BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Women are born with a finite population of ovarian follicles, which are slowly depleted during their reproductive years until reproductive failure (menopause) occurs. The rate of loss of primordial follicles is determined by genetic and environmental influences, but certain toxic exposures can accelerate this process. Ionizing radiation reduces preantral follicle numbers in rodents and humans in a dose-dependent manner. Cigarette smoking is linked to menopause occurring 1–4 yr earlier than with nonsmokers, and components of smoke, polycyclic aromatic hydrocarbons, can cause follicle depletion in rodents or in ovaries in vitro. Chemotherapeutic agents, such as alkylating drugs and cisplatin, also cause loss of preantral ovarian follicles. Effects depend on dose, type, and reactivity of the drug, and the age of the individual. Evidence suggests DNA damage may underlie follicle loss induced by one common alkylating drug, cyclophosphamide. Occupational exposures have also been linked to ovarian damage. In an industrial setting, 2-bromopropane caused infertility in men and women, and it can induce ovarian follicle depletion in rats. Solvents, such as butadiene, 4-vinylcyclohexene, and their diepoxides, can also cause specific preantral follicle depletion. The mechanism(s) underlying effects of the latter compound may involve alterations in apoptosis, survival factors such as KIT/Kit Ligand, and/or the cellular signaling that maintains primordial follicle dormancy. Estrogenic endocrine disruptors may alter follicle formation/development and impair fertility or normal development of offspring. Thus, specific exposures are known or suspected of detrimentally impacting preantral ovarian follicles, leading to early ovarian failure.
Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (Lp) and permeability (Ps) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10−3 M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.
We recently reported that bezafibrate, a lipid-lowering drug of the fibrate class, administered in addition to clomiphene citrate (CC) successfully induced ovulation in CC-resistant polycystic ovary syndrome (PCOS) patients. We hypothesized that bezafibrate may directly affect ovarian follicle development. Insulin resistance and compensatory hyperinsulinemia are important for the pathogenesis of PCOS. In this study, we first examined the effects of tumor necrosis factor-alpha (TNF), which plays a role in insulin resistance, on follicle development by using the follicle culture system. TNF significantly inhibited follicle-stimulating hormone (FSH)-induced follicle development, 17beta-estradiol (E2) secretion, and ovulation rate in a dose-dependent manner. We then examined whether bezafibrate treatment could rescue the inhibition of FSH-induced follicle development and steroidogenesis by TNF. Bezafibrate treatment rescued inhibition of follicle development, secretion of E2, and ovulation rate by TNF. We examined the expression of peroxisome proliferator-activated receptor (PPAR) subtypes in mouse preantral follicles. As the protein expression of only PPARG was observed in mouse preantral follicles, we examined whether bezafibrate could affect follicle development and steroidogenesis through PPARG pathways. Treatment with GW1929, a selective PPARG agonist, restored inhibition of FSH-induced follicle development and steroidogenesis by TNF, whereas treatment with GW9662, a selective PPARG antagonist, canceled the restorative effects of bezafibrate. Collectively, the results in this study suggest that bezafibrate may directly exhibit a restorative effect on the inhibition of ovarian follicle development and steroidogenesis by TNF through the PPARG pathway.
Wingless-related MMTV integration site 5A (Wnt5a) is a noncanonical signaling WNT that is expressed in every stage of mouse mammary gland development except lactation. Using slow release pellets containing WNT5A as well as Wnt5a-null tissue, we previously showed that WNT5A acts to limit mammary development. Here, we generated transgenic mice that overexpress WNT5A in the mammary epithelium using the mouse mammary tumor virus promoter (M5a mice). Lactation was impaired in two high WNT5A-expressing lines. Lactation defects could not be explained by differences in apoptosis, lineage differentiation, milk synthesis, or secretion. Instead, misexpression of WNT5A led to a failure in oxytocin response and milk ejection. Noting the similarity between the M5a phenotype and that of mice with a mutation in connexin43 (Cx43; official gene symbol Gja1), we examined Cx43 phosphorylation and localization in M5a mice. In wild-type mice, Cx43 switched from a phosphorylated to a more hypophosphorylated form after parturition. In contrast, the phosphorylated form of Cx43 was maintained after parturition in M5a mice. Using a nontumorigenic breast cell line, MCF10A, we showed that, in addition to increasing the levels of phosphorylation of Cx43 on serine-368, ectopic expression of WNT5A reduced or blocked the amount of dye transferred between cells. In summary, we propose that WNT5A inhibits the response to oxytocin and prevents milk ejection through regulation of Cx43 function.
Prostaglandin E2 (PGE2) mediates many effects of the midcycle luteinizing hormone (LH) surge within the periovulatory follicle. Differential expression of the four PGE2 (EP) receptors may contribute to the specialized functions of each granulosa cell subpopulation. To determine if EP receptors are differentially expressed in granulosa cells, monkeys received gonadotropins to stimulate ovarian follicular development. Periovulatory events were initiated with human chorionic gonadotropin (hCG); granulosa cells and whole ovaries were collected before (0 h) and after (24–36 h) hCG to span the 40-h primate periovulatory interval. EP receptor mRNA and protein levels were quantified in granulosa cell subpopulations. Cumulus cells expressed higher levels of EP2 and EP3 mRNA compared with mural cells 36 h after hCG. Cumulus cell EP2 and EP3 protein levels also increased between 0 and 36 h after hCG. Overall, mural granulosa cells expressed low levels of EP1 protein at 0 h and higher levels 24–36 h after hCG. However, EP1 protein levels were higher in granulosa cells away from the follicle apex compared with apex cells 36 h after hCG. Higher levels of PAI-1 protein were measured in nonapex cells, consistent with a previous study showing EP1-stimulated PAI-1 protein expression in monkey granulosa cells. EP4 protein levels were low in all subpopulations. In summary, cumulus cells likely respond to PGE2 via EP2 and EP3, whereas PGE2 controls rupture of a specific region of the follicle via EP1. Therefore, differential expression of EP receptors may permit each granulosa cell subpopulation to generate a unique response to PGE2 during the process of ovulation.
Ceacam6 (carcinoembryonic antigen-related cell adhesion molecule 6 gene) has recently been isolated by differential display followed by RT-PCR and DNA sequence analyses. Ceacam6 is a member of an immunoglobulin superfamily and encodes a protein of 266 amino acid residues possessing one immunoglobulin (Ig)-like domain. RT-PCR analysis showed that Ceacam6 was dominantly expressed in rat testis and its expression level prominently increased after 6 wk of postnatal development in testis. Immunohistochemical analyses using the anti-CEACAM6 antibody revealed that CEACAM6 colocalized with intermediate filaments (vimentin) in Sertoli cells and interstitial cells. The association between CEACAM6 and vimentin was observed throughout postnatal development in rat testis. Transfection experiments performed in COS-7 cells suggested that overexpression of CEACAM6 brought about aggregation of vimentin filament around nuclei with which CEACAM6 colocalized and that the N-terminus region of CEACAM6, including the Ig-like domain, seemed to be required for association with vimentin filaments. Interaction between CEACAM6 and vimentin in rat testis and transfected COS-7 cells was confirmed by immunoprecipitation. Our observations strongly suggested that CEACAM6 might be a novel intermediate filament-associated protein involved in regulation of vimentin architecture in Sertoli cells.
Karel De Gendt, Evi Denolet, Ariane Willems, Veerle W. Daniels, Liesbeth Clinckemalie, Sarah Denayer, Miles F. Wilkinson, Frank Claessens, Johannes V. Swinnen, Guido Verhoeven
Ourprevious analysis of Sertoli cell androgen receptor (AR) knockout (SCARKO) mice revealed that several cytoskeletal components are a potential target of androgen action. Here, we found that one of these components, the beta-tubulin isotype Tubb3, is differentially regulated in testes from SCARKO mice (relative to littermate controls) from Postnatal Day 10 to adulthood. The Tubb3 gene is unique in this respect, as at Day 10, no other beta-tubulin genes are significantly regulated by AR. We further characterized androgen regulation of Tubb3 in vivo and in vitro and demonstrated that it is a conserved feature in both mice and rats. To investigate whether androgens directly regulate Tubb3 expression, we screened for androgen response elements (AREs) in the Tubb3 gene. In silico analysis revealed the presence of four ARE motifs in Tubb3 intron 1, two of which bind to AR in vitro. Mutation of one of these (ARE1) strongly reduced androgen-dependent reporter gene expression. These results, coupled with the finding that the AR binds to the Tubb3 ARE region in vivo, suggest that Tubb3 is a direct target of AR. Our data strengthen the contention that androgens exert their effects on spermatogenesis, in part, through modulation of the Sertoli cell cytoskeleton. Androgen regulation of beta-tubulin has also been described in neurons, fortifying the already known similarity in microtubule organization in Sertoli cell processes and neurons, the only other cell type in which Tubb3 is known to be expressed.
Primitive endoderm (PE) is the second extraembryonic tissue to form during embryogenesis in mammals. The PE develops from pluripotent cells of the blastocyst inner cell mass. Experimental results described herein provide evidence that FGF2 stimulates PE development during bovine blastocyst development in vitro. Bovine blastocysts were cultured individually on a feeder layer-free, Matrigel-coated surface in the presence or absence of FGF2. A majority of blastocysts cultures formed outgrowths (76.8%) and the rate of outgrowth formation was not affected by FGF2 supplementation. However, supplementation with FGF2 increased the incidence of PE outgrowths on Days 13 and 15 after in vitro fertilization. Presumptive PE cultures contained cells with a phenotype distinct from trophectoderm (TE). Cell identity was validated by expression of GATA4 and GATA6 mRNA and transferrin protein, all markers of the PE lineage. Expression of GATA4 occurred coincident with blastocyst expansion and hatching. These cells did not express IFNT and CDX2 (TE lineage markers). Profiles of FGF receptor (FGFR) isoforms were distinct between PE and TE cultures. Specifically, FGFR1b and FGFR1c were the predominant FGFR transcripts in PE whereas FGFR2b transcripts were abundant in TE. Supplementation with FGF2 increased the mitotic index of PE but not TE. Moreover, FGF signaling appears important for initiation of PE formation in blastocysts, presumably by lineage committal from NANOG-positive epiblast cells, because chemical disruption of FGFR kinase activity with PD173074 reduces GATA4 expression and increases NANOG expression. Collectively, these results indicate that FGF2 and potentially other FGFs specify PE formation and mediate PE proliferation during early pregnancy in cattle.
Uterinegland formation occurs postnatally in an ovary- and steroid-independent manner in many species, including humans. Uterine glands secrete substances that are essential for embryo survival. Disruption of gland development during the postnatal period prevents gland formation, resulting in infertility. Interestingly, stabilization of beta-catenin (CTNNB1) in the uterine stroma causes a delay in gland formation rather than a complete absence of uterine glands. Thus, to determine if a critical postnatal window for gland development exists in mice, we tested the effects of extending the endocrine environment of pregnancy on uterine gland formation by treating neonatal mice with estradiol, progesterone, or oil for 5 days. One uterine horn was removed before puberty, and the other was collected at maturity. Some mice were also ovariectomized before puberty. The hormone-treated mice exhibited a delay in uterine gland formation. Hormone-treatment increased the abundance of uterine CTNNB1 and estrogen receptor alpha (ESR1) before puberty, indicating possible mechanisms for delayed gland formation. Despite having fewer glands, progesterone-treated mice were fertile, suggesting that a threshold number of glands is required for pregnancy. Mice that were ovariectomized before puberty did not undergo further uterine growth or gland development. Finally, to establish the role of the ovary in postpartum uterine gland regeneration, mice were either ovariectomized or given a sham surgery after parturition, and uteri were evaluated 1 wk later. We found that the ovary is not required for uterine growth or gland development following parturition.Thus, uterine gland development occurs continuously in mice and requires the ovary after puberty, but not after parturition.
Withinthe testis, each Sertoli cell can support a finite number of developing germ cells. During development, the cessation of Sertoli cell proliferation and the onset of differentiation establish the final number of Sertoli cells and, thus, the total number of sperm that can be produced. The upstream stimulatory factors 1 and 2 (USF1 and USF2, respectively) differentially regulate numerous Sertoli cell genes during differentiation. To identify genes that are activated by USF proteins during differentiation, studies were conducted in Sertoli cells isolated from 5- and 11-day-old rats, representing proliferating and differentiating cells, respectively. Usf1 mRNA and USF1 protein levels were increased between 5 and 11 days after birth. In vitro studies revealed that USF1 and USF2 DNA-binding activity also increased at 11 days for the promoters of four potential target genes, Fshr, Gata4, Nr5a1, and Shbg. Chromatin immunoprecipitation assays confirmed that USF recruitment increased in vivo between 5 and 11 days after birth at the Fshr, Gata4, and Nr5a1 promoters. Expression of Nr5a1 and Shbg, but not of Fshr or Gata4, mRNAs was elevated in 11-day-old Sertoli cells compared with 5-day-old Sertoli cells. Transient transfection of USF1 and USF2 expression vectors up-regulated Nr5a1 and Shbg promoter activity. RNA interference assays demonstrated that USF1 and USF2 contribute to Nr5a1 and Shbg expression in differentiating cells. Together, these data indicate that increased USF levels induce the expression of Nr5a1 and Shbg during the differentiation of Sertoli cells, whereas Fshr and Gata4 expression is not altered by USF proteins during differentiation.
The bone morphogenetic proteins (BMPs), originally identified by their abilities to induce bone and/or cartilage formation, have been reported to be involved in various growth and differentiation processes, including reproduction. Although mammalian models are more frequently used to study the BMP system in reproduction, we have extended the study to the zebrafish, an excellent model for studying female reproduction in teleosts. Reverse transcription-PCR analysis revealed the expression of the Bmp ligands (bmp2a, bmp2b, bmp4, bmp6, and bmp7a) and the type II Bmp receptors (bmpr2a and bmpr2b) in various tissues, including the ovary. Spatiotemporal distribution of these Bmp ligands and receptors in the ovary was then investigated in this study. Reverse transcription-PCR on isolated follicle layers and denuded oocytes demonstrated that all Bmp ligands examined were exclusively or abundantly expressed in the oocyte, whereas the two receptors were expressed exclusively in the follicle layers, strongly suggesting a potential paracrine signaling from the oocyte towards the follicle layer by various Bmp ligands. This supports the current view that instead of being passively controlled and nurtured by the follicle layer for its growth and development, the oocyte may play an active role by releasing various growth differentiation factors to regulate follicle layer function. Quantitative analysis of temporal expression profiles during folliculogenesis revealed an increased expression of bmp2a, bmp2b, bmp4, and bmp6 from primary growth (stage I) to previtellogenic (stage II) stages, followed by steady declines toward the end of folliculogenesis when the follicles became fully grown. On the contrast, the BMP receptors (bmpr2a and bmpr2b) consistently showed an increase in expression during folliculogenesis, with the peak levels reached at the full-grown stage prior to final oocyte maturation. The spatiotemporal expression patterns of the Bmp family in the zebrafish follicles provide important insights into potential roles for Bmps during follicle development as oocyte-derived factors. Further experiments using recombinant zebrafish Bmp4 showed that Bmp4 had an inhibitory effect on spontaneous oocyte maturation in vitro, but not 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP)-induced oocyte maturation in vitro.
Estradiolhas both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters two components of potassium currents in these cells: a transient current, IA, and a sustained current, IK. Kisspeptin is a potential mediator between estradiol and GnRH neurons and can act directly on GnRH neurons. We examined how estradiol, time of day, and kisspeptin interact to regulate these conductances in a mouse model exhibiting daily switches between estradiol negative (morning) and positive feedback (evening). Whole-cell voltage clamp recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice and from OVX mice treated with estradiol (OVX E). There were no diurnal changes in either IA or IK in GnRH neurons from OVX mice. In contrast, in GnRH neurons from OVX E mice, IA and IK were greater during the morning when GnRH neuron activity is low and smaller in the evening when GnRH neuron activity is high. Estradiol increased IA in the morning and decreased it in the evening, relative to that in cells from OVX mice. Exogenously applied kisspeptin reduced IA regardless of time of day or estradiol status. Estradiol, interacting with time of day, and kisspeptin both depolarized IA activation. These findings extend our understanding of both the neurobiological mechanisms of estradiol negative vs. positive regulation of GnRH neurons and of kisspeptin action on these cells.
The adherens junction (AJ) is important for maintaining uterine structural integrity, composition of the luminal environment, and initiation of implantation by virtue of its properties of cell-cell recognition, adhesion, and establishment of cell polarity and permeability barriers. In this study, we investigated the uterine changes of AJ components E-cadherin, beta-catenin, and alpha-catenin at their mRNA and protein levels, together with the cellular distribution of meprinbeta, phospho-beta-catenin, and active beta-catenin proteins, in hamsters that show only ovarian progesterone-dependent uterine receptivity and implantation. By in situ hybridization and immunofluorescence, we have demonstrated that uterine epithelial cells expressed three of these AJ proteins and their mRNAs prior to and during the initial phase of implantation. Immunofluorescence study showed no change in epithelial expression patterns of uterine AJ proteins from Days 1 to 5 of pregnancy. With advancement of the implantation process, AJ components were primarily expressed in cells of the secondary decidual zone (SDZ), but not in the primary decidual zone (PDZ). In contrast, we noted strong expression of beta-catenin and alpha-catenin proteins in the PDZ, but not in the SDZ, of mice. Taken together, these results suggest that AJ proteins contribute to uterine barrier functions by cell-cell adhesion to ensure protection of the embryo. In addition, cleavage of E-cadherin by meprinbeta might contribute to weakening uterine epithelial cell-cell contact for blastocyst implantation. We also report that the nuclear localization of active beta-catenin from Day 4 onward in hamsters implies that beta-catenin/Wnt-signal transduction is activated in the uterus during implantation and decidualization.
Theplacental vasculature is critical for nutrient, gas, and waste exchange between the maternal and fetal systems. Its development depends on the proper expression and interaction of angiogenesis and associated growth factors. Heme oxygenase (HMOX), the enzyme for heme degradation, plays a role in angiogenesis and is highly expressed in the placenta. To evaluate the role of maternal HMOX1, the inducible HMOX isozyme, on placental vasculature formation, mice with a partial deficiency in Hmox1 (Hmox1 /−) were used. Three-dimensional images of placental vasculatures as well as spiral arteries from Hmox1 / or Hmox1 /− placentas were created by vascular corrosion casting technique and imaged by micro-computerized tomography (microCT).The structures and morphologies of fetomaternal interfaces were observed by histological staining and the ultrastructure of uterine natural killer (uNK) cells, a major regulator in spiral artery remodeling, was analyzed by transmission electron microscopy. A group of growth factors and angiogenic factors from the decidua/mesometrial lymphoid aggregate of pregnancy (MLAp) as well as labyrinth regions were quantified using an angiogenesis PCR array kit and compared between Hmox1 / or Hmox1 /− placentas. In conclusion, a partial deficiency of maternal Hmox1 resulted in the malformation of fetomaternal interface, insufficiency of spiral artery remodeling, and alteration of uNK cell differentiation and maturation. These changes were independent of the fetal genotype, but relied on the maternal HMOX1 level, which determined the balance of expression levels of pro- and antiangiogenic factors in the decidua/MLAp region. These results implied that Hmox1 polymorphisms among the human population might contribute to some unexplained cases of pregnancy disorders, such as fetal growth retardation and preeclampsia.
Signalsfrom extraembryonic tissues in mice determine which proximal epiblast cells become primordial germ cells (PGCs). After their specification, approximately 40 PGCs appear at the base of the allantoic bud and migrate to the genital ridges, where they expand to about 25 000 cells by Embryonic Day (E)13.5. The heterochromatin protein 1 (HP1) family members HP1alpha, HP1beta, and HP1gamma (CBX5, CBX1, and CBX3, respectively) are thought to induce heterochromatin structure and to regulate gene expression by binding methylated histone H3 lysine 9. We found a dramatic loss of germ cells before meiosis in HP1gamma mutant (HP1gamma−/−) mice that we generated previously. The reduction in PGCs in HP1gamma−/− embryos was detectable from the early bud stage (E7.25), and the number of HP1gamma−/− PGCs was gradually reduced thereafter. Bromodeoxyuridine incorporation into PGCs was significantly reduced in E7.25 and E12.5 HP1gamma−/− embryos. Furthermore, a lower proportion of HP1gamma−/− PGCs than wild-type PGCs was in S phase, and a higher proportion, respectively, was in G1 phase at E12.5. Moreover, the proportion of p21 (Cip, official symbol CDKN1A)-positive HP1gamma−/− PGCs was increased, suggesting that the G1/S phase transition was inhibited. However, no differences were detected between fate determination, migration, apoptosis, or histone modification of PGCs of control embryos and those of HP1gamma−/− embryos. Therefore, the reduction in PGCs in HP1gamma−/− embryos could be caused by impaired cell cycle in PGCs. These results suggest that HP1gamma plays an important role in keeping enough germ cells by regulating the PGC cell cycle.
Inmammals, female meiosis consists of two asymmetric cell divisions, which generate a large haploid oocyte and two small polar bodies. Asymmetric partitioning of the cytoplasm results from migration of the meiotic spindle toward the cortex and requires actin filaments. However, the subcellular localization and the role of the existing two cytoplasmic actin (CYA) isoforms, beta and gamma, have not been characterized. We show that beta- and gamma-CYA are differentially distributed in the maturing oocyte from late metaphase I as well as in preimplantation embryos. Gamma-CYA is preferentially enriched in oocyte cortices and is absent from all cell-cell contact areas from metaphase II until the blastocyst stage. Beta-CYA is enriched in contractile structures, at cytokinesis, at cell-cell contacts, and around the forming blastocoel. Alteration of beta- or gamma-CYA function by isoform-specific antibody microinjection suggests that gamma-CYA holds a major and specific role in the establishment and/or maintenance of asymmetry in meiosis I and in the maintenance of overall cortical integrity. In contrast, beta- and gamma-CYA, together, appear to participate in the formation and the cortical anchorage of the second meiotic spindle in waiting for fertilization. Finally, differences in gamma-CYA expression are amongst the earliest markers of cell fate determination in development.
Theplacenta is the intermediary between the mother and fetus, and its primary role is to provide for the appropriate growth of the fetus. A suboptimal in utero environment has been shown to differentially affect the health of offspring, depending on their sex. Here we show that excess maternal glucocorticoids administered in midgestation (Day 20, 0.5 gestation in the spiny mouse) for 60 h, have persisting effects on the placenta that differ by fetal sex, placental region, and time after glucocorticoid exposure. Dexamethasone (DEX) exposure altered placental structure and mRNA expression from male and female fetuses both immediately (Day 23) and 2 wk posttreatment (Day 37). The immediate consequences (Day 23) of DEX were similar between males and females, with reductions in the expression of IGF1, IGF1R, and SLC2A1 in the placenta. However, by Day 37, the transcriptional and structural response of the placenta was dependent on the sex of the fetus, with placentas of male fetuses having an increase in GCM1 expression, a decrease in SLC2A1 expression, and an increase in the amount of maternal blood sinusoids in the DEX-exposed placenta. Female placentas, on the other hand, showed increased SLC2A1 and MAP2K1 expression and a decrease in the amount of maternal blood sinusoids in response to DEX exposure. We have shown that the effect of a brief glucocorticoid exposure at midgestation has persisting effects on the placenta, and this is likely to have ongoing and dynamic effects on fetal development that differ for a male and female fetus.
Ourgroup found that the treatment of embryos with histone deacetylase inhibitors (HDACi), including trichostatin A, Scriptaid, suberoylanilide hydroxamic acid, and oxamflatin, after cloning by somatic cell nuclear transfer (SCNT) resulted in significantly improved efficiency. Although many researchers have investigated the use of HDACi treatment to improve the quality of cloned mouse embryos, the mechanism underlying this treatment has not been completely understood. We believe that the effect of HDACi on embryonic gene activation (EGA) is important for normal development of cloned embryos. In the present study, using highly sensitive fluorescence in situ hybridization (FISH) with probes complementary to mouse rDNA, the effect of Scriptaid on the onset of rRNA synthesis was examined in cloned embryos. In addition, to determine how Scriptaid affects pre-rRNA processing machinery in SCNT embryos with activated rDNA transcription, functional nucleolar formation was analyzed in detail by combined assessment of rRNA synthesis and nucleolar protein allocation in preimplantation embryos. In this experiment, at least part of the rRNA localization by FISH was substituted by 5-bromouridine 5′-triphosphate staining after alpha-amanitin treatment. The results show that in the late 2-cell stage, a number of SCNT embryos initiated transcriptional activation while having one blastomere showing inactivated rRNA transcription and another blastomere showing activated rRNA transcription and despite both nuclei being in interphase. In addition, in some SCNT embryos, the same nuclei contained a mixture of inactively and actively transcribed rRNA, which was rarely observed in intracytoplasmic sperm injection embryos. This asynchronous transcription induced a delay of one cell cycle in SCNT embryo activation of functional nucleoli. Scriptaid can overcome this failure in the timely onset of embryonic gene transcription by activation of rRNA genes and promotion of nucleolar protein allocation during the early phase of EGA.
Photoperiod determines the timing of reproductive activity in many species, yet the neural pathways whereby day length is transduced to a signal influencing gonadotropin-releasing hormone (GnRH) release are not fully understood. Physical lesions of the lateral preoptic area (lPOA)/rostral anterior hypothalamic area (rAHA) in female sheep extend the period of estrous cyclicity during inhibitory photoperiods. In the present study we sought to determine whether destroying only neurons and not fibers of passage in this area would lead to similar resistance to photosuppression. Additionally, neural tract-tracing was used to map connectivity between the lPOA/rAHA and other hypothalamic areas implicated in photoperiodic regulation of reproduction. Progesterone secretion was monitored in six sheep to determine estrous cycles for 90 days during a short-day (permissive) photoperiod. Three sheep then received bilateral injections of the excitotoxic glutamate analog, n-methyl-aspartic acid, directed toward the lPOA/rAHA, whereas three others served as controls. All were then exposed to a long-day (suppressive) photoperiod for 120 days. Control sheep ceased cycling at 40 ± 10 days (mean ± SEM), whereas lesioned sheep continued cycling through the end of the study. The results of the tract-tracing study revealed both afferent and efferent projections to the medial POA, retrochiasmatic area, arcuate nucleus, and premammillary region. Furthermore, close proximal associations with GnRH neurons from efferent projections were observed. We conclude that neurons located within the lPOA/rAHA are important for timing cessation of estrous cycles during photosuppression and that this area communicates directly with GnRH neurons and other hypothalamic areas involved in the photoperiodic regulation of reproduction.
Spermcryopreservation is useful for the effective storage of genomic resources derived from genetically engineered mice. However, freezing the sperm of C57BL/6 mice, the most commonly used genetic background for genetically engineered mice, considerably reduces its fertility. We previously reported that methyl-beta-cyclodextrin dramatically improved the fertility of frozen/thawed C57BL/6 mouse sperm. Recently, it was reported that exposing sperm to reduced glutathione may alleviate oxidative stress in frozen/thawed mouse sperm, thereby enhancing in vitro fertilization (IVF); however, the mechanism underlying this effect is poorly understood. In the present study, we examined the combined effects of methyl-beta-cyclodextrin and reduced glutathione on the fertilization rate of IVF with frozen/thawed C57BL/6 mouse sperm and the characteristic changes in the zona pellucida induced by reduced glutathione. Adding reduced glutathione to the fertilization medium increased the fertilization rate. Methyl-beta-cyclodextrin and reduced glutathione independently increased fertilization rates, and their combination produced the strongest effect. We found that reduced glutathione increased the amount of free thiols in the zona pellucida and promoted zona pellucida enlargement. Finally, 2-cell embryos produced by IVF with the addition of reduced glutathione developed normally and produced live offspring. In summary, we have established a novel IVF method using methyl-beta-cyclodextrin during sperm preincubation and reduced glutathione during the IVF procedure to enhance fertility of frozen/thawed C57BL/6 mouse sperm.
Duringin vitro maturation of porcine cumulus-oocyte complexes (COCs), follicle-stimulating hormone (FSH) increases both prostaglandin E2 (PGE2) production and the expression levels of EGF-like factors. The ligands act on cumulus cells by the autocrine system due to their specific receptors, EP2, EP4, or EGF receptor. When each pathway is suppressed by inhibitors, complete cumulus expansion and oocyte maturation do not occur. In this study, we examined the relationship between both of these pathways in cumulus cells of porcine COCs. When COCs were cultured with FSH, Fshr mRNA expression was immediately decreased within 5 h, whereas Ptger2, Ptger4, and Ptgs2 expression levels were significantly increased in cumulus cells in the culture containing FSH for 5 or 10 h. The PTGS2 inhibitor NS398 significantly suppressed not only PGE2 secretion at any culture time point but also Areg, Ereg, and Tace/Adam17 expression in cumulus cells at 10 and 20 h but not at 1 or 5 h. During the early culture period, phosphorylation of MAPK3 and MAPK1 (MAPK3/1) was not affected by NS398; however, at 10 and 20 h, phosphorylation was suppressed by the drug. Furthermore, down-regulations of MAPK3/1 phosphorylation and expression of the target genes by NS398 was overcome by the addition of either PGE2 or EGF. FSH-induced cumulus expansion and meiotic progression to the MII stage were also suppressed by NS398, whereas these effects were also overcome by addition of either PGE2 or EGF. These results indicated that PGE2 is involved in the sustainable activation of MAPK3/1 in cumulus cells via the induction of EGF-like factor, which is required for cumulus expansion and meiotic maturation of porcine COCs.
Uterineactivation is associated with increased oxytocin receptor (OXTR) expression and myometrial sensitivity to oxytocin. The OXTR promoter contains binding sites for CCAAT/enhancer-binding protein (CEBP) and nuclear factor-kappa B p65 (RELA). RELA and CEBP beta (CEBPB) play a synergistic role in OXTR promoter activation.We created deletions in a DNA construct consisting of 850 bp upstream of the transcription start site linked to luc reporter to identify the CIS element of the OXTR promoter responsible for the synergistic activation by RELA and CEBPB. Deletion from −712 to −692 bp eliminated synergy, demonstrating that the critical region lies within these 20 bp. Binding studies showed that this sequence binds both RELA and CEBPB. The 20-bp critical region for synergistic activation of OXTR requires full-length RELA but only the basic leucine zipper domain of CEBPB.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere