BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.
The seasonal patterns of two primary plasma androgens, testosterone (T) and dehydroepiandrosterone (DHEA), were assessed in adult male alligators from the Merritt Island National Wildlife Refuge, a unique barrier island environment and home to the Kennedy Space Center in Florida. Samples were collected monthly from 2008 to 2009, with additional samples collected at more random intervals in 2007 and 2010. Plasma T concentrations peaked in April, coincident with breeding and courtship, and declined rapidly throughout the summer. Seasonal plasma T patterns in smaller though reproductively active adult males differed from those in their larger counterparts during the breeding season. Both size classes showed significant increases in plasma T concentration from February to March, at the beginning of the breeding season. However, smaller adults did not experience the peak in plasma T concentrations in April that were observed in larger adults, and their concentrations were significantly lower than those of larger males for the remainder of the breeding season. Plasma DHEA concentrations peaked in May and were significantly reduced by June. This is the first study to demonstrate the presence of DHEA in a crocodilian, and the high plasma DHEA concentrations that paralleled the animals' reproductive activity suggest a reproductive and/or behavioral role in adult male alligators. Similar to androgen variations in some birds, plasma DHEA concentrations in the alligators were considerably higher than T concentrations during the nonbreeding season, suggesting a potential role in maintaining nonbreeding seasonal aggression.
Insight regarding mechanisms controlling gene expression in the spermatogonial stem cell (SSC) will improve our understanding of the processes regulating spermatogenesis and aid in treating problems associated with male infertility. In the present study, we explored the global gene expression profiles of the glial cell line-derived neurotrophic factor (GDNF)-regulated transcription factors Ets (E-twenty-six) variant gene 5 (Etv5); B-cell chronic lymphocytic leukemia (CLL)/lymphoma 6, member B (Bcl6b); and POU domain, class-3 transcription factor 1 (Pou3f1). We reasoned that these three factors may function as a core set of transcription factors, regulating genes responsible for maintaining the SSC population. Using transient siRNA oligonucleotides to individually target Etv5, Bcl6b, and Pou3f1 within mouse SSC cultures, we examined changes to the global gene expression profiles associated with these transcription factors. Only modest overlaps in the target genes regulated by the three factors were noted, but ETV5 was found to be a critical downstream regulator of GDNF signaling that mediated the expression of several known SSC self-renewal related genes, including Bcl6b and LIM homeobox 1 (Lhx1). Notably, ETV5 was identified as a regulator of Brachyury (T) and CXC chemokine receptor, type 4 (Cxcr4), and we showed that ETV5 binding to the Brachyury (T) gene promoter region is associated with an active state of transcription. Moreover, in vivo transplantation of SSCs following silencing of Brachyury (T) significantly reduced the number of donor cell-derived colonies formed within recipient mouse testes. These results suggest Brachyury is of biological importance and functions as part of GDNF/ETV5 signaling to promote self-renewal of mouse SSCs cultured in vitro.
CDK-activating kinase (CAK) phosphorylates threonine 161 (T161) of CDC2, a catalytic subunit of maturation/M-phase promoting factor (MPF), and is essential for MPF activation in mitosis. CAK has been thought to consist of a catalytic subunit, a regulatory subunit and an assembly factor: CDK7, CCNH (also known as cyclin H), and MNAT1 (also known as MAT1), respectively. Although it is known that the meiotic progression of oocytes is regulated by MPF activity, the role of CAK in meiosis is still unclear. In the present study, we attempted to confirm the involvement of CAK in the meiotic progression of porcine immature oocytes. The T161 phosphorylation of CDC2 was found around germinal vesicle breakdown (GVBD) and thereafter from 18 to 48 h of culture. The GVBD rate at 18 h was increased by the overexpression of CDC2 but not mutated CDC2 (T161 replaced by alanine). Transcripts of CDK7, CCNH, and MNAT1 were detectable throughout the culture period, and their protein distribution patterns during oocyte maturation were the same as those reported in mitotic somatic cells. Overexpression of CDK7 or CCNH accelerated the meiotic events, such as meiotic resumption, T161 phosphorylation of CDC2, CCNB (also known as Cyclin B) synthesis, and MPF activation. On the contrary, knockdown of CDK7 or CCNH caused the inhibition of these meiotic events. In contrast, overexpression and antisense RNA injection of MNAT1 had no influence on meiotic resumption, the status of T161 phosphorylation of CDC2, or MPF activity. These results suggest that CDK7 and CCNH activate CDC2 by T161 phosphorylation and make up CAK, which is required for normal meiotic progression during porcine oocyte maturation.
Traditionally,oxytocin (OT) is well known to play a crucial role in the regulation of cyclic changes in the uterus, implantation of the embryo, and parturition. Recently, an additional role for OT has been identified in several types of cancer cells in which OT acts as a growth regulator. In endometrial cancer cells, OT is known to efficiently inhibit cellular proliferation. In the present study, we show that OT increases invasiveness of human endometrial carcinoma (HEC) cells, which are otherwise resistant to the growth-inhibiting effects of OT. Using pharmacological inhibitors, invasion assay, RNA interference, and immunofluorescence, we found that OT enhances the invasive properties of HEC cells through up-regulation of X-linked inhibitor of apoptosis protein (XIAP), matrix-metalloproteinase 2 (MMP2), and matrix-metalloproteinase 14 (MMP14). In addition, we show that OT-mediated invasion is both cyclooxygenase 1 (PTGS1) and cyclooxygenase-2 (PTGS2) dependent via the phosphatidylinositol 3-kinase/AKT (PIK3/AKT) pathway. PTGS2 knockdown by shRNA resulted in XIAP down-regulation. We also show that OT receptor is overexpressed in grade I to III endometrial cancer. Taken together, our results describe for the first time a novel role for OT in endometrial cancer cell invasion.
Successful establishment and maintenance of pregnancy can be attained only through optimum conceptus-maternal cross talk. Despite significant progress in our understanding of the temporal changes in the transcriptome of the uterine endometrium, we have only a rudimentary knowledge of the genes and pathways governing growth and development of the bovine conceptus. In particular, very little information exists for the posthatching embryo and elongating conceptus. This period of development is arguably the most important, as approximately 40% of all embryonic loss occurs between Days 8 and 17 of pregnancy in cattle. Here, we describe the global transcriptome profile of the bovine conceptus at five key stages of its pre- and peri-implantation growth (Days 7, 10, 13, 16, and 19) using state-of-the-art RNA sequencing techniques. More than 287 million reads were generated at the five stages, and more than 22 700 unique transcripts were detected. Analysis of variance followed by self-organizing maps identified differentially regulated (P < 0.05) genes organized in nine gene clusters forming a sequential transcript dynamics across these developmental stages. Of particular interest, genes in clusters 3 (n = 236) and 6 (n = 1409) were significantly up-regulated on Days 16 and 19, suggesting a role in maternal recognition and initiation of implantation. This transcriptome analysis of the bovine conceptus will provide a blueprint of the dynamic changes in gene expression occurring during maternal recognition and implantation and will complement existing knowledge of the temporal changes in the endometrial transcriptome, thus facilitating a better understanding of conceptus-maternal cross talk during the peri-implantation period of pregnancy.
Fertility control is a potential method for managing overabundant wildlife populations; however, current technology is limited by duration of treatment efficacy and unacceptable side effects. The objective of this study was to determine the efficacy of a single immunization with gonadotropin-releasing hormone (GnRH) vaccine to suppress reproductive function in pregnant female elk and to evaluate potential behavioral and pathological side effects of treatment. Eighteen captive adult female elk were randomly allocated to one of two experimental groups. Ten females were administered a conjugated and adjuvanted GnRH vaccine intramuscularly, and eight elk received an adjuvant sham vaccine without conjugated GnRH. We compared success of existing pregnancy, neonatal survival, subsequent fertility, reproductive behavior rates, and side effects of treatment between January 2006 and January 2010. The GnRH vaccination did not affect existing pregnancy or calf survival during the year that it was applied; however, it reduced the proportion of pregnant females for 3 yr. Male precopulatory behavior rates exhibited toward GnRH-vaccinated females tended to be greater than those directed at sham-vaccinated females during the second half of the breeding season, when GnRH vaccinates continued to be proceptive. Strong immune and inflammatory responses, including robust GnRH antibody concentrations in GnRH vaccinates, and sterile pyogranulomatous injection site abscesses in both groups, were consistent with vaccination. In conclusion, this GnRH vaccine resulted in prolonged, albeit reversible, impairment of fertility, and is associated with extended reproductive behaviors and partial suppression of hypothalamic-pituitary-gonadal axis function in captive female elk.
Leydigcells are the testosterone-producing cells in the adult male. Adult Leydig cells (ALCs) develop from stem Leydig cells (SLCs) through at least two intermediate cells, progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). Microarray gene expression was used to identify the transcriptional changes that occur with the differentiation of SLCs to PLCs and, thus, with the entry of SLCs into the Leydig cell lineage; to comprehensively examine differentiation through the development of ALCs; and to relate the pattern of gene expression in SLCs to that in a well-established stem cell, bone marrow stem cells (BSCs). We show that the pattern of gene expression by SLCs was more similar to the expression by BSCs, an established stem cell outside the male reproductive tract, than to any of the cells in the Leydig cell developmental lineage. These results indicated that the SLCs have many of the molecular characteristics of other stem cells. Pathway analysis indicated that development of Leydig cells from SLCs to PLCs was associated with decreased expression of genes related to adhesion and increased expression of genes related to steroidogenesis. Gene expression changes between PLCs and ILCs and between ILCs and ALCs were relatively minimal, suggesting that these cells are highly similar. In contrast, gene expression changes between SLCs and ALCs were quite distinct.
Angiotensin II (AGT-2) induces follicular prostaglandin release in a number of species and ovulation in rabbits. Conversely, AGT-2 antagonists block ovulation in cattle. To determine the mechanism of action of AGT-2, we used a bovine granulosa cell model in which luteinizing hormone (LH) increased the expression of genes essential for ovulation in a time- and dose-dependent manner. The addition of AGT-2 to LH-stimulated cells significantly increased abundance of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA and protein, whereas AGT-2 alone had no effect. Upstream of PTGS2, AGT-2 increased abundance of mRNA encoding the epidermal growth factor-like ligands amphiregulin (AREG) and epiregulin (EREG) at 6 h posttreatment and abundance of a disintegrin and metalloprotease 17 (ADAM17), a sheddase, within 3 h of treatment. Inhibiting sheddase activity abolished the stimulatory effect of AGT-2 on AREG, EREG, and PTGS2 mRNA. The addition of selective AGT-2 antagonists to cells stimulated with LH plus AGT-2 demonstrated that AGT-2 did not act through the type 1 receptor and did not increase mitogen-activated protein kinase 3/1 phosphorylation. Combined with previous data from studies in vitro, we conclude that AGT-2 is an essential cofactor for LH in the early increase of ADAM expression/activity that induces the cascade of events leading to ovulation.
The transforming growth factor beta (TGFB) protein family is renowned for its diverse roles in developmental biology including reproduction. Gremlin is a member of the differential screening-selected gene aberrative in neuroblastoma (DAN)/cerberus family of bone morphogenetic protein (BMP) antagonists. Recent studies on gremlin focus on its involvement in embryonic skeletal, lung, and kidney development. To define the role of gremlin (Grem1) in female reproduction, we analyzed postnatal folliculogenesis using global and conditional knockout (cKO) mice for gremlin. Grem1−/− mice die within 48 h after birth, and ovaries collected from neonatal Grem1−/− mice demonstrated reduced oocyte numbers and delayed primordial follicle development. Transplanting Grem1−/− neonatal ovaries showed that folliculogenesis proceeded to large antral follicle stage, but Grem1−/− ovaries contained corpora lutea-like structures not found in control-transplanted ovaries. However, Grem1 cKO mice had comparable fertility to control mice. These data suggest that gremlin plays a previously uncharacterized role in the regulation of oocyte numbers and the timing of primordial follicle development, but either it is not required for later folliculogenesis or its loss is possibly compensated by other BMP antagonists.
Preservationof mammalian spermatozoa now plays an important role in fertility treatment, in generating hybrid animals, and in protecting endangered or extinct species. To date, the most common method of sperm preservation is freezing in liquid nitrogen (LN2). However, this method requires constant supplementation of the LN2 and also involves some safety issues in transporting LN2. Here we describe a new sperm preservation method that does not involve freezing. Mouse spermatozoa were cultured in four basic media (HEPES-CZB, potassium simplex optimization medium with amino acids [KSOMaa],K-rich nuclear isolation medium [NIM], and PBS) with or without 10% bovine serum albumin (BSA) or 15% Ficoll as a protectant, and preserved in a refrigerator for up to 6 mo. These preserved sperm were then injected into fresh oocytes and cultured to the blastocyst stage in vitro or transferred into recipient females to demonstrate their genetic integrity. The results of sperm preservation for 1 mo suggested that NIM and PBS were better media than HEPES-CZB or KSOMaa and that BSA and Ficoll could improve either blastocyst or full-term development. Surprisingly, 18 pups were obtained using spermatozoa stored in these media for 6 mo. Moreover, this new method allowed easy production of healthy offspring even after transport of spermatozoa between two countries by aircraft at room temperature. In conclusion, this method allows for easy long-term preservation of mouse spermatozoa in a simple, modified medium at refrigerator temperature with very low cost and wide application.
Spermatogenesis, the process of generating haploid sperm capable of fertilizing the female gamete, requires the timely transport into the nucleus of transcription and chromatin-remodeling factors, mediated by members of the importin (IMP) superfamily. Previous IMP expression profiling implies a role for IMPalpha2 in testicular germ cells late in spermatogenesis. To identify interacting proteins of IMPalpha2 that are potential drivers of germ cell development, we performed yeast two-hybrid screening of an adult mouse testis library. IMPalpha2 interactions were verified by coimmunoprecipitation approaches, whereas immunohistochemical staining of testis sections confirmed their coexpression with IMPalpha2 in specific testicular cell types. Key interactors identified were a novel isoform of a cysteine and histidine rich protein (Chrp), a protein inhibitor of activated STAT (PIAS) family member involved in transcriptional regulation and sumoylation, Androgen receptor interacting protein 3 (Arip3), and Homologous protein 2 (Hop2), known to be involved in homologous chromosome pairing and recombination, all of which are highly expressed in the testis and show mRNA expression profiles similar to that of IMPalpha2 throughout testicular development. This is the first study to identify binding partners of IMPalpha2 in the developmental context of germ line development, and we propose that the regulated expression and timely IMPalpha2-mediated nuclear transport of these proteins may coordinate events during spermatogenesis, with IMPalpha2-mediated nuclear localization representing a potentially critical developmental switch in the testis.
Ourprevious studies showed that the prototypical testicular toxic phthalate monoester, mono-(2-ethylhexyl) phthalate (MEHP), suppresses Sertoli cell TIMP2 levels and allows for the activation of MMP2 in seminiferous epithelium. Activation of MMP2 is important for triggering germ cell apoptosis and instigating germ cell detachment from Sertoli cells. These novel findings led us to examine the transcriptional regulation of the Timp2 gene that accounts for the decrease in Sertoli cell TIMP2 levels following MEHP exposure. Sequential deletion of the Timp2 5′-upstream activating sequence (1200 bp) was used to survey transcriptional activation in the Timp2 promoter region in response to MEHP. Results indicate that under control conditions in rat Sertoli cells, CCAAT enhancer-binding protein alpha (CEBPA) acts as a transactivator to initiate Timp2 gene transcription, and its action is deactivated by exposure to MEHP. By contrast, MYC protein acts as an inhibitor of Timp2 gene transcription, and its activity is increased after MEHP treatment. Addition of follicle-stimulating hormone (FSH) to cells causes translocation of CEBPA into the Sertoli cell nucleus and rescues MEHP-suppressed TIMP2 levels. Down-regulation of TIMP2 expression by MEHP exposure is blocked by forskolin (a cAMP-elevating agent), suggesting that the decrease in Sertoli cell TIMP2 expression following MEHP exposure is cAMP-dependent. Taken together, these data indicate that MEHP both disrupts the FSH-stimulated cAMP signaling pathway and activates the inhibitory signaling mediated by MYC protein, to ultimately account for the cellular mechanism underlying the decreased expression of TIMP2 in Sertoli cells.
Esequiel Rodriguez, Dana A. Weiss, Jennifer H. Yang, Julia Menshenina, Max Ferretti, Tristan J. Cunha, Dale Barcellos, Lok Yun Chan, Gail Risbridger, Gerald R. Cunha, Laurence S. Baskin
The adult mouse penis represents the end point of masculine sex differentiation of the embryonic genital tubercle and contains bone, cartilage, the urethra, erectile bodies, several types of epithelium, and many individual cell types arrayed into specific anatomical structures. Using contemporary high-resolution imaging techniques, we sought to provide new insights to the current description of adult mouse penile morphology to enable understanding of penile abnormalities, including hypospadias. Examination of serial transverse and longitudinal sections, scanning electron microscopy, and three-dimensional (3D) reconstruction provided a new appreciation of the individual structures in the adult mouse penis and their 3D interrelationships. In so doing, we discovered novel paired erectile bodies, the male urogenital mating protuberance (MUMP), and more accurately described the urethral meatus. These morphological observations were quantified by morphometric analysis and now provide accurate morphological end points of sex differentiation of mouse penis that will be the foundation of future studies to identify normal and abnormal penile development.
In their journey to acquire the ability to fertilize the egg, numerous intracellular signaling systems are activated in spermatozoa, leading to an increase in protein tyrosine phosphorylation. Although the JAK/STAT signaling pathway is usually associated with the activation of transcription of specific genes, our laboratory previously demonstrated the presence of the IL6 receptor (IL6R) and the Janus kinase 1 (JAK1) in human spermatozoa, a cell that is mostly transcriptionally inactive. In order to determine the importance of the JAK/STAT signaling pathway, our objectives were to identify and characterize the mediators of this system in human sperm. Cell fractionation and surface biotinylation assays clearly demonstrated that IL6R is expressed at the sperm membrane surface. The kinase JAK1 is enriched in membrane fractions and is activated during human sperm capacitation as suggested by its increase in phosphotyrosine content. Many signal transducer and activator of transcription (STAT) proteins are expressed in human sperm, including STAT1, STAT3, STAT4, STAT5, and STAT6. Among them, only STAT1 and STAT5 were detected in the cytosolic fraction. All the detected STAT proteins were enriched in the cytoskeletal structures. STAT4 was present in the perinuclear theca, whereas JAK1, STAT1, and STAT5 were detected in the fibrous sheath. Indirect immunofluorescence studies showed that JAK1 and STAT1 colocalized in the neck region and that STAT4 is present at the equatorial segment and flagella. The presence of STAT proteins in sperm structural components suggests that their role is different from their well-known transcription factor activity in somatic cells, but further investigations are required to determine their role in sperm function.
Adrenomedullin 2 (ADM2), also referred to as intermedin (IMD), is expressed in trophoblast cells in human placenta and enhances the invasion and migration of first-trimester HTR-8SV/neo cells. Further infusion of ADM2 antagonist in pregnant rat causes fetoplacental growth restriction, suggesting a role for ADM2 in maintaining a successful pregnancy. This study was undertaken to assess whether ADM2 protein is present in decidual tissue and colocalized with HLA-G-positive cytotrophoblast cells and natural killer cells; to assess whether ADM2 regulates expression of HLA-G in trophoblast cells; and to identify whether mitogen-activated protein kinase (MAPK) signaling pathway is involved in ADM2-induced trophoblast cell invasion and migration. Using immunohistochemical methods and RT-PCR, this study shows that ADM2 protein is colocalized with HLA-G-expressing cytotrophoblast cells as well as with NCAM1 (CD56) immunoreactivity in human first-trimester decidual tissue, and that ADM2 mRNA is expressed in peripheral blood natural killer cells. Further, ADM2 dose dependently increases the expression of HLA-G antigen in HTR-8SV/neo cells as well as in term placental villi explants, suggesting involvement of ADM2 in the regulation of HLA-G in trophoblast cells. In addition, interference with the activity of RAF and MAPK3/1 by their inhibitors, manumycin and U0126, respectively, reduces ADM2-induced HTR-8SV/neo cell invasion and migration. In summary, this study suggests a potential involvement for ADM2 in regulating HLA-G antigen at the maternal-fetal interface in human pregnancy and facilitating trophoblast invasion and migration via MAPK3/1 phosphorylation.
Thegonadal soma-derived factor (GSDF) is a new member of the transforming growth factor beta (TGF-beta) superfamily that regulates the proliferation of the primordial germ cells (PGC) in developing embryos and spermatogonia in juvenile male trout. The gsdf transcripts are expressed in the somatic cells supporting germ cell development. In zebrafish, we show that GSDF is encoded by a single copy gene that generates polymorphic transcripts and proteins. We determined that gsdf gene expression occurs before gonadal differentiation and is restricted to the gonads. Gene expression is maintained in adult granulosa cells and Sertoli cells but decreases in the cells that are in contact with meiotic and postmeiotic germ cells. Using zebrafish transgenic lines, we demonstrate that the 2-kb proximal promoter region of the gsdf gene targets high levels of transgene expression in the Sertoli and granulosa cells, and is sufficient to mimic the temporal expression pattern of the endogenous gsdf gene from 16 days postfertilization onward. We identified within the first 500 bp evolutionarily conserved DNA motifs that may be involved in Sertoli and granulosa cell-specific expression. However, the 2-kb proximal promoter region failed to drive efficient expression of the transgene in the gonads in four transgenic medaka lines. We propose that the proximal promoter region can be used to target candidate gene deregulation in zebrafish granulosa and Sertoli cells. Furthermore, the green fluorescent protein-expressingzebrafish lines produced in the present study are new valuable models for cell lineage tracing during sex differentiation and gametogenesis.
Oocytedevelopment is characterized by impressive changes in chromatin structure and function in the germinal vesicle (GV) that are crucial in conferring to the oocyte meiotic and developmental competence. During oogenesis, oocyte and follicular cells communicate by paracrine and junctional mechanisms. In cow, cumulus-enclosed oocytes (CEOs) isolated from early antral follicles have uncondensed chromatin (GV0), functionally open gap junction (GJ)-mediated communications, and limited meiotic competence. The aim of the present study was to analyze the role of GJ communications on the chromatin remodeling process during the specific phase of folliculogenesis that coincides with the transcriptional silencing and the sequential acquisition of meiotic and developmental capability. CEOs were cultured in a follicle-stimulating hormone-based culture system that sustained GJ coupling and promoted oocyte growth and transition from GV0 to higher stages of condensation. When GJ functionality was experimentally interrupted, chromatin rapidly condensed, and RNA synthesis suddenly ceased. These effects were prevented by the addition of cilostamide, a phosphodiesterase 3 inhibitor, indicating that the action of GJ-mediated communication on chromatin structure and function is mediated by cAMP. Prolonging GJ coupling during oocyte culture before in vitro maturation enhanced the ability of early antral oocytes to undergo meiosis and early embryonic development. Altogether, the evidence suggests that GJ-mediated communication between germinal and somatic compartments plays a fundamental role in the regulation of chromatin remodeling and transcription, which in turn are related to competence acquisition.
Serpins,a group of proteins with similar structural and functional properties, were first identified based on their unique mechanism of action: their inhibition of proteases. While most serpins have inhibitory roles, certain serpins are not involved in canonical proteolytic cascades but perform diverse functions including storage of ovalbumin in egg white, transport of hormones (thyroxine- and cortisol-binding globulin), and suppression of tumors. Of these, serpin peptidase inhibitor, clade B, member 11 (SERPINB11) is not an inhibitor of known proteases in humans and mice, and its function is unknown. In the present study, the SERPINB11 gene was cloned, and its expression profile was analyzed in various tissues from chickens. The chicken SERPINB11 gene has an open reading frame of 1346 nucleotides that encode a protein of 388 amino acids that has moderate homology (38.8%–42.3%) to mammalian SERPINB11 proteins. Importantly, SERPINB11 mRNA is most abundant in the chicken oviduct, specifically luminal and glandular epithelia, but it was not detected in any other chicken tissues of either sex. We then determined effects of diethylstilbestrol (DES; a synthetic nonsteroidal estrogen) on SERPINB11 expression in the chicken oviduct. Treatment of young chicks with DES induced SERPINB11 mRNA and protein only in luminal and glandular epithelial cells of the oviduct. Collectively, these results indicate that the novel estrogen-induced SERPINB11 gene is expressed only in epithelial cells of the chicken oviduct and implicate SERPINB11 in regulation of oviduct development and differentiated functions.
The present trend of increasing paternal age is accompanied by concerns for the development of complex multigene diseases (e.g., autism and schizophrenia) in progeny. Recent studies have established strong correlations between male age, increased oxidative stress, decreased sperm quality, and structural aberrations of chromatin and DNA in spermatozoa. We tested the hypothesis that increasing age would result in altered gene expression relating to oxidative stress and DNA damage/repair in germ cells. To test this hypothesis, pachytene spermatocytes and round spermatids were isolated from Brown Norway (BN) rats at 4 (young) and 18 (aged) mo of age. Microarray analysis was used to compare gene expression between the groups. The probe sets with significantly altered expression were linked to DNA damage/repair and oxidative stress in pachytene spermatocytes but not in round spermatids. Further analysis of pachytene spermatocytes demonstrated that genes involved in the base excision repair (BER) and nucleotide excision repair (NER) pathways were specifically altered. Quantitative RT-PCR confirmed that NER genes were upregulated (>1.5-fold), whereas BER genes were downregulated (>1.5-fold). At the protein level the members of the BER pathway were also altered by up to 2.3-fold; levels of NER proteins remained unchanged. Furthermore, there was an increase in 8-oxo-2′-deoxyguanosine (8-oxodG) immunoreactivity in testes from aged males and in the number of spermatozoa positive for 8-oxodG. In conclusion, aging is associated with differential regulation of DNA repair pathways with a decrease in the BER pathway leading to deficient repair of 8-oxo-dG lesions in germ cells and spermatozoa.
Ahypothesis to explain the maternal age-dependent increase in formation of aneuploid eggs is deterioration of chromosome cohesion. Although several lines of evidence are consistent with this hypothesis, whether cohesion is actually reduced in naturally aged oocytes has not been directly tested by any experimental perturbation. To directly target cohesion, we increased the activity of separase, the protease that cleaves the meiotic cohesin REC8, in oocytes.We show that cohesion is more susceptible to premature separase activation in old oocytes than in young oocytes, demonstrating that cohesion is significantly reduced. Furthermore, cohesion is protected by two independent mechanisms that inhibit separase, securin and an inhibitory phosphorylation of separase by CDK1; both mechanisms must be disrupted to prematurely activate separase.With the continual loss of cohesins from chromosomes that occurs throughout the natural reproductive lifespan, tight regulation of separase in oocytes may be particularly important to maintain cohesion and prevent aneuploidy.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere