hormone levels in fish or just to synchronize spawning.
Natriuretic peptide type C (NPPC) and its receptor natriuretic peptide receptor 2 (NPR2) regulate cGMP in ovarian follicles and participate in maintaining oocyte meiotic arrest. We investigated the regulation of Nppc expression in mouse granulosa cells in vivo and in vitro. In mural granulosa cells (MGCs) in vivo, eCG caused an increase in Nppc mRNA, and subsequent human chorionic gonadotropin (hCG) treatment caused a decrease. A culture system was established for MGCs isolated from follicles not stimulated with equine chorionic gonadotropin to further define the mechanisms controlling Nppc expression. In this system, expression of Nppc mRNA was increased by estradiol (E2), with augmentation by follicle-stimulating hormone (FSH), but FSH or luteinizing hormone (LH) alone had no effect. Thus, estrogens are important for regulating Nppc expression, probably by feedback mechanisms enhancing the action of gonadotropins. In MGCs treated with E2 plus FSH in vitro, subsequent treatment with EGF, but not LH, decreased Nppc mRNA. MGCs express higher levels of both Nppc and Lhcgr mRNAs than cumulus cells. Oocyte-derived paracrine factors suppressed cumulus cell Lhcgr but not Nppc expression. Thus, higher Nppc expression by MGCs is not the result of oocyte suppression of expression in cumulus cells. Another possible regulator of the LH-induced NPPC decrease is NPR3, an NPPC clearance receptor. Human chorionic gonadotropin increased Npr3 expression in vivo and LH increased Npr3 mRNA in cultured MGCs, independently of EGF receptor activation. Interestingly, despite the increase in Npr3 mRNA, the hCG-induced decrease in ovarian NPPC occurred normally in an Npr3 mutant (lgj), thus NPR3 probably does not participate in regulation of ovarian NPPC levels or oocyte development.
The mammalian ovarian lifespan is determined at the time of birth through a delicate balance of oocyte survival and apoptosis as primordial follicles form, and the mechanism by which germ cells die is not understood. We hypothesized that two BCL2 family proteins, BCL2 and MCL1, may be responsible for regulating neonatal oocyte survival. Previous work has shown that BCL2 is important for germ cell survival in adult mouse ovaries, but no work has been done to examine its role at the time of birth. To elucidate the effects of BCL2 in the neonatal ovary, we examined ovaries of both Bcl2-overexpressing and knockout transgenic mice. When compared to wild-type mice, neither Bcl2 overexpression nor abrogation significantly altered ovarian histology. Another BCL2 family protein, MCL1, is expressed in human oocytes during ovarian development, suggesting a role for MCL1 in oocyte survival. To test this, we first examined the expression of MCL1 in the newborn mouse ovary. MCL1 was localized to both oocytes and somatic cells during primordial follicle formation. Subsequently, we used an in vitro organ culture system to identify a role for MCL1 in oocyte survival. We found that inhibition of MCL1 with an antibody to MCL1 in culture resulted in a reduced number of germ cells and an increase in cyst breakdown. Our data demonstrate that while BCL2 is not likely involved in perinatal oocyte survival, MCL1 may be an important regulator of the ovarian primordial follicle reserve.
Gonadotropin-releasing hormone (GnRH) binds to pituitary gonadotroph receptors and initiates [Ca2 ]i signals and gonadotropin secretion. Here, we recorded GnRH-induced Ca2 signals in acute pituitary slices from both intact and castrated male mice 15 and 45 days after orchiectomy (GnX). Cells responding with “noncanonical” sequences of Ca2 signaling to increasing GnRH concentrations ([GnRH]; oscillatory responses at a given [GnRH] and transient responses at both lower and higher concentrations) were augmented significantly in the castrated mice. Also, 15 days after GnX the number and size of gonadotrophs were augmented, confirming earlier anatomical studies. Hypertrophied gonadotrophs after 15 days after GnX tended to display GnRH-induced Ca2 responses of greater amplitude. Furthermore, median effective dose (ED50) for GnRH decreased from 0.17 nM (control) to ∼0.07 nM after GnX, suggesting increased GnRH responsiveness of the gonadotroph population. The progression of Ca2 response patterns reported in control male rat gonadotrophs (oscillations declining and spike-plateau responses dominating at increasing [GnRH]) was less conspicuous in mouse gonadotrophs in situ. Also, GnX-induced alterations in rat gonadotrophs (persistence of Ca2 oscillations even at [GnRH] >100 nM) were not mirrored by mouse gonadotrophs in situ. Contrary to observations in intact and 15-day castrated mice, after 45 days of GnX the hump component diminished and oscillations were augmented with increasing [GnRH], but Ca2 response patterns of gonadotrophs in situ remained virtually unchanged in response to [GnRH]s >1 nM, suggesting dose discrimination failure at high [GnRH]s. This study underscores the notion that GnRH responsiveness and the effects of testosterone deficiency may not be equal in pituitary gonadotrophs across species.
Circulating nucleic acids (CNAs) are free-floating, cell-free DNA and RNA molecules in the circulation of healthy and diseased humans and animals. The aim of this study was to identify differences in CNA distribution in serum samples from multiparous pregnant (n = 24) and nonpregnant (n = 16) dairy cows at different days of gestation (Days 0, 20, and 40). A modified serial analysis of gene expression procedure was used to generate concatemerized short sequence tags from isolated serum DNA. A total of 6.1 × 106 tags were recovered from analyzed samples (n = 40). Significant differences between the pregnant and nonpregnant groups were detected in chromosomal regions, protein-coding sequences, and single genes (P < 0.05). Approximately 23% (1.4 × 106 tags) of the total sequence pool were present exclusively in the analyzed serum samples of pregnant cows. Of these tag sequences, seven originated from genomic regions and 13 from repetitive elements. Comparative BLAST analysis identified the repetitive tags as BovB (non-long terminal repeat retrotransposons/long interspersed nuclear elements), Art2A, BovA2, and Bov-tA2 (short interspersed nuclear elements). To our knowledge, this is the first study to comprehensively characterize the circulating, cell-free DNA profile in sera from pregnant and nonpregnant cows across early gestation.
Preeclampsia is a pregnancy-specific disease characterized by concurrent development of hypertension, proteinuria, and oxidative stress in the placenta. In this study, we induced hypoxic stress in rats during pregnancy to reproduce physiological conditions associated with preeclampsia. The maternal weight of hypoxic pregnant rats was lower than that of normoxic animals. The level of calcium ions were also increased in urine collected from the hypoxic animals. In contrast, urinary concentrations of sodium, chloride, and potassium ions declined in hypoxic rats, and developed to proteinuria. The expression of genes known as two biomarkers, sFLT1 (for preeclampsia) and HIF-1alpha (for hypoxia), were highly induced in the placenta, duodenum, and kidney by hypoxic stress. The overexpression of sFLT1 and HIF-1alpha demonstrated that our experimental conditions closely mimicked ones that are associated with preeclampsia. In the present study, we measured the expression of calcium transporters (TRPV5, TRPV6, PMCA1, NCKX3, NCX1, and CaBP-9k) in the placenta, duodenum, and kidney under hypoxic conditions on Gestational Day 19.5 in rats. Placental TRPV5, TRPV6, and PMCA1 expression was up-regulated in the hypoxic rats, whereas the levels of NCX1 and CaBP-9k were unchanged. In addition, NCKX3 expression was increased in the placenta of hypoxic rats. Duodenal expression of CaBP-9k, TRPV5, TRPV 6, and PMCA1 was decreased in the hypoxic rats, whereas levels of NCXs were not altered. Renal expression of NCKX3 and TRPV6 was increased, whereas NCX1 was decreased in the hypoxic rats compared to the normoxic controls. Taken together, these results indicate that physiological changes observed in the hypoxic rats were similar to ones associated with preeclampsia. Expression of calcium transport genes in the placenta, duodenum, and kidney perturbed by hypoxic stress during pregnancy may cause calcium loss in the urine, and thereby induce calcium-deficient characteristics of preeclampsia.
Extravillous cytotrophoblast (EVCT) is responsible for trophoblast invasion, which is an important process during placentation. Dysregulation of the process is associated with a wide range of pregnancy complications. Adrenomedullin (ADM) is a polypeptide expressed most abundantly in first-trimester placentas. We hypothesized that ADM modulated the invasion of human EVCT. Our results showed that ADM enhanced invasion and migration but not proliferation in two EVCT cell lines, JEG-3 and TEV-1. Similar observation can also be obtained in primary EVCTs. JEG-3 and TEV-1 cells expressed ADM receptor components as demonstrated by immunostaining, Western blotting, and RT-PCR. The ADM antagonist ADM22–52 (ADM C-terminal 22-52 amino acid fragment) suppressed ADM-induced invasion and migration, confirming that ADM exerted its biological effects through its classical receptors. The stimulatory effect of ADM on EVCT invasiveness was associated with induction (P < 0.05) of urokinase plasminogen activator (uPA) and nitric oxide synthase (NOS) expression and activity. Silencing of uPA by siRNA transfection abolished the stimulatory effect of ADM, suggesting that uPA is the key mediator for ADM-induced invasion. The involvement of NO in enhancing the invasion and biosynthesis of uPA in EVCT cell lines was confirmed by using pharmacological inhibitors of NOS and NO donors. ADM-mediated NO production also increased protein S-nitrosylation of JEG-3 cells. S-nitrosylation activated uPA in vitro and induced a higher proteinase activity. These findings provide indications that ADM and its downstream NO signaling may play an important role in modulating human EVCT functions.
Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders including intrauterine growth restriction. Oxidative stress occurs when accumulation of reactive oxygen species damages DNA, proteins, and lipids, an outcome normally limited by antioxidant defenses. Dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFAs) may limit oxidative stress by increasing antioxidant capacity, but n-3 PUFAs are also highly susceptible to lipid peroxidation; so n-3 PUFA supplementation is potentially harmful. Here we examined the effect of n-3 PUFAs on placental oxidative stress and on placental and fetal growth in the rat. We also investigated whether diet-induced changes in maternal plasma fatty acid profiles are associated with comparable changes in placental and fetal tissues. Rats were fed either standard or high n-3 PUFA diets from Day 1 of pregnancy, and tissues were collected on Day 17 or 22 (term = Day 23). Dietary supplementation with n-3 PUFAs increased fetal (6%) and placental (12%) weights at Day 22, the latter attributable primarily to growth of the labyrinth zone (LZ). Increased LZ weight was accompanied by reduced LZ F2-isoprostanes (by 31% and 11% at Days 17 and 22, respectively), a marker of oxidative damage. Maternal plasma PUFA profiles were altered by dietary fatty acid intake and were strongly predictive of corresponding profiles in placental and fetal tissues. Our data indicate that n-3 PUFA supplementation reduces placental oxidative stress and enhances placental and fetal growth. Moreover, fatty acid profiles in the mother, placenta, and fetus are highly dependent on dietary fatty acid intake.
Reorganization of myometrial extracellular matrix (ECM) is essential for the uterus to achieve powerful synchronous contractions during labor. Remodeling of the ECM has been implicated in membrane rupture and cervical ripening. Because maternal obesity is associated with both delivery disorders and elevated circulating leptin levels, this study aimed to assess the ability of leptin to interfere with lipopolysaccharide (LPS)-induced myometrial ECM remodeling. Myometrial biopsy samples were obtained from women undergoing cesarean delivery before labor onset. Myometrial explants were incubated for 48 h with LPS and leptin. LPS challenge was associated with a marked decrease in collagen content and in heat shock protein (HSP) 47 expression, reflecting a disruption in collagen synthesis and an increase in matrix metalloproteinase (MMP) 2 and MMP9 activity and in MMP2, MMP9, and MMP13 expression. Leptin prevented an LPS-induced decrease in myometrial collagen content in a concentration-dependent manner. This effect was associated with an increase in HSP47 expression and a decrease in MMP2 and MMP9 activity and expression. These results show that leptin prevents LPS-induced myometrial remodeling through collagen synthesis stimulation and inhibition of MMP2 and MMP9. Our study strengthens the hypothesis that leptin plays a role in the development of obesity-related delivery disorders.
The BDADs (bis-[dichloroacetyl]-diamines) are compounds that can inhibit spermatogenesis via blocking the metabolism of vitamin A. We utilized one specific BDAD, WIN 18,446, to manipulate the endogenous production of retinoic acid (RA) in the testis to further investigate the action of this compound on mammalian sperm production. Transient treatment of adult male mice with WIN 18,446 blocked spermatogonial differentiation and induced significant changes in the cycle of the seminiferous epithelium. WIN 18,446 treatment of neonatal mice also blocked spermatogonial differentiation and, followed by injection of RA, induced synchronous spermatogenesis in adulthood. The net result was pulsatile, rather than normal continuous, release of sperm from the seminiferous epithelium. This study describes a novel technique that can enrich for specific germ cell populations within the testis, representing a valuable new tool for studying spermatogenesis.
DMRT1 is an evolutionarily conserved transcriptional factor expressed only in the postnatal testis, where it is produced in Sertoli cells and germ cells. While deletion of Dmrt1 in mice demonstrated it is required for postnatal testis development and fertility, much is still unknown about its temporal- and cell-specific functions. This study characterized a novel mouse model of DMRT1-deficient germ cells that was generated by breeding Dmrt1-null (Dmrt1−/−) mice with Wt1-Dmrt1 transgenic (Dmrt1 /−;tg) mice, which express a rat Dmrt1 cDNA in gonadal supporting cells by directing it from the Wilms tumor 1 locus in a yeast artificial chromosome transgene. Like Dmrt1−/− mice, male Dmrt1−/− transgenic mice (Dmrt1−/−;tg) were infertile, while female mice were fertile. Immunohistochemistry and Western blot analysis showed transgenic DMRT1 expressed in supporting cells of the newborn gonads of both sex and in Sertoli cells of the testis afterbirth. Sertoli cells were evaluated by electron microscopy, revealing that maturation of Dmrt1−/−;tg Sertoli cells was incomplete. Morphological analysis of testes from 42-day-old mice showed that, compared to Dmrt1−/− mice, Dmrt1−/−;tg mice have improved seminiferous tubule structure, with lumens present in many. Immunohistochemistry of the polarity markers ESPIN and NECTIN-2 showed that DMRT1 in Sertoli cells is required for NECTIN-2 expression and influences organization of ectoplasmic specializations. Further functional analyses of the transgene on a Dmrt1−/− background showed that it did not rescue the decrease in Dmrt1−/− testis size, but when expressed on a wild-type background, exogenous DMRT1 prevented the normal age-related decline in testis size and enhanced sperm progressive motility. The studies suggest that DMRT1 in Sertoli cells regulates tubule morphology, spermatogenesis, and sperm function via its effects on Sertoli cell maturation and polarity. Furthermore, expression and function of transgenic DMRT1 in Sertoli cells establishes a novel mouse model of DMRT1-deficient germ cells generated by breeding Dmrt1-null mice with Wt1-Dmrt1 transgenic mice (rescue; Dmrt1−/−;tg).
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere