BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Development of the mouse embryo to the blastocyst stage occurs over 3 to 4 days following fertilization of the oocyte. During this time, several molecular and morphological events take place that result in the formation of three distinct cell lineages: the trophectoderm, the epiblast, and the primitive endoderm. Many studies have investigated the processes that control lineage specification in the blastocyst including gene expression, cell signaling, cell–cell contact/positional relationships, and most recently, epigenetics. Here we review, at the molecular level, recent contributions to our understanding of the mechanisms that play a role in formation of these lineages. Additionally, we focus on the next steps in differentiation to highlight processes important in the development of those lineages that contribute to the extraembryonic tissues. In this context, we discuss the establishment of extraembryonic ectoderm and the contributions of parietal and visceral endoderm to yolk sac formation.
Primordial germ cells (PGCs) are undifferentiated germ cells in developing fetuses. As these cells give rise to definitive oocytes and spermatozoa that contribute to new life in the next generation, their development must be under strict control, regarding genetic and epigenetic aspects. However, we do not know to what extent their development depends on the specific milieu. In this study, we transplanted mouse PGCs collected from male and female gonads at 12.5 days postcoitum, together with gonadal somatic cells, under kidney capsules of adult mice. The transplanted PGC and gonadal somatic cells constructed testis-like and ovary-like tissues, respectively, under the kidney capsules within 4 wk. Normal-appearing round spermatids and fully grown germinal vesicle (GV) oocytes developed within these tissues. Ectopic spermatogenesis continued thereafter, while oogenesis consisted of only a single wave. The injection of these round spermatids directly into mature in vivo-derived oocytes led to the birth at term of normal pups. PGC-derived GV oocytes were isolated, induced to mature in vitro, and injected with normal spermatozoa. The injected oocytes were successfully fertilized and developed into normal pups. Our findings demonstrate the remarkable flexibility of PGC development, which can proceed up to the functional gamete stage under spatially and temporally noninnate conditions. This transplantation system may provide a unique technical basis for induction of the development of early germ cells of exogenous origins, such as those from embryonic stem cells.
Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.
Premature delivery remains a serious risk factor in pregnancy, with currently licensed tocolytics unable to offer significant improvement in neonatal outcome. Further understanding of the regulators of uterine contractility is required to enable the development of novel and more effective tocolytic therapies. The transglutaminase family is a class of calcium-dependent, transamidating enzymes, of which tissue transglutaminase 2 is a multifunctional enzyme with roles in cell survival, migration, adhesion, and contractility. The aim of the present study was to investigate the role of this enzyme in regulating the contractility of pregnant human myometrium. Tissue strips from biopsy samples obtained at elective cesarean section were either allowed to contract spontaneously or induced to contract with oxytocin, phenylephrine, or bradykinin. Activity integrals, used to measure contractile activity, were taken following cumulative additions of the reversible, polyamine transglutaminase inhibitors cystamine and mono-dansylcadaverine and the irreversible, site-specific transglutaminase inhibitors N-benzyloxycarbonyl-l-phenylalanyl-6-dimethylsulfonium-5-oxo-L-norleucine and 1,3-dimethyl-2[(oxopropyl)thio]imidazolium. The ability of cystamine and mono-dansylcadaverine to affect oxytocin-mediated calcium mobilization within primary cultured myometrial cells was also measured utilizing a calcium indicator. All inhibitors attenuated myometrial contractions in a concentration-dependent manner independent of the method of contraction stimulus. Similarly cultured myometrial cells preincubated with cystamine and mono-dansylcadaverine displayed an altered calcium response to oxytocin stimulation. Our findings demonstrate a potential role for tissue transglutaminase 2 in regulating uterine contractility in pregnant human myometrium that may be associated with the calcium signaling cascade required for contraction.
The multifaceted polycomb group gene Yin-Yang1 (Yy1) has been implicated in a variety of transcriptional regulatory roles both as an activator and silencer of gene expression. Here we examine the role of Yy1 during oocyte growth by conditional deletion of the locus in the growing oocyte. Our results indicate that YY1 is required for oocyte maturation and granulosa cell expansion. In mutant oocytes, we observe severely reduced expression of both Gdf9 and Bmp15, suggesting a mechanism underlying the failure of granulosa cell expansion. Consequently, we observe infertility, failure of estrus cycling, and altered reproductive hormone levels in mutant females. Additionally, we find that YY1-deficient oocytes exhibit altered levels of several oocyte-specific factors, including Pou5f1, Figla, Lhx8, Oosp1, and Sohlh2. These results document YY1's involvement in folliculogenesis and ovarian function in the mouse and indicate that YY1 is required specifically in the oocyte for oocyte-granulosa cell communication.
We characterized the reproductive cycle of Octodon degus to determine whether reproductive maturation is spontaneous in juveniles and if ovarian cyclicity and luteal function are spontaneous in adults. Laboratory-reared prepubertal and adult females were monitored for vaginal patency and increased wheel-running. Sexual receptivity was assessed by pairing adult females with a male 1) continuously, 2) at the time of vaginal patency, or 3) following estradiol treatment. Blood samples were assayed for estradiol and progesterone concentrations on Days 1, 4, 8, and 16 relative to vaginal opening. Ovarian tissues were collected 6 and 16 days after behavioral estrus and 6 days after copulation for histology. In juveniles, the onset of cyclic vaginal patency and increased wheel-running activity was spontaneous, occurred in the absence of proximal male cues, and appeared at regular intervals (17.5 ± 1.4 days). In adults, vaginal patency and increased wheel-running occurred cyclically (21.2 ± 0.6 days) in the absence of proximal male cues, and these traits predicted the time of sexual receptivity. Corpora lutea develop spontaneously and are maintained for 12–14 days. The ovaries had well-developed corpora lutea 6 days after mating and 6 days after estrus without mating. Progesterone concentrations were highest in the second half of the cycle when corpora lutea were present and estradiol concentrations peaked on the day of estrus. Thus, female degus appear to exhibit a spontaneous reproductive cycle consistent with other Hystricognathi rodents. Octodon degus is a novel model with which to examine the mechanisms underlying different reproductive cycles.
Although studies of both humans and animals suggest detrimental effects of psychological (restraint) stress on reproduction, reports concerning the direct effect of psychological (restraint) stress on the oocyte are few and conflicting. In the present study, a restraint system that allows mice free intake of feed and water while restraining their movement was established, and effects of maternal restraint on oocyte competence were examined by observing embryo development in vitro and in vivo. The results indicated that restraint stress applied to both gonadotropin-stimulated and unstimulated females during oocyte growth and maturation increased their plasma cortisol level but impaired ovulation and oocyte developmental potential. Injection of cortisol also decreased oocyte developmental potential in both stimulated and unstimulated mice. However, whereas restraint stress reduced the plasma follicle-stimulating hormone (FSH) level of unstimulated mice, injection of cortisol did not. Because the stimulated mice had received very high doses of FSH and luteinizing hormone from injection with equine chorionic gonadotropin injection, the results suggested that whereas cortisol acts directly on the ovary to damage the oocyte, restraint stress impairs oocyte competence by actions on both the hypothalamic-pituitary-gonadal and the hypothalamic-pituitary-adrenal axes. However, exposing the cumulus-oocyte complexes (COCs) to physiological levels of cortisol did not affect oocyte nuclear and cytoplasmic maturation in vitro. Thus, cortisol might have impaired ovulation and oocyte potential by an indirect effect on ovarian tissues other than the COCs.
Humanized mice, which refers to immunodeficient mice repopulated with the human immune system, are powerful tools for study in the field of immunology. It has been difficult, however, to generate these transgenic (Tg) mice directly from such strains as the NOD/SCID mouse. In this study, we describe a method developed by us for the generation of Tg mice on an NOD/SCID background. First, we obtained fertilized eggs efficiently by means of in vitro fertilization (IVF); then, we attempted to generate CAG-EGFP Tg mice on an NOD/SCID background, finding that delayed timing of the microinjection after the IVF improved the time to development of the two-cell-stage embryos and the obtainment of newborns. We successfully generated Tg mice and confirmed the germ-line transmission in the offspring. In conclusion, we established a novel system for directly generating transgenic mice on an NOD/SCID background. This novel system is expected to allow improved efficiency of the generation of humanized mice.
Min Xu, Asgerally T. Fazleabas, Ariella Shikanov, Erin Jackson, Susan L. Barrett, Jenny Hirshfeld-Cytron, Sarah E. Kiesewetter, Lonnie D. Shea, Teresa K. Woodruff
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.
The development of techniques to maintain the spermatogonial stem cell (SSC) in vivo and in vitro for extended periods essentially allows for the indefinite continuation of an individual germline. Recent evidence indicates that the aging of male reproductive function is due to failure of the SSC niche. SSCs are routinely cultured for 6 mo, and no apparent effect of culture over this period has been observed. To determine the effects of SSC aging, we utilized an in vitro culture system, followed by quantitative transplantation experiments. After culture for 6 mo, SSCs that had been aged in vivo for 1500 days had a slower proliferation rate than SSCs that were aged in vivo to 8 or 300 days. Examination of methylation patterns revealed no apparent difference in DNA methylation between SSCs that were aged 8, 300, or 1500 days before culture. Long-term culture periods resulted in a loss of stem cell potential without an obvious change in the visual appearance of the culture. DNA microarray analysis of in vivo- and in vitro-aged SSCs identified the differential expression of several genes important for SSC function, including B-cell CLL/lymphoma 6, member B (Bcl6b), Lim homeobox protein 1 (Lhx1), and thymus cell antigen 1, theta (Thy1). Collectively, these data indicate that, although both in vitro and in vivo aging are detrimental to SSC function, in vitro aging results in greater loss of function, potentially due to a decrease in core SSC self-renewal gene expression and an increase in germ cell differentiation gene expression.
Development of ovarian follicles is regulated by pituitary-derived gonadotropins together with local ovarian paracrine factors. Based on DNA microarray data, we performed RT-PCR and immunostaining to demonstrate the expression of interleukin 7 transcripts in oocytes of preantral, antral, and preovulatory follicles in rats. We also found the expression of interleukin 7 receptor and the coreceptor interleukin 2 receptor gamma in granulosa cells, cumulus cells, and preovulatory oocytes. In cultured rat granulosa cells obtained from early antral and preovulatory follicles, treatment with interleukin 7 stimulated the phosphorylation of AKT, glycogen synthase kinase (GSK3B), and STAT5 proteins in a time- and dose-dependent manner. Furthermore, measurement of mitochondrial reductase activity indicated that treatment with interleukin 7, similar to gonadotropins, increased the number of viable granulosa cells during a 24-h culture period. Furthermore, monitoring of the activities of apoptotic enzymes (caspase 3/7) indicated that treatment with interleukin 7 suppressed apoptosis of cultured granulosa cells from both antral and preovulatory follicles following serum withdrawal. The apoptosis-suppressing actions of interleukin 7 were blocked by an inhibitor of the phosphoinositol-3-kinase (PIK3)/AKT pathway. Furthermore, treatment of cultured preovulatory follicles with interleukin 7, like treatment with human chorionic gonadotropin, induced germinal vesicle breakdown of oocytes. The stimulatory effect of interleukin 7 was also blocked by inhibitors of the PIK3/AKT pathway. The present findings suggest that oocyte-derived interleukin 7 could act on neighboring granulosa cells as a survival factor and promote the nuclear maturation of preovulatory oocytes through activation of the PIK3/AKT pathway.
The present studies were designed to assess the roles of progesterone (P4) and Progesterone Receptor Membrane Component 1 (PGRMC1) in regulating mitosis of spontaneously immortalized granulosa cells (SIGCs) and ovarian cancer cells, SKOV-3 cells. Because PGRMC1 has been detected among the proteins of the human mitotic spindle, we theorized that P4 and PGRMC1 could affect mitosis through a microtubule-dependent process. The present study confirms that SIGC growth is slowed by either P4 treatment or transfection of a PGRMC1 antibody. In both cases, slower cell proliferation was accompanied by an increased percentage of mitotic cells, which is consistent with a P4-induced prolongation of the M phase of the cell cycle. In addition, P4 increased the stability of the spindle microtubules, as assessed by the rate of beta-tubulin disassembly in response to cooling. Also, P4 increased spindle microtubule stability of SKOV-3 cells. This effect was mimicked by the depletion of PGRMC1 in these cells. Importantly, P4 did not increase the stability of the microtubules over that observed in PGRMC1-depleted SKOV-3 cells. Immunofluorescent analysis revealed that PGRMC1 is distributed to the spindle apparatus as well as to the centrosomes at metaphase. Further in situ proximity ligation assay revealed that PGRMC1 interacted with beta-tubulin. Taken together, these results suggest that P4 inhibits mitosis of ovarian cells by increasing the stability of the mitotic spindle. Moreover, P4's actions appear to be dependent on PGRMC1's function within the mitotic spindle.
The enzyme telomerase is active in germ cells and is critically involved in maintenance of telomere length in successive generations. In preimplantation mammalian embryos, telomerase activity is present from the morula stage onward and is associated with an increase in telomere length in blastocysts. Herein, we show that telomere length regulation in murine and bovine blastocysts differed between trophectodermal and inner cell mass cells in a species-specific manner. Ectopic expression of human telomerase reverse transcriptase (TERT) in bovine embryos increased telomerase activity and in turn increased telomere length. Transient expression of human TERT could be targeted to the 4-cell to morula stages and to the morula to blastocyst stages using unmodified and cytosine-methylated expression plasmids, respectively. Introduction of human TERT constructs in bovine embryos resulted in functional telomerase expression and effective telomere elongation, allowing us to study the effects on embryonic development. Ultimately, these studies may lead to a large-animal model for telomere regulation and aging.
The balance between androgens and estrogens is very important in the development of the prostate, and even small changes in estrogen levels, including those of estrogen-mimicking chemicals, can lead to serious changes. Bisphenol A (BPA), an endocrine-disrupting chemical, is a well-known, ubiquitous, estrogenic chemical. To investigate the effects of fetal exposure to low-dose BPA on the development of the prostate, we examined alterations of the in situ sex steroid hormonal environment in the mouse urogenital sinus (UGS). In the BPA-treated UGS, estradiol (E2) levels and CYP19A1 (cytochrome P450 aromatase) activity were significantly increased compared with those of the untreated and diethylstilbestrol (DES)-treated UGS. The mRNAs of steroidogenic enzymes, Cyp19a1 and Cyp11a1, and the sex-determining gene, Nr5a1, were up-regulated specifically in the BPA-treated group. The up-regulation of mRNAs was observed in the mesenchymal component of the UGS as well as in the cerebellum, heart, kidney, and ovary but not in the testis. The number of aromatase-expressing mesenchymal cells in the BPA-treated UGS was approximately twice that in the untreated and DES-treated UGS. The up-regulation of Esrrg mRNA was observed in organs for which mRNAs of steroidogenic enzymes were also up-regulated. We demonstrate here that fetal exposure to low-dose BPA has the unique action of increasing in situ E2 levels and CYP19A1 (aromatase) activity in the mouse UGS. Our data suggest that BPA might interact with in situ steroidogenesis by altering tissue components, such as the accumulation of aromatase-expressing mesenchymal cells, in particular organs.
4-Vinylcyclohexene diepoxide (VCD), an occupational chemical that specifically destroys primordial and small primary follicles in the ovaries of rats and mice, is thought to target an oocyte-expressed tyrosine kinase receptor, Kit. This study compared the temporal effect of VCD on protein distribution of KIT and its downstream PIK3-activated proteins, AKT and FOXO3. Postnatal Day 4 Fischer 344 rat ovaries were cultured in control media ± VCD (30 μM) for 2–8 days (d2–d8). KIT, AKT, phosphorylated AKT, FOXO3, and pFOXO3 protein levels were assessed by Western blotting and/or immunofluorescence staining with confocal microscopy. Phosphorylated AKT was decreased (P < 0.05) in oocyte nuclei in primordial (39% decrease) and small primary (37% decrease) follicles within 2 days of VCD exposure. After d4, VCD reduced (P < 0.05) oocyte staining for KIT (primordial, 44% decrease; small primary, 39% decrease) and FOXO3 (primordial, 40% decrease; small primary, 36% decrease) protein. Total AKT and pFOXO3 were not affected by VCD at any time. Akt1 mRNA, as measured by quantitative RT-PCR, was reduced (P < 0.05) by 23% on d4 of VCD exposure, but returned to control levels on d6 and d8. VCD exposure reduced Foxo3a mRNA by 26% on d6 (P < 0.05) and by 23% on d8 (P < 0.1). These results demonstrate that the earliest observed effect of VCD is an inhibition of phosphorylation and nuclear localization of AKT in the oocyte of primordial and small primary follicles. This event is followed by reductions in KIT and FOXO3 protein subcellular distribution prior to changes in mRNA. Thus, these findings further support that VCD induces ovotoxicity by directly targeting the oocyte through posttranslational inhibition of KIT-mediated signaling components.
Although genetics clearly influences the onset of menarche, the association of age at menarche (AAM) with variants in genes related to energy homeostasis remains unexplored. Our aim was to analyze the relationship of the Q223R polymorphism in the leptin receptor gene (LEPRQ223R) with AAM in a population-based sample of healthy pubertal girls. The study included 338 Spanish girls aged between 11 and 17 yr. Data were collected on AAM. The Q223R polymorphism in LEPR was detected by TaqMan allelic discrimination assays. Girls carrying the RR genotype had a significantly younger AAM (11.5 yr) than those carrying the QR (11.9 yr) or QQ (12.0 yr) genotype (P < 0.05). Furthermore, we found a significantly higher frequency of the RR genotype in girls with an AAM of 11 yr or younger than in girls with an AAM older than 12 yr (23.9% vs. 7.8%, χ2 = 11.17, P = 0.0008). Also, the RR genotype frequency in girls with an AAM between 11 and 12 yr was significantly higher than in girls with an AAM older than 12 yr (16.8% vs. 7.8%, χ2 = 3.97, P = 0.0046). The Q223R polymorphism in the LEPR gene is associated with variations in AAM among Spanish girls, with the RR genotype being related to earlier onset.
Epigenetic regulation is considered one of the most important mechanisms by which changes in gene expression occur without changes in the underlying DNA sequence. More and more studies have shown that this kind of regulation plays a very important role during the process of early embryonic development. Methylation of histones is a special process in epigenetic regulations that plays a dual role: some activate gene expression, while some inhibit it; trimethylation of histone 3 lysine 4 has been shown to be a marker of gene expression activation. Previous research has led us to focus on the role of WDR82, which has been shown to recognize a subunit in the methyltransferases complex that catalyzes H3K4me3 in early embryonic development. Although it has been shown that a defect in WDR82 causes dysfunction of SETD1A/SETD1B and results in loss of H3K4me3 in human cell lines, the exact role of WDR82 in the methyltransferases complex during early embryonic development is not clear. Our study has shown that a defect in WDR82 causes dysfunction of SETD1A/SETD1B and affects the normal H3K4me3 status in the transcription start region of POU5F1, which then causes the down-regulation of POU5F1 as well as its downstream factors STAT3/BIRC5, which are responsible for the extremely high apoptotic rates of blastocysts. Finally, the result of a blocked WDR82 consists of stunted embryonic development and death. Thus, WDR82 can be considered a key epigenetic regulation-related factor crucial in the normal growth and development of embryos.
ID3 is a transcription factor that acts as a dominant-negative regulator of other transcription factors by sequestering them, thus rendering them unable to bind DNA. We have shown previously that ID3 is expressed in a unique, region-specific manner along the epididymis, a highly specialized tissue of the male reproductive tract that functions in the transport and maturation of spermatozoa. The goal of these studies was to test the hypothesis that ID3 plays a role in the epididymis in the region-specific regulation of gene expression that is responsible for establishing the microenvironment required to carry out sperm-related functions. The consequences of ID3 deficiency on epididymal histology and gene expression profiles, as well as spermatozoal motility parameters, were determined. Although ID3 deficiency (Id3−/− mice) had no noticeable impact on epididymal histology, the targeted mutation adversely affected sperm motility parameters. Moreover, principal component analysis of microarray data indicated that the gene expression signatures for tissues obtained from Id3−/− mice and their genotypic controls were distinct from each other in each epididymal region. The predominant effect of the Id3 null mutation was in the cauda region where the expression of many transcription factors, including Hoxb8 and Bclaf1, was markedly affected. ID3 may play an important role in the molecular circuitry involved in the establishment and maintenance of the region-specific differences in gene expression that are characteristic of the epididymis.
Oxidative stress has been implicated in various aspects of aging, but the role of oxidative stress in ovarian aging remains unclear. Our previous studies have shown that the initiation of apoptotic cell death in ovarian follicles and granulosa cells by various stimuli is initiated by increased reactive oxygen species. Herein, we tested the hypothesis that ovarian antioxidant defenses decrease and oxidative damage increases with age in mice. Healthy, wild-type C57BL/6 female mice aged 2, 6, 9, or 12 mo from the National Institute on Aging Aged Rodent Colony were killed on the morning of metestrus. Quantitative real-time RT-PCR was used to measure ovarian mRNA levels of antioxidant genes. Immunostaining using antibodies directed against 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) was used to localize oxidative lipid, protein, and DNA damage, respectively, within the ovaries. TUNEL was used to localize apoptosis. Ovarian expression of glutathione peroxidase 1 (Gpx1) increased and expression of glutaredoxin 1 (Glrx1), glutathione S-transferase mu 2 (Gstm2), peroxiredoxin 3 (Prdx3), and thioredoxin 2 (Txn2) decreased in a statistically significant manner with age. Statistically significant increases in 4-HNE, NTY, and 8-OHdG immunostaining in ovarian interstitial cells and follicles were observed with increasing age. Our data suggest that the decrease in mRNA expression of mitochondrial antioxidants Prdx3 and Txn2 as well as cytosolic antioxidants Glrx1 and Gstm2 may be involved in age-related ovarian oxidative damage to lipid, protein, DNA, and other cellular components vital for maintaining ovarian function and fertility.
Breast cancer-resistance protein (BCRP1), encoded by Abcg2 mRNA, limits the penetration of a spectrum of compounds into the brain. The fetal brain is a primary target for many BCRP1 substrates; however, the developmental expression, function, and regulation of Abcg2/BCRP1 in the mouse fetal brain are unknown. Synthetic glucocorticoids (e.g., dexamethasone [DEX]) increase Abcg2/BCRP1 expression and function in vitro in endothelial cells derived from brain microvessels. A regulatory role of glucocorticoids on Abcg2/BCRP1 in the fetal brain is of importance given that approximately 10% of pregnant women are treated with synthetic glucocorticoid for threatened preterm labor. We hypothesized the following: 1) Abcg2 mRNA and BCRP1 protein expression increases with development (from Embryonic Day [E] 15.5 to E18.5), corresponding to decreased accumulation of BCRP1 substrate in the fetal brain. 2) Maternal treatment with DEX will up-regulate Abcg2 mRNA and BCRP1 protein expression in the fetal brain, resulting in decreased BCRP1 substrate accumulation. Pregnant FVB dams were euthanized on E15.5 or E18.5, and fetal brains were collected and analyzed for [3H]mitoxantrone (BCRP1-specific substrate) accumulation and Abcg2/BCRP1 expression. In another six groups (n = 4–5/group), pregnant mice were treated with DEX (0.1 or 1 mg/kg) or vehicle (saline) from either E9.5 to E15.5 (midgestation) or E12.5 to E18.5 (late gestation) and then injected with [3H]mitoxantrone. In conclusion, Abcg2 mRNA expression significantly decreases with advancing gestation, while BCRP1-mediated neuroprotection increases. Furthermore, there is a dose-, sex-, and age-dependent effect of DEX on Abcg2 mRNA in the fetal brain in vivo, indicating a complex regulatory role of glucocorticoid during development.
The commitment of germ cells to either oogenesis or spermatogenesis occurs during fetal gonad development: germ cells enter meiosis or mitotic arrest, depending on whether they reside within an ovary or a testis, respectively. Despite the critical importance of this step for sexual reproduction, gene networks underlying germ cell development have remained only partially understood. Taking advantage of the Wv mouse model, in which gonads lack germ cells, we conducted a microarray study to identify genes expressed in fetal germ cells. In addition to distinguishing genes expressed by germ cells from those expressed by somatic cells within the developing gonads, we were able to highlight specific groups of genes expressed only in female or male germ cells. Our results provide an important resource for deciphering the molecular pathways driving proper germ cell development and sex determination and will improve our understanding of the etiology of human germ cell tumors that arise from dysregulation of germ cell differentiation.
Eutopic endometrium in endometriosis has molecular evidence of resistance to progesterone (P4) and activation of the PKA pathway in the stromal compartment. To investigate global and temporal responses of eutopic endometrium to P4, we compared early (6-h), intermediate (48-h), and late (14-Day) transcriptomes, signaling pathways, and networks of human endometrial stromal fibroblasts (hESF) from women with endometriosis (hESFendo) with hESF from women without endometriosis (hESFnonendo). Endometrial biopsy samples were obtained from subjects with and without mild peritoneal endometriosis (n = 4 per group), and hESF were isolated and treated with P4 (1 μM) plus estradiol (E2) (10 nM), E2 alone (10 nM), or vehicle for up to 14 days. Total RNA was subjected to microarray analysis using a Gene 1.0 ST (Affymetrix) platform and analyzed by using bioinformatic algorithms, and data were validated by quantitative real-time PCR and ELISA. Results revealed unique kinetic expression of specific genes and unique pathways, distinct biological and molecular processes, and signaling pathways and networks during the early, intermediate, and late responses to P4 in both hESFnonendo and hESFendo, although a blunted response to P4 was observed in the latter. The normal response of hESF to P4 involves a tightly regulated kinetic cascade involving key components in the P4 receptor and MAPK signaling pathways that results in inhibition of E2-mediated proliferation and eventual differentiation to the decidual phenotype, but this was not established in the hESFendo early response to P4. The abnormal response of this cell type to P4 may contribute to compromised embryonic implantation and infertility in women with endometriosis.
To investigate the regulation of lipid uptake into the eel oocyte in more detail, effects of 11-ketotestosterone (11-KT) and lipid transporters (lipoproteins) were determined in vitro. Ovarian explants from previtellogenic Japanese eels (Anguilla japonica) were incubated for 28 days with 11-KT and/or with very low density lipoproteins (Vldl), low density lipoproteins (Ldl), or high density lipoproteins (Hdl) purified from eel plasma. The androgen 11-KT induced notable increases in oocyte diameter, which were accompanied by the appearance of vacuoles rather than lipid. Ldl and Hdl increased oocyte diameters, whereas Vldl did not. However, coincubation of 11-KT and Vldl, but not of Ldl or Hdl, resulted in dramatic increases in oocyte size and lipid droplet surface area. Effects of both 11-KT (oocyte size) and Vldl (lipid droplet surface area) were dose-dependent between 1 and 100 ng/ml and between 0.5 and 5 mg/ml, respectively. Interestingly, abnormal oocyte cytology under conditions of coculture with 11-KT and Vldl could essentially be prevented if Vldl concentrations were high enough (≥ 5 mg Vldl/ml medium). Unlike 11-KT, estradiol-17beta had no effect on oocyte diameter or lipid droplet surface area. We conclude that Vldl is a key transporter of neutral lipids that accumulate into the eel oocyte during oogenesis and that Vldl-dependent lipid uptake is stimulated by the androgen 11-KT.
During lactation, there are numerous functional adaptations in the maternal brain. There is evidence that the high levels of circulating prolactin present during lactation might contribute to these adaptive changes. The present study aimed to investigate levels of functional prolactin-mediated signal transduction in the brain of lactating mice, using prolactin-induced phosphorylation of signal transducer and activator of transcription 5 (pSTAT5) as a marker, and compare these to the effect of exogenous prolactin during diestrus. On Day 7 of lactation, widespread induction of pSTAT5 was observed in numerous regions of the mouse forebrain and brainstem. In the medial preoptic nucleus, bed nuclei stria terminalis, paraventricular nucleus, and medial amygdala of the forebrain, and in the rostral periaqueductal gray, parabrachial nucleus, dorsal raphe, and the raphe obscurus nucleus of the brainstem, pSTAT5 expression was markedly increased during lactation compared with the response to exogenous prolactin during diestrus. In the anteroventral periventricular nucleus, arcuate nucleus, ventromedial nucleus, and dorsomedial nucleus, responses in lactation were comparable to diestrus. Conversely, in the area postrema of the brainstem, there was a reduction in response to prolactin, with a loss of pSTAT5 expression, during lactation. These differential responses following either acute or chronic elevations in prolactin were not accompanied by any changes in levels of prolactin receptor mRNA, when measured by in situ hybridization. These data are consistent with the hypothesis that prolactin might mediate widespread adaptive responses in the maternal brain.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere