BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Mammary myoepithelial cells are specialized smooth musclelike epithelial cells that express the smooth muscle actin isoform: smooth muscle alpha-actin (ACTA2). These cells contract in response to oxytocin to generate the contractile force required for milk ejection during lactation. It is believed that ACTA2 contributes to myoepithelial contractile force generation; however, this hypothesis has not been directly tested. To evaluate the contribution of ACTA2 to mammary myoepithelial cell contraction, Acta2 null mice were utilized and milk ejection and myoepithelial cell contractile force generation were evaluated. Pups suckling on Acta2 null dams had a significant reduction in weight gain starting immediately postbirth. Cross-fostering demonstrated the lactation defect is with the Acta2 null dams. Carmine alum whole mounts and conventional histology revealed no underlying structural defects in Acta2 null mammary glands that could account for the lactation defect. In addition, myoepithelial cell formation and organization appeared normal in Acta2 null lactating mammary glands as evaluated using an Acta2 promoter-GFP transgene or phalloidin staining to visualize myoepithelial cells. However, mammary myoepithelial cell contraction in response to oxytocin was significantly reduced in isolated Acta2 null lactating mammary glands and in in vivo studies using Acta2 null lactating dams. These results demonstrate that lack of ACTA2 expression impairs mammary myoepithelial cell contraction and milk ejection and suggests that ACTA2 expression in mammary myoepithelial cells has the functional consequence of enhancing contractile force generation required for milk ejection.
Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.
To withstand environmental stress, Artemia release diapause cysts via an oviparous pathway instead of producing swimming nauplius larvae by the ovoviviparous pathway. Encased in such a cyst, the embryos at diapause can survive for many years. Vitellogenin (Vtg), the precursor of vitellins, the main yolk proteins, is crucial for embryonic development. This study compares vitellogenesis between oviparity and ovoviviparity, the two reproductive modes occurring in A. parthenogenetica. A Vtg gene was cloned, based on N-terminal amino acid sequence analysis, PCR amplification, and cDNA library construction and screening, and was found to consist of 6778 bp with a 6657 bp open reading frame encoding 2219 amino acids. From the deduced primary structure, Artemia vitellogenin (ArVtg) was found to possess six copies of the consensus cleavage site, R-X-X-R, and to contain a superoxide dismutase (SOD)-like domain at the N-terminus. This is an unusual finding for crustacean Vtg proteins, having been reported only in one previous crustacean, Daphnia magna. Using Northern blot analysis and in situ hybridization, ArVtg gene expression was observed at early stages of vitellogenesis in the connective tissue located in the cephalothorax, with trace expression in the ovary. Western blot analysis and several N-terminal sequences revealed that ArVtg was cleaved at each consensus cleavage site and that more than 10 subunits were formed during posttranslational processing in ovarian maturation. Of these, only the SOD-containing subunits (∼90 and 60 kDa) showed different profiles between the oviparous and ovoviviparous pathways. This suggests that these high concentration components have an important function for the encysted diapaused embryos during long-term cell-cycle arrest, which has remained unknown up until now.
Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.
We previously reported that in utero exposure of the male fetus to the plasticizer di-(2-ethylhexyl) phthalate (DEHP) resulted in decreased circulating levels of testosterone in the adult without affecting Leydig cell numbers, luteinizing hormone levels, or steroidogenic enzyme expression. Fetal exposure to DEHP resulted in reduced mineralocorticoid receptor (MR; NR3C2) expression in adult Leydig cells. In the present studies, treatment of pregnant Sprague-Dawley dams from Gestational Day 14 until birth with 20, 50, 100, 300, or 750 mg kg−1 day−1 of DEHP resulted in significant sex-specific decreases in serum aldosterone but not corticosterone levels at Postnatal Day 60 (PND60) but not at PND21. There was no effect on circulating levels of potassium, angiotensin II or adrenocorticotropin hormone (ACTH). However, there was reduced expression of AT receptor Agtr1a, Agtr1b, and Agtr2 mRNAs. The mRNA levels of proteins and enzymes implicated in aldosterone biosynthesis were not affected by in utero DEHP treatment except for Cyp11b2, which was decreased at high (≥500 mg kg−1 day−1) doses. The data presented herein, together with our previous observation that aldosterone stimulates testosterone production via an MR-mediated mechanism, suggest that in utero exposure to DEHP causes reduction in both adrenal aldosterone synthesis and MR expression in Leydig cells, leading to reduced testosterone production in the adult. Moreover, these results suggest the existence of a DEHP-sensitive adrenal-testis axis regulating androgen formation.
Mobilization of fatty acids from adipose tissue during metabolic stress will increase the amount of free fatty acids in blood and follicular fluid and, thus, may affect oocyte quality. In this in vitro study, the three predominant fatty acids in follicular fluid (saturated palmitic and stearic acid and unsaturated oleic acid) were presented to maturing oocytes to test whether fatty acids can affect lipid storage of the oocyte and developmental competence postfertilization. Palmitic and stearic acid had a dose-dependent inhibitory effect on the amount of fat stored in lipid droplets and a concomitant detrimental effect on oocyte developmental competence. Oleic acid, in contrast, had the opposite effect, causing an increase of lipid storage in lipid droplets and an improvement of oocyte developmental competence. Remarkably, the adverse effects of palmitic and stearic acid could be counteracted by oleic acid. These results suggest that the ratio and amount of saturated and unsaturated fatty acid is relevant for lipid storage in the maturing oocyte and that this relates to the developmental competence of maturing oocytes.
The tightly condensed chromatin of spermatozoa is rapidly decondensed after the spermatozoa enter oocytes. Although no factor involved in sperm chromatin decondensation (SCD) has been identified in mammals, it has been suggested that a factor related to SCD activity is present in the germinal vesicle (GV) of oocytes. Here, we found that the nucleolus-like body (NLB), which is a component of the GV, is involved in SCD in murine oocytes. When NLBs were microsurgically removed from GV-stage oocytes, SCD was significantly retarded in the paternal genome after fertilization following meiotic maturation. We found that the retardation of SCD in the NLB-removed oocytes was restored by the microinjection of mRNA encoding nucleoplasmin 2 (NPM2), a component of NLBs. Furthermore, SCD was retarded in the fertilized oocytes from Npm2-knockout females, and recombinant NPM2 alone could induce the SCD in vitro. These data provide evidence that NPM2 is involved in sperm chromatin remodeling in mammals.
Oocyte activation at fertilization is brought about by the testis-specific phospholipase C zeta (PLCZ), owing to its ability to induce oscillations in intracellular Ca2 concentration ([Ca2 ]i). Whereas this is a highly conserved mechanism among mammals, important species-specific differences in PLCZ sequence, activity, and expression have been reported. Thus, the objectives of this research were to clone and characterize the intracellular Ca2 -releasing activity and expression of equine PLCZ in sperm and testis. Molecular cloning of equine PLCZ yielded a 1914-bp sequence that translated into a protein of the appropriate size (∼73 kDa), as detected with an anti-PLCZ-specific antibody. Microinjection of 1 μg/μl of equine PLCZ cRNA supported [Ca2 ]i oscillations in murine oocytes that were of a higher relative frequency than those generated by an equivalent concentration of murine Plcz cRNA. Immunofluorescence revealed expression of PLCZ over the acrosome, equatorial segment, and head-midpiece junction; unexpectedly, PLCZ also localized to the principal piece of the flagellum in all epididymal, uncapacitated, and capacitated sperm. Immunostaining over the acrosome was abrogated after induction of acrosomal exocytosis. Moreover, injection of either sperm heads or tails into mouse oocytes showed that PLCZ in both fractions is catalytically active. Immunohistochemistry on equine testis revealed expression as early as the round spermatid stage, and injection of these cells supported [Ca2 ]i oscillations in oocytes. In summary, we report that equine PLCZ displays higher intrinsic intracellular Ca2 -releasing activity than murine PLCZ and that catalytically active protein is expressed in round spermatids as well as the sperm flagellum, emphasizing important species-specific differences. Moreover, some of these results may suggest potential novel roles for PLCZ in sperm physiology.
In the present study, we investigated the signaling pathway involved in luteinizing hormone (LH)-mediated regulation of testicular CYP1B1 in mouse MA-10 and rat R2C Leydig cells. CYP1B1 mRNA and protein levels were measured in MA-10 and R2C cells treated with LH and protein kinase activators or inhibitors. Treatment with LH or 8-bromo-cAMP, a protein kinase A (PRKA) activator, increased CYP1B1 expression and PRKA activity in a concentration-dependent manner in both cell lines, albeit to different extents. Treatment with 8-(4-chlorophenylthio)adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, a PRKA inhibitor, decreased basal CYP1B1 expression and attenuated LH-elicited increases in CYP1B1 mRNA and protein levels and PRKA activity. In contrast, treatment with a protein kinase G activator or an inhibitor of protein kinase C had no effect on basal or LH-induced CYP1B1 expression in MA-10 or R2C cells. Collectively, the results identify PRKA as the major signaling pathway involved in the LH-mediated regulation of testicular CYP1B1 expression in Leydig tumor cells.
The mucosal epithelium is a major portal for microbial invasion. Mucosal barrier integrity is maintained by the physical interactions of intercellular junctional molecules on opposing epithelial cells. The epithelial mucosa in the female reproductive tract provides the first line of defense against sexually transmitted pathogenic bacteria and viruses, but little is known concerning the structure and molecular composition of epithelial junctions at this site. In the present study, the distribution of tight, adherens, and desmosomal junctions were imaged in the human endocervix (columnar epithelium) and ectocervix (stratified squamous epithelium) by electron microscopy, and permeability was assessed by tracking the penetration of fluorescent immunoglobulin G (IgG). To further define the molecular structure of the intercellular junctions, select junctional molecules were localized in the endocervical, ectocervical, and vaginal epithelium by fluorescent immunohistology. The columnar epithelial cells of the endocervix were joined by tight junctions that excluded apically applied fluorescent IgG. In contrast, the most apical layers of the ectocervical stratified squamous epithelium did not contain classical cell-cell adhesions and were permeable to IgG. The suprabasal and basal epithelial layers in ectocervical and vaginal tissue contained the most robust adhesions; molecules characteristic of exclusionary junctions were detected three to four cellular layers below the luminal surface and extended to the basement membrane. These data indicate that the uppermost epithelial layers of the ectocervix and vagina constitute a unique microenvironment; their lack of tight junctions and permeability to large-molecular-weight immunological mediators suggest that this region is an important battlefront in host defense against microbial pathogens.
The baculum, also called os penis, plays an important role during copulation. However, the hormonal regulation of its development remains to be elucidated. To determine the direct involvement of sex steroids in the development of the baculum of rats, the distributions of androgen receptors (ARs), aromatase, and estrogen receptor alpha (ESR1) were observed immunohistochemically. On Postnatal Day 1, the rudiment of the baculum expressed ARs, aromatase, and ESR1. In the proximal segment of the baculum of neonatal rats, ARs were expressed in the parosteal layer but not in the periosteum or osteoblasts. Aromatase was expressed from the parosteal layer to the endosteum, particularly in the inner osteogenic layer. ESR1 was also abundantly expressed in almost all cells from the parosteal layer to the endosteum. ARs, aromatase, and ESR1 were all abundantly expressed during the neonatal period in the hyaline cartilage of the proximal segment and in fibrocartilage of the distal segment of the baculum. Expression in all the tissues was attenuated in an age-dependent manner and became quite weak at puberty. To determine the effect of estrogen on the growth of the baculum, the aromatase inhibitor 1,4,6-androstatrien-3,17-dione (ATD) was subcutaneously injected daily into pregnant rats from Days 19 to 23 of gestation and into pups on postnatal Days 1, 3, 5, 7, and 9. On Day 10, the length of the baculum in the ATD-treated rats was significantly shorter than that in the controls, although the body weight did not change. These findings suggest that not only androgen but also locally aromatized estrogen is involved in the early growth and development of the baculum.
Jennifer L. Juengel, Anne R. O'Connell, Michelle C. French, Luke E. Proctor, Roger Wheeler, Phil A. Farquhar, Ken G. Dodds, Susan M. Galloway, Peter D. Johnstone, George H. Davis
Sheep lines with mutations in single genes that have major effects on ovulation rate have been very useful in gaining a better understanding of pathways important in controlling follicular development and ovulation rate. To date however, all known mutations are in the transforming growth factor beta (TGFB) superfamily. Ovulation rates were measured in 720 progeny of 20 rams that were descendants of a single prolific ewe. Evaluation of ovulation rates of daughters of closely related sires suggests the presence of a segregating major gene Fecundity Davisdale (FECD) that increases ovulation rate between 0.4 and 0.8 in heterozygous daughters. Key features of mutations in genes of the TGFB superfamily pathway, such as synergistic interactions with other family members, infertility in homozygous carriers, and increased responsiveness to exogenous gonadotropins, were not observed in this line; thus, the mutation does not appear to be acting in the TGFB pathway. Hence, there is likely a novel mutation being carried in this line of sheep that alters ovulation rate. Future identification of the causative mutation may provide new insights into regulation of follicular development and ovulation rate.
The human endometrium is a dynamic tissue that undergoes cyclic changes under the influence of steroid hormones as well as numerous local paracrine and autocrine factors. Heat shock 70 kDa protein (HSPA5; also known as GRP78/BiP), a molecular chaperone within the endoplasmic reticulum, plays crucial roles in normal cellular processes as well as in stress conditions, in which it is a central regulator for the unfolded protein response (UPR). We hypothesized that HSPA5 expression level is variable throughout the menstrual cycle in human endometrium and that estrogen signaling cross-talks with UPR signaling by interacting with HSPA5. HSPA5 expression throughout the menstrual cycle was evaluated in vivo in normal human endometrium. Using in vitro techniques, we then assessed the bidirectional regulation of HSPA5 and estrogen signaling in human endometrial glandular (Ishikawa) and stromal cells (ESC). HSPA5 immunoreactivity in endometrial glandular and stromal cells was cycle-dependent, and was significantly higher in phases of the menstrual cycle when estradiol (E2) levels are known to be the lowest compared with the rest of the cycle (P < 0.001). E2 did not affect HSPA5 expression after 8–24 h incubation in Ishikawa cells and ESC in vitro. However, tunicamycin-induced HSPA5 expression was significantly lowered in these cells when pretreated with E2 (P < 0.01 and P < 0.05, respectively). On the other hand, tunicamycin decreased E2 up-regulated alkaline phosphatase activity (P < 0.001). In conclusion, there is cycle-dependent HSPA5 expression with a possible inverse correlation between HSPA5 expression and E2 levels in human endometrium. We suggest that estrogen signaling cross-talks with the UPR cascade by interacting with HSPA5, as supported by our in vitro findings.
We report on the presence and formation of cholesterol oxidation products (oxysterols) in bovine sperm. Although cholesterol is the most abundant molecule in the membrane of mammalian cells and is easily oxidized, this is the first report on cholesterol oxidation in sperm membranes as investigated by state-of-the-art liquid chromatographic and mass spectrometric methods. First, oxysterols are already present in fresh semen samples, showing that lipid peroxidation is part of normal sperm physiology. After chromatographic separation (by high-performance liquid chromatography), the detected oxysterol species were identified with atmospheric pressure chemical ionization mass spectrometry in multiple-reaction-monitoring mode that enabled detection in a broad and linear concentration range (0.05–100 pmol for each oxysterol species detected). Second, exposure of living sperm cells to oxidative stress does not result in the same level and composition of oxysterol species compared with oxidative stress imposed on reconstituted vesicles from protein-free sperm lipid extracts. This suggests that living sperm cells protect themselves against elevated oxysterol formation. Third, sperm capacitation induces the formation of oxysterols, and these formed oxysterols are almost completely depleted from the sperm surface by albumin. Fourth, and most importantly, capacitation after freezing/thawing of sperm fails to induce both the formation of oxysterols and the subsequent albumin-dependent depletion of oxysterols from the sperm surface. The possible physiological relevance of capacitation-dependent oxysterol formation and depletion at the sperm surface as well as the omission of this after freezing/thawing semen is discussed.
The umbilical cord is vulnerable to a number of insults that may alter cord morphology, diminish cord flow, and ultimately compromise fetal nutrition. Thus, an investigation of the underlying mechanisms of the development of cord morphology and possible pathologies associated with it may provide insight regarding fetal growth in the intrauterine environment and have an impact on later development of the child. To our knowledge, this study, which included 11 980 twins, is the first to report the relative contribution of genes and environment in the development of the cord. Umbilical cord length, insertion, knots, twisting, and number of vessels were examined by trained midwives at birth. Means and percentages of cord characteristics by twin zygosity/chorionicity and gender were calculated. ANOVA and chi-square tests were performed to calculate discordance in cord morphology between dizygotic (DZ), monozygotic monochorionic (MZMC), and monozygotic dichorionic (MZDC) twins. Univariate genetic models were fit to the umbilical cord characteristics to investigate the genetic and environmental influences on umbilical cord morphology. Mainly nonshared environmental but also genetic factors influence umbilical cord morphology. In MZMC male and female twins, a peripheral/marginal cord insertion was significantly (P < 0.01) more prevalent compared to MZDC and DZ male and female twins, respectively. In MZMC male twins, clockwise twisting was significantly (P = 0.02) less frequent compared to DZ twins. Environmental and genetic factors influence cord morphology and pathology. Twin members can experience environmental influences that are not shared between them even in that very early stage of in utero life.
N. Forde, F. Carter, T.E. Spencer, F.W. Bazer, O. Sandra, N. Mansouri-Attia, L.A. Okumu, P.A. McGettigan, J.P. Mehta, R. McBride, P. O'Gaora, J.F. Roche, P. Lonergan
This study sought to determine the earliest response of the bovine uterine endometrium to the presence of the conceptus at key developmental stages of early pregnancy. There were no detectable differences in gene expression in endometria from pregnant and cyclic heifers on Days 5, 7, and 13 postestrus, but the expression of 764 genes was altered due to the presence of the conceptus at maternal recognition of pregnancy (Day 16). Of these 514 genes, MX2, BST2, RSAD2, ISG15, OAS1, USP18, IFI44, ISG20, SAMD9, EIF4E, and IFIT2 increased to the greatest extent in pregnant endometria (>8-fold log2 fold change increase). The expression of OXTR, Bt.643 (unofficial symbol), and KCNMA1 was reduced the most, but short-term treatment with recombinant ovine interferon tau (IFNT) in vitro or in vivo did not alter their expression. In vivo intrauterine infusion of IFNT induced the expression of EIF4E, IFIT2, IFI44, ISG20, MX2, RSAD2, SAMD9, and USP18. These results revealed for the first time that changes that occur in the endometrial transcriptome are independent of the presence of a conceptus until pregnancy recognition. The differentially expressed genes (including MX2, BST2, RSAD2, ISG15, OAS1, USP18, IFI44, ISG20, SAMD, and EIF4E) are a consequence of IFNT production by the conceptus. The identified genes represent known and novel early markers of conceptus development and/or return to cyclicity and may be useful to identify the earliest stage at which the endometrial response to the conceptus is detectable.
Equine spermatozoa induce a uterine inflammatory response characterized by a rapid, transient influx of polymorphonuclear neutrophils (PMNs). Seminal plasma proteins have been shown to modulate the interaction between spermatozoa and PMNs, but a specific protein responsible for this function has not been identified. The objective of this study was to isolate and identify a protein in equine seminal plasma that suppresses binding between spermatozoa and PMNs. Seminal plasma was pooled from five stallions, and proteins were precipitated in 60% (w/v) ammonium sulfate and dialyzed (3500 MW cutoff). Proteins were submitted to a Sephacryl S200 column, and fractions were pooled based on the fraction pattern. Each pool was analyzed for protein concentration and tested for its suppressive effect on PMN/sperm binding. Protein pools with biological activity were submitted to ion-exchange chromatography (diethylaminoethyl [DEAE] Sephadex column) with equilibration buffers containing 0.1–0.5M NaCl. Eluants were pooled, analyzed for protein concentration, and tested for suppressive effects on PMN/sperm binding. Protein distribution and purity were determined by one- and two-dimensional SDS-PAGE, and the purified protein was submitted for sequence analysis and identification. This protein was identified as equine CRISP3 and was confirmed by Western blotting. Suppression of PMN/sperm binding by CRISP3 and seminal plasma was confirmed by flow cytometry (22.08% ± 3.05% vs. 2.06% ± 2.02% vs. 63.09% ± 8.67 for equine seminal plasma, CRISP3, and media, respectively; P < 0.0001). It was concluded that CRISP3 in seminal plasma suppresses PMNs/sperm binding, suggesting that CRISP3 regulates sperm elimination from the female reproductive tract.
Xlr6 is a novel but uncharacterized X-linked gene that is upregulated in meiotic prophase I during mouse spermatogenesis. Xlr6 belongs to the Xlr gene family, which includes a component of the axial/lateral element of the synaptonemal complex, Sycp3, and its transcripts are abundant in the fetal ovary and adult testis. Immunostaining and Western blot analysis demonstrate a diffuse localization pattern for this protein in the nucleus and an association with chromatin during the leptotene and zygotene stages. In males, XLR6 accumulates at the XY body of early pachytene to midpachytene spermatocytes, although the Xlr6 gene is subjected to meiotic sex chromosome inactivation. During the late pachytene and diplotene stages, the XLR6 protein relocalizes from the XY body to the nucleolus and, eventually, disappears by diakinesis. In females, XLR6 disappears at the pachytene stage, whereas it accumulates at the unpaired chromosomes occasionally observed in wild-type female mice. Although the amino acid sequence of XLR6 has a high similarity with SYCP3, its distinct localization pattern and dynamism suggest a unique chromatin modification function that leads to the transcriptional repression of ribosomal DNA in addition to sex chromosome genes.
The prevalence of maternal obesity is increasing rapidly in recent decades. We previously showed that maternal obesity affected skeletal muscle development during the fetal stage. The objective of this study was to evaluate the effects of maternal obesity on the skeletal muscle properties of offspring. Ewes were fed a control diet (100% energy requirement, Con) or an obesogenic diet (150% energy requirement, OB) from 2 mo before pregnancy to weaning. After weaning, the offspring lambs were fed a maintenance diet until 19 mo of age and then ad libitum for 12 wk to measure feed intake. At 22 mo old, the longissimus dorsi (LD) muscle was biopsied. The downstream insulin signaling was lower in OB than Con lambs as shown by reduction in the phosphorylation of protein kinase B, mammalian target of rapamycin, and 4-E binding protein 1. On the other hand, the phosphorylation of protein kinase C and insulin receptor substrate 1 was higher in OB compared to Con lambs. More intramuscular adipocytes were observed in OB compared to Con offspring muscle, and the expression of peroxisome proliferator-activated receptor gamma, an adipocyte marker, was also higher, which was consistent with the higher intramuscular triglyceride content. Both fatty acid transport protein 1 and cluster of differentiation 36 (also known as fatty acid translocase) were increased in the OB group. In addition, higher collagen content was also detected in OB compared to Con offspring. In conclusion, our data show that offspring from obese mothers had impaired insulin signaling in muscle compared with control lambs, which correlates with increased intramuscular triglycerides and higher expression of fatty acid transporters. These data clearly show that maternal obesity impairs the function of the skeletal muscle of offspring, supporting the fetal programming of adult metabolic diseases.
Capacitation encompasses the molecular changes sperm undergo to fertilize an oocyte, some of which are postulated to occur via a cAMP-PRKACA (protein kinase A)-mediated pathway. Due to the recent discovery of cAMP-activated guanine nucleotide exchange factors RAPGEF3 and RAPGEF4, we sought to investigate the separate roles of PRKACA and RAPGEF3/RAPGEF4 in modulating capacitation and acrosomal exocytosis. Indirect immunofluorescence localized RAPGEF3 to the acrosome and subacrosomal ring and RAPGEF4 to the midpiece in equine sperm. Addition of the RAPGEF3/RAPGEF4-specific cAMP analogue 8-(p-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8pCPT) to sperm incubated under both noncapacitating and capacitating conditions had no effect on protein tyrosine phosphorylation, thus supporting a PRKACA-mediated event. Conversely, activation of RAPGEF3/RAPGEF4 with 8pCPT induced acrosomal exocytosis in capacitated equine sperm at rates (34%) similar (P > 0.05) to those obtained in progesterone- and calcium ionophore-treated sperm. In the mouse, capacitation-dependent hyperpolarization of the sperm plasma membrane has been shown to recruit low voltage-activated T-type Ca2 channels, which later open in response to zona pellucida-induced membrane depolarization. We hypothesized that RAPGEF3 may be inducing acrosomal exocytosis via depolarization-dependent Ca2 influx, as RAPGEF3/RAPGEF4 have been demonstrated to play a role in the regulation of ion channels in somatic cells. We first compared the membrane potential (Em) of noncapacitated (−37.11 mV) and capacitated (−53.74 mV; P = 0.002) equine sperm. Interestingly, when sperm were incubated (6 h) under capacitating conditions in the presence of 8pCPT, Em remained depolarized (−32.06 mV). Altogether, these experiments support the hypothesis that RAPGEF3/RAPGEF4 activation regulates acrosomal exocytosis via its modulation of Em, a novel role for RAPGEF3/RAPGEF4 in the series of events required to achieve fertilization.
Spermatogonial differentiation is orchestrated by the precise control of gene expression involving retinoic acid signaling. MicroRNAs have emerged as important regulators of spermatogenesis, and here we show that the Mirlet7 family miRNAs are expressed in mouse spermatogonia and spermatocytes. Retinoic acid significantly leads to the induction of Mirlet7 miRNAs through suppression of Lin28. We further confirmed both in vitro and in vivo that expressions of Mycn, Ccnd1, and Col1a2, which are targets of Mirlet7, were downregulated during spermatogonial differentiation. These results suggest that Mirlet7 family miRNAs play a role in retinoic acid-induced spermatogonial differentiation.
Human cytomegalovirus (HCMV) is the leading cause of congenital disease in the developed world. Transmission of HCMV to the fetus can occur through the villous placenta. Previously, we have shown that although syncytiotrophoblast (ST) can be productively infected, it is more likely that HCMV reaches the fetus through breaks in the ST than through basal release of progeny virus from infected ST. Progeny virus released on the maternal side could interact back with the ST and accumulate. In pregnancy, the organ distribution of disease burden is dramatically shifted, with the placenta reported as a reservoir for some pathogens. Thus, we propose that the ST layer functions as a viral reservoir, where HCMV is harbored and ultimately protected from degradation. Using primary cytotrophoblasts differentiated into an ST culture in vitro and challenged with HCMV, we have defined reversible binding between the virus and trophoblasts that protects the virus from degradation. This is blocked by treatment with low pH and neutralizing intravenous immunoglobulin. This reversible binding likely is to heparan sulfate proteoglycans, because heparin treatment blocks it. Importantly, we show that bound and released virus maintained in culture for at least 48 h results from inoculum and not progeny virus. Thus, the placenta has the potential to accumulate a relatively high steady-state level of virus within the intervillous space resulting from localized binding and release at the ST. A better understanding of the molecular interactions between HCMV and ST will provide insights regarding interventions to prevent or minimize congenital transmission.
Spermatogonial stem cells (SSCs) are the only stem cells in the body with germline potential, which makes them an attractive target for germline modification. We previously showed the feasibility of homologous recombination in mouse SSCs and produced knockout (KO) mice by exploiting germline stem (GS) cells, i.e., cultured spermatogonia with SSC activity. In this study, we report the successful homologous recombination in rat GS cells, which can be readily established by their ability to form germ cell colonies on culture plates whose surfaces are hydrophilic and neutrally charged and thus limit somatic cell binding. We established a drug selection protocol for GS cells under hypoxic conditions. The frequency of the homologous recombination of the Ocln gene was 4.2% (2 out of 48 clones). However, these GS cell lines failed to produce offspring following xenogeneic transplantation into mouse testes and microinsemination, suggesting that long-term culture and drug selection have a negative effect on GS cells. Nevertheless, our results demonstrate the feasibility of gene targeting in rat GS cells and pave the way toward the generation of KO rats.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere