BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Maternal nutrition during pregnancy has a pivotal role in the regulation of placental-fetal development and thereby affects the lifelong health and productivity of offspring. Suboptimal maternal nutrition yields low birth weight, with substantial effect on the short-term morbidity of the newborn. The placenta is the organ through which gases, nutrients, and wastes are exchanged between the maternal-fetal circulations. The size, morphology, and nutrient transfer capacity of the placenta determine the prenatal growth trajectory of the fetus to influence birth weight. Transplacental exchange depends on uterine, placental, and umbilical blood flow. Most important, maternal nutrition influences factors associated not only with placental homeostasis but also with optimal fetal development. This review associates fetal growth with maternal nutrition during pregnancy, placental growth and vascular development, and placental nutrient transport.
Inbreeding is known to cause deleterious effects upon reproduction and survival, but its effects upon sperm DNA integrity have not been examined. In the present study, we analyzed this relationship among three endangered ungulates: Gazella cuvieri, Gazella dama mhorr, and Gazella dorcas neglecta. In addition, we examined whether levels of sperm DNA fragmentation are associated with semen quality. The magnitude of sperm DNA damage in the two species with high levels of inbreeding (G. cuvieri and G. dama mhorr) was extremely high when compared to the species with low levels of inbreeding (G. dorcas neglecta) and to values previously reported for outbred populations. Levels of sperm DNA fragmentation significantly increased with inbreeding and age. Increased DNA damage in sperm was associated with increased sperm head abnormalities, lower percentage of sperm with an intact acrosome, and poor motility. Our findings suggest that the link between inbreeding and semen quality is mediated by the effects of inbreeding upon sperm DNA damage. The deleterious effects of inbreeding upon the paternal genome likely decrease male fertility and may cause genetic damage to future generations. Because inbreeding is common among endangered species, high levels of sperm DNA damage may have considerable impact upon the viability of their populations.
Fibroblast growth factors (FGF) are involved in paracrine signaling between cell types in the ovarian follicle. FGF8, for example, is secreted by oocytes and controls cumulus cell metabolism. The closely related FGF18 is also expressed in oocytes in mice. The objective of this study was to assess the potential role of FGF18 in follicle growth in a monovulatory species, the cow. Messenger RNA encoding FGF18 was detected primarily in theca cells, and in contrast to the mouse, FGF18 was not detected in bovine oocytes. Addition of FGF18 protein to granulosa cell cultures inhibited estradiol and progesterone secretion as well as the abundance of mRNA encoding steroidogenic enzymes and the follicle-stimulating hormone receptor. In vivo, onset of atresia of the subordinate follicle was associated with increased thecal FGF18 mRNA levels and FGF18 protein in follicular fluid. In vitro, FGF18 altered cell cycle progression as measured by flow cytometry, resulting in increased numbers of dead cells (sub-G1 peak) and decreased cells in S phase. This was accompanied by decreased levels of mRNA encoding the cell cycle checkpoint regulator GADD45B. Collectively, these data point to a unique role for this FGF in signaling from theca cells to granulosa cells and suggest that FGF18 influences the process of atresia in ovarian follicles.
In preimplantation mouse development, the first cell lineages to be established are the trophectoderm (TE) and inner cell mass. TE possesses epithelial features, including apical-basal cell polarity and intercellular junctions, which are crucial to generate a fluid-filled cavity in the blastocyst. Homologs of the partitioning defective (par) genes in Caenorhabditis elegans are critical regulators of cell polarity. However, their roles in regulating TE differentiation and blastocyst formation remain unclear. Here, the role of mouse Pard6b, a homolog of par-6 gene and a component of the PAR-atypical protein kinase C (aPKC) complex, was investigated. Pard6b expression was knocked down by microinjecting RNA interference construct into zygotes. Pard6b-knockdown embryos cleaved and compacted normally but failed to form the blastocyst cavity. The cavitation failure is likely the result of defective intercellular junctions, because Pard6b knockdown caused abnormal distribution of actin filaments and TJP1 (ZO-1) tight junction (TJ) protein and interfered with cavitation in chimeras containing cells from normal embryos. Defective TJ formation may be caused by abnormal cell polarization, because the apical localization of PRKCZ (aPKCzeta) was absent in Pard6b-knockdown embryos. Pard6b knockdown also diminished the expression of CDX2, a TE-lineage transcription factor, in the outer cells. TEAD4, a transcriptional activator that is required for Cdx2 expression and cavity formation, was not essential for the transcription of Pard6b. Taken together, Pard6b is necessary for blastocyst morphogenesis, particularly the development of TE-specific features—namely, the apical-basal cell polarity, formation of TJ, paracellular permeability sealing, and up-regulated expression of Cdx2.
Although sperm serine protease and proteasome have long been believed to play an important role in the fertilization process, the molecular mechanism is still controversial. In this study, we have produced double-knockout mice lacking two sperm serine proteases, ACR and PRSS21, to uncover the functional role of the trypsinlike activity in fertilization. The double-knockout male mice were subfertile, likely owing to the incompleteness of fertilization in the oviductal ampulla. Despite male subfertility, the mutant epididymal sperm exhibited the inability to undergo acrosomal exocytosis on the zona pellucida (ZP) surface and to traverse the ZP, thus resulting in the failure of fertilization in vitro. The double-knockout epididymal sperm were also defective in penetration through the cumulus matrix to reach the ZP. When epididymal sperm were artificially injected into the uterus of wild-type mice, the 2-cell embryos, which had previously been fertilized by double-knockout sperm, were recovered at a low but significant level. The mutant epididymal sperm were also capable of fertilizing the oocytes in the presence of uterine fluids in vitro. These data demonstrate that the trypsinlike protease activity of ACR and PRSS21 is essential for the process of sperm penetration through the cumulus matrix and ZP in vitro, and suggest that the female reproductive tract partially compensates for the loss of the sperm function. We therefore conclude that the sperm trypsinlike activity is still important but not essential for fertilization in vivo in the mouse.
Our previous study has demonstrated cyclosporin A (CsA) promotes the invasiveness of human first-trimester trophoblast cells. In the present study, we further investigated the intracellular signaling pathway responsible for the improvements in CsA-induced invasiveness of human trophoblast cells. We showed that CsA down-regulated E-cadherin transcription and translation in human primary cultured trophoblast cells and choriocarcinoma cell line JEG-3. U0126, an inhibitor of extracellular signal-regulated protein kinase (ERK), attenuated the CsA-induced transcriptional repressor SNAI2 (also called Slug) expression and restored E-cadherin expression inhibited by CsA in JEG-3 cells. We further demonstrated that CsA amplified epidermal growth factor (EGF)-stimulated EGF receptor (EGFR) tyrosine phosphorylation in JEG-3 cells, and inhibition of EGFR tyrosine phosphorylation by AG1478, an EGFR tyrosine kinase inhibitor, abolished the down-regulation of E-cadherin by CsA through ERK signaling pathway. Moreover, our data showed that E-cadherin expression was negatively correlated to the invasiveness of JEG-3 cells, and CsA could reverse the decreased invasiveness of JEG-3 cells that resulted from E-cadherin overexpression. In conclusion, these observations indicate that CsA may decrease E-cadherin expression via EGFR/ERK signaling pathway and, ultimately, contribute to the invasiveness improvement of human trophoblast cells.
Imprinted genes are differentially methylated during gametogenesis to allow parent-of-origin-specific monoallelic expression. We previously demonstrated establishment of normal imprinting at four key imprinted genes in mouse metaphase II oocytes after in vitro follicle culture. Commercially available culture media feature a wide range of methyl donor levels. The aim of the present study was to examine the effect of low methyl donor (methionine, vitamin B12, folic acid, choline, and vitamin B6) levels during follicle culture on acquisition of DNA methylation at imprinted genes in mouse oocytes. Follicle culture performed under low methyl donor levels led to decreased antral follicle development (mean [SD] antral follicle rate, 87.5% [12.6%] vs. 97.7% [4.3%] in control conditions; P < 0.05) and to a dramatic decrease in polar body (PB) oocyte rate (mean [SD] PB oocyte rate, 38.7% [25.5%] vs. 96.1% [7.1%]; P < 0.001). The methylation status of differentially methylated regions (DMRs) of four key imprinted genes was studied (by bisulphite sequencing) in normal-looking PB and germinal vesicle breakdown-arrested oocytes obtained from follicle culture under low methyl donor levels. DMRs of Snrpn, Igf2r, and H19 showed no alteration in DNA methylation, but at Mest DMR in PB oocytes, we found a significant reduction in DNA methylation compared to that in control follicle culture (DNA methylation, 89.9% and 98.2%, respectively; P = 0.0014). In conclusion, restriction of methyl donors during follicle culture led to a dramatic decrease in PB oocyte rate but induced no or only minor DNA methylation alterations at the studied regulatory sequences of key imprinted genes in oocytes.
Syncytin 2 is a newly identified placental membrane protein with fusogenic and immunosuppressive activities. Major facilitator superfamily domain containing 2A (MFSD2A) is the cognate receptor for syncytin 2-mediated cell-cell fusion. Both syncytin 2 and MFSD2A are highly expressed in placenta. In this study to understand the regulation of syncytin 2 and MFSD2A expression in placenta, we found that syncytin 2 gene is epigenetically silenced in nonplacental cells by cytosine-phosphate-guanine (CpG) dinucleotide methylation and that expression of syncytin 2 and MFSD2A genes are regulated by the placental transcription factor GCM1 in placental cells. Functional GCM1-binding sites were identified in syncytin 2 and MFSD2A promoters based on electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Because GCM1 activity is decreased in hypoxic placental cells, we further confirmed that expression of MFSD2A is downregulated in hypoxic BeWo choriocarcinoma cells. Interestingly, ectopic expression of GCM1 activated syncytin 2 and MFSD2A expression in MCF-7 breast cancer cells and facilitated MCF-7 cell fusion. The expression of syncytin 2 in MCF-7 cells was partly attributed to CpG demethylation in the syncytin 2 promoter in the presence of GCM1. Our results suggest that GCM1 is a critical factor in controlling placental cell fusion through transcriptional regulation of syncytin 2 and MFSD2A gene expression in placenta. In addition, GCM1 may also play an important role in the epigenetic regulation of syncytin 2 gene expression.
During embryonic development, Foxa2 is required for the formation of the node and notochord, and ablation of this gene results in defects in gastrulation, neural tube patterning, and gut morphogenesis. Foxa2 has been shown to be expressed specifically in the glandular epithelium of the murine uterus. To study the uterine function of Foxa2, this gene was conditionally ablated in the mouse uterus by crossing mice with floxed Foxa2 alleles, Foxa2loxP/loxP, with the Pgrcre mouse model. Pgrcre/ Foxa2loxP/loxP mice showed significantly reduced fertility. Analysis of the uterus on Day 5.5 of pregnancy showed disrupted blastocyst implantation. Pgrcre/ Foxa2loxP/loxP mice also showed a severe impairment of the uterus to respond to the artificial induction of the decidual response. Morphological examination of the uteri of these mice showed a severe reduction in the number of endometrial glands. The loss of endometrial glands resulted in the reduction of leukemia inhibitory factor (Lif) expression. The lack of a decidual response could be partially rescued by an intrauterine injection of LIF before the initiation of the decidual response. This analysis demonstrates that Foxa2 regulates endometrial gland development and that mice with a loss of endometrial glands cannot support implantation in part due to the loss of LIF, which is a requisite for fertility in the mouse.
Murine models suggest that natural killer (NK) cells are important for normal implantation site development, in part, through the production of interferon gamma (IFNG). As KLRK1 (NKG2D) is expressed on human and murine uterine NK (uNK) cells, we examined the role of KLRK1 in the interaction between murine trophoblasts and NK cells. Flow cytometric analysis revealed that both murine trophoblast stem (TS) cells and differentiated trophoblast giant cells expressed the KLRK1 ligand retinoic acid early transcript 1, or RAET1. Coculture of activated NK cells with either TS cells or giant cells led to the production of IFNG, as measured by ELISA. In addition, coculture with TS cells led to the downregulation of KLRK1. Both responses were inhibited by soluble KLRK1 ligand, but not by irrelevant protein. Further studies demonstrated the presence of KLRK1 ligand on uterine cells derived from either virgin or pregnant mice, although uterine RAET1 protein expression was upregulated in vitro by progesterone, but not estradiol. We suggest that the interaction of KLRK1 and RAET1 may be involved in IFNG production by uNK cells, and thus, this receptor-ligand pair may contribute to successful murine implantation site development.
Ureaplasma species are the bacteria most frequently isolated from human amniotic fluid in asymptomatic pregnancies and placental infections. Ureaplasma parvum serovars 3 and 6 are the most prevalent serovars isolated from men and women. We hypothesized that the effects on the fetus and chorioamnion of chronic ureaplasma infection in amniotic fluid are dependent on the serovar, dose, and variation of the ureaplasma multiple-banded antigen (MBA) and mba gene. We injected high- or low-dose U. parvum serovar 3, serovar 6, or vehicle intra-amniotically into pregnant ewes at 55 days of gestation (term = 150 days) and examined the chorioamnion, amniotic fluid, and fetal lung tissue of animals delivered by cesarean section at 125 days of gestation. Variation of the multiple banded antigen/mba generated by serovar 3 and serovar 6 ureaplasmas in vivo were compared by PCR assay and Western blot. Ureaplasma inoculums demonstrated only one (serovar 3) or two (serovar 6) MBA variants in vitro, but numerous antigenic variants were generated in vivo: serovar 6 passage 1 amniotic fluid cultures contained more MBA size variants than serovar 3 (P = 0.005), and ureaplasma titers were inversely related to the number of variants (P = 0.025). The severity of chorioamnionitis varied between animals. Low numbers of mba size variants (five or fewer) within amniotic fluid were associated with severe inflammation, whereas the chorioamnion from animals with nine or more mba variants showed little or no inflammation. These differences in chorioamnion inflammation may explain why not all women with in utero Ureaplasma spp. experience adverse pregnancy outcomes.
Homeostasis of many tissues is maintained by self-renewal and differentiation of stem cells. Spermatogenesis is one such system relying on the activity of spermatogonial stem cells (SSCs). Several key regulators of SSC self-renewal have been identified, yet knowledge of molecules that control SSC differentiation is undefined. In this study, we found that transient impairment of STAT3 signaling enhances SSC self-renewal in vitro without affecting general spermatogonial proliferation, indicating an alteration in the balance of SSC fate decisions that inhibited differentiation. Confirming this observation, short hairpin RNA-mediated stable reduction of STAT3 expression in cultured SSCs abolished their ability to differentiate beyond the undifferentiated spermatogonial stage following transplantation into recipient testes. Collectively, these results demonstrate that STAT3 promotes the differentiation of SSCs. In contrast, STAT3 plays a central role in maintaining self-renewal of mouse embryonic stem cells, and STAT signaling is essential for self-renewal of male germline stem cells in Drosophila.
Testosterone, acting as a systemic and local factor, is one of the major regulatory molecules that initiate and maintain testicular function. In the present study, different experimental approaches were used to evaluate the role of testosterone in regulation of the nitric oxide (NO)-cGMP pathway in Leydig cells derived from normal and hypogonadotropic male rats treated with testosterone for 24 h and 2 wk. Real-time quantitative PCR and Western blot analysis revealed increased inducible NO synthase (NOS2) expression followed by increased NO secretion from Leydig cells ex vivo after continuous treatment with testosterone for 2 wk in vivo. The cGMP-specific phosphodiesterases Pde5, Pde6, and Pde9 were up-regulated, whereas PRKG1 protein was decreased after a 2-wk testosterone treatment. Induction of Nos2 and Pde5 in Leydig cells was blocked by androgen receptor antagonist. In experimental hypogonadotropic hypogonadism, expression of NOS2 was significantly reduced, and treatment with testosterone increased NOS2 expression above control levels. PDE5 protein level was unchanged in hypogonadal rats, whereas treatment of hypogonadal rats with testosterone significantly increased it. In contrast, hypogonadism and testosterone replacement reduced PRKG1 protein in Leydig cells. In vitro treatment with testosterone caused gradually increased Nos2 gene expression followed by increased nitrite and cGMP production by purified Leydig cells. In summary, testosterone up-regulated NO signaling via increased NOS2 expression and contributed to down-regulation of cGMP signaling in Leydig cells. Thus, testosterone-induced modulation of NO-cGMP signaling may serve as a potent autocrine regulator of testicular steroidogenesis.
The protandrous black porgy, Acanthopagrus schlegeli, has a striking life cycle, with sex differentiation at the juvenile stage, mono-male development, a bisexual gonad during the first 2 yr of life, and a male-to-female sex change (with vitellogenic oocytes) at 3 yr of age. In the present study, we investigated the possible roles of amh and amhr2 in gonadal development in a nonmammalian model organism (protandrous black porgy), especially in relation to sex differentiation, testicular and ovarian growth, and sex change. Fish of various ages were treated with estradiol or an aromatase inhibitor to induce the fish to become female. Furthermore, a natural sex change (2-yr-old [>2 yr and <3 yr] fish) and a nonchemical method to surgically remove one of the pair of gonads to examine the possible roles of amh in the natural sex change were conducted. We present integrative in situ hybridization, immunohistochemical, cellular, and molecular data describing these phenomena. During gonadal sex differentiation, an increase in amh and amhr2 expression was detected. Higher levels of amh and amhr2 transcripts were observed in the testicular tissue when compared to the ovarian tissue in the bisexual gonad of 1-yr-old (>1 yr and <2 yr) fish. Transcripts of amh reached peak levels in November (prespermatogenesis period) and then declined to the lowest levels in January (spawning period). Chemical-induced ovarian tissue had very low amh transcript levels but high levels of amhr2. Active testes had significantly higher amh and amhr2 expression levels as compared to inactive testes. In contrast, no difference in the expression of amh and amhr2 between active and inactive ovarian tissues was found. Transcripts of amh were expressed in the somatic cells of the spermatogonia and vitellogenic oocytes, and amhr2 was expressed in the somatic cells of the spermatogonia. Transcripts of amh decreased in the testicular tissue 5 mo before occurrence of the sex change into a female. In contrast, testicular amh expression remained high if the fish remained male. Human chorionic gonadotropin regulated amh and amhr2 expression in the testicular tissue but not in the ovarian tissue. The present results suggest that amh plays important roles in early testicular and ovarian development, late ovarian growth (e.g., vitellogenic oocytes), and natural sex change in the protandrous black porgy.
Our group and others have found that the treatment of embryos with trichostatin A (TSA) after cloning by somatic cell nuclear transfer (SCNT) results in a significant improvement in efficiency. We believe that TSA treatment improves nuclear remodeling via histone modifications, which are important in the epigenetic regulation of gene silencing and expression. Some studies found that treatment of SCNT-generated embryos with TSA improved lysine acetylation of core histones in a manner similar to that seen in normally fertilized embryos. However, how histone methylation is modified in TSA-treated cloned embryos is not completely understood. In the present study, we found that TSA treatment caused an increase in chromosome decondensation and nuclear volume in SCNT-generated embryos similar to that in embryos produced by intracytoplasmic sperm injection. Histone acetylation increased in parallel with chromosome decondensation. This was associated with a more effective formation of DNA replication complexes in treated embryos. We also found a differential effect of TSA on the methylation of histone H3 at positions K4 and K9 in SCNT-generated embryos that could contribute to genomic reprogramming of the somatic cell nuclei. In addition, using 5-bromouridine 5′-triphosphate-labeled RNA, we showed that TSA enhanced the levels of newly synthesized RNA in 2-cell embryos. Interestingly, the amount of SCNT-generated embryos showing asymmetric expression of nascent RNA was reduced significantly in the TSA-treated group compared with the nontreated group at the 2-cell stage. We conclude that the incomplete and inaccurate genomic reprogramming of SCNT-generated embryos was improved by TSA treatment. This could enhance the reprogramming of somatic nuclei in terms of chromatin remodeling, histone modifications, DNA replication, and transcriptional activity.
Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to assure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2t gene product), a paralog of the X-linked CstF-64 protein that supports polyadenylation in most somatic cells. We previously showed that loss of tauCstF-64 causes male infertility because of major defects in mouse spermatogenesis. Surprisingly, although Cstf2t−/− males produce very few recognizable spermatozoa, some of the spermatozoa produced are motile. This led us to ask whether these Cstf2t−/− sperm were fertile. A motile cell-enriched population of spermatozoa from Cstf2t-null males dispersed cumulus cells of cumulus-oocyte complexes normally. However, motile spermatozoa from Cstf2t-null males failed to fertilize cumulus-intact mouse eggs in vitro. In addition, sperm adhesion to the zona pellucida (ZP) of cumulus-free eggs was significantly decreased, indicating tauCstF-64 is required for production of spermatozoa capable of ZP interaction. Acrosomal proteins involved in sperm-ZP recognition, including zonadhesin, proacrosin, SPAM1/PH-20, and ZP3R/sp56, were normally distributed in the apical head of Cstf2t−/− spermatozoa. We conclude that tauCstF-64 is required not only for expression of genes involved in morphological differentiation of spermatids but also for genes having products that function during interaction of motile spermatozoa with eggs. To our knowledge, this is the first demonstration that a gene involved in polyadenylation has a negative consequence on sperm-ZP adhesion.
During their transit along the epididymis, mammalian spermatozoa acquire new proteins that are necessary for their acquisition of forward motility and fertility. By using the bovine model, we previously showed that small membranous vesicles named epididymosomes are secreted in the epididymal intraluminal compartment. Epididymosomes from caput and cauda are different, and interact sequentially with the transiting spermatozoa. In fact, selected proteins of epididymosomes are transferred to different subcompartments of the maturing spermatozoa. In this study, we investigate the possibility that different subpopulations of epididymosomes are present in the caudal portion of the epididymis. Through the use of discontinuous sucrose gradient ultracentrifugation, we isolated two distinct populations that differ in their protein and lipid compositions. Although they have similar diameters, the ultrastructural appearance of these two populations was very different. The low-density (Ld) vesicles are enriched in cholesterol, sphingomyelin, and ganglioside M1, suggesting the existence of detergent-resistant membrane domains or rafts. The high-density (Hd) vesicles show a high protein concentration, including ACTB and VAMP8. When each subpopulation of biotinylated cauda epididymosomes was coincubated with caput spermatozoa, a subset of biotinylated proteins was transferred to the sperm; the Ld and Hd vesicles transferring the same pattern of proteins. In vitro competition assays of protein transferred from Ld or Hd epididymosomes to sperm confirm the similarity in the selected transferred proteins. Electrospray tandem mass spectrometry (ES-MS/MS) analysis of proteins associated with the two populations of vesicles confirm the epididymal origin of some of them, the possible involvement of others in transmembrane signaling systems, and the identification of proteins for which functions in sperm physiology remain to be determined. Mass spectrometry analysis also revealed that ELSPBP1 and GBB2 were transferred from epididymosomes to spermatozoa. Results are discussed with regard to the functions of these two cauda epididymosome populations in sperm physiology.
The identification of proinflammatory signal transduction pathways may suggest new therapeutic targets. In this study, we examine which signaling pathways are involved in tumor necrosis factor (TNF)-induced matrix metalloproteinase 9 (MMP9) secretion in human chorionic trophoblast (CT) cells. Purified CT cells were cultured in the presence of antibodies or chemical inhibitors that specifically block/inhibit distinct TNF receptors and kinase pathways. TNF-induced proMMP9 production, as measured by zymography, was significantly blocked/inhibited by TNF receptor 1 (TNFRSF1A) antibody, NFKB activation inhibitor (NFKBAI), and MAPK1/3 (ERK) inhibitor (U0126) (P < 0.01), but not by TNF receptor 2 (TNFRSF1B) antibody, MAPK14 (p38 MAPK) inhibitor (SB203580), and MAPK8/9/10 (JNK) inhibitor (SP600125). By Western blot analysis, we found that TNF rapidly and significantly increased phosphorylation of IKBKB, MAPK1/3, and MAPK8/9/10 and that the phosphorylation of these kinases by TNF was reduced significantly by TNFRSF1A neutralizing antibody, but not by TNFRSF1B neutralizing antibody. Moreover, we found that TNF increased TNF receptor-associated factor (TRAF) 1 and decreased TRAF2 protein expression through TNFRSF1A, but not TNFRSF1B. The CT cells that had increased TRAF1 and decreased TRAF2 after an initial TNF treatment demonstrated a dramatic deficiency in phosphorylation of the above protein kinases following a secondary TNF treatment. Localization of RELA subunit by immunocytochemistry was shifted to the nuclei after TNF treatment compared to cytosol in untreated controls. We also found cross-talk between the phosphoinositide 3-kinase pathway and ERK pathway. In summary, we have demonstrated that TNF stimulates proMMP9 production in CT cells through TNFRSF1A-TRAFs-IKBKB-NFKB and ERK signaling pathways, but not through TNFRSF1B and JNK/p38-AP-1 pathways.
Testicular Leydig cells, which are the predominant source of the male sex steroid hormone testosterone, express estrogen receptors (ESRs) and are subject to regulation by estrogen. Following ingestion, the two major isoflavones in soybeans, genistin and daidzin, are hydrolyzed by gut microflora to form genistein and daidzein, which have the capacity to bind ESRs and affect gene expression. Thus, the increasing use of soy-based products as nondairy sources of protein has raised concerns about the potential of these products to cause reproductive toxicity. In the present study, perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells. Isoflavones have the capacity to act directly as mitogens in Leydig cells, because genistein treatment induced Leydig cell division in vitro. Genistein action regulating Leydig cell division involved ESRs, acting in concert with signaling molecules in the transduction pathway mediated by protein kinase B (AKT) and mitogen-activated protein kinase (MAPK). Enhanced proliferative activity in the prepubertal period increased Leydig cell numbers, which alleviated deficits in androgen biosynthesis and/or augmented serum and testicular testosterone concentrations in adulthood. Together, these observations indicate that the perinatal exposures of male rats to isoflavones affected Leydig cell differentiation, and they imply that including soy products in the diets of neonates has potential implications for testis function.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere