BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Epigenetics provides a means of understanding how environmental factors might alter heritable changes in gene expression without changing DNA sequence, and hence the origin, of some diseases that are not explained by conventional genetic mechanisms. Various animal models have been described, most notably the agouti viable yellow (Avy) and axin 1 fused (Axin1Fu) mice, which lend themselves particularly well to studying this link between epigenetics and development abnormalities, because particular changes in DNA methylation patterns can be linked to a broad spectrum of heritable pathologies in the mice. In addition, there are specific examples, both in mice and other animal species, where nonmutagenic, environmental insults to either parent, such as those caused by consumption of endocrine-disrupting chemicals, can cause unexpected transgenerational phenotypic changes in offspring. Animals derived by somatic cell nuclear transfer also frequently exhibit pathologies that can be linked to inappropriate nuclear reprogramming during early embryo development and provide another means to study a link between epigenetics and disease. This review will consider how all of these animal models might help elucidate the epigenetic basis for a wide range of phenotypes.
Eppin (epididymal protease inhibitor [SPINLW1]) is present in a protein complex on the human sperm surface that contains lactotransferrin, clusterin, and semenogelin (SEMG1). During ejaculation the presence of semenogelin inhibits sperm progressive motility until semenogelin is hydrolyzed by prostate-specific antigen (PSA). Although eppin binds all three components in its protein complex, the binding of semenogelin to eppin appears to be critical for the inhibition of progressive motility. The effect of the originally identified seminal plasma motility inhibitor fragment has not been clearly defined on live spermatozoa. Therefore, we have used recombinant semenogelin (rSEMG1) and its fragments, including a semenogelin mutant in which cysteine 239 was changed to glycine, coupled with a computer assisted sperm analysis assay to study the motility inhibitory properties of semenogelin. Each fragment and the mutant were tested for their effects on motility. Recombinant semenogelin significantly inhibited sperm progressive motility in a dose- and time-dependent manner. The C-terminal semenogelin fragment (amino acids 164–283) containing cysteine 239 significantly inhibited sperm progressive motility, whereas the N-terminal fragment (amino acids 24–163), a short C-terminal fragment (amino acids 172–215) without cysteine 239, and the mutant fragment (amino acids 24–283 with glycine 239) did not inhibit motility. After treatment with recombinant semenogelin, spermatozoa could be washed and treated with PSA, partially reversing the inhibition of progressive motility. Cysteine 239 of rSEMG1 appears to be the critical amino acid for both binding to eppin and inhibiting sperm motility.
Development of the reproductive organs can be strongly affected by the hormonal environment. In the mouse, exposure to estrogens and androgens during the critical developmental period induces estrogen-independent cell proliferation and differentiation in the adult vaginal epithelium, which often results in cancerous lesions later in life. In the present study, we assessed the contributions of estrogen receptor 1 (alpha) (ESR1) to the developmental effects of the nonaromatizable androgen 5alpha-dihydrotestosterone (DHT) on female mouse vagina and external genitalia. The vagina of Esr1−/− mice treated neonatally with DHT showed atrophic epithelium, whereas the vaginal epithelium of Esr1 / mice was stratified and keratinized even after ovariectomy. In addition, neonatal treatment with DHT led to persistent phosphorylation of ESR1 in the vaginae of 60-day-old ovariectomized mice. We infer from these data that ESR1 is obligatory for the induction and maintenance of persistent vaginal epithelial changes induced by neonatal administration of DHT. Neonatal DHT treatment also induced hypospadias in both Esr1−/− and Esr1 / mice. In contrast, DHT-induced formation of an os penis-like large bone in the clitoris was found in Esr1−/− mice but not in Esr1 /− or Esr1 / mice. These results shed light on mechanisms of the induction of developmental effects elicited by sex steroid hormones on the developing animals.
Mammalian sperm require ATP for motility, and most of it is generated by glycolysis. The glycolytic enzymes segregate to the principal piece region of the flagellum, where some are bound tightly to a novel cytoskeletal structure defining this region, the fibrous sheath (FS), and others are easily extracted with detergents. One of the latter is the spermatogenic cell-specific variant isozyme of hexokinase type 1 (HK1S), characterized by an N-terminal 24-amino acid spermatogenic cell-specific region (SSR). Yeast two-hybrid screens carried out using the SSR as bait determined that HK1S is tethered to muscle-type phosphofructokinase (PFKM) in the principal piece region. This led to the identification of four testis-specific Pfkm splice variants, one that overlapped a variant reported previously (Pfkm_v1) and three that were novel (Pfkm_v2, Pfkm_v3, and Pfkm_v4). They differ from Pfkm transcripts found in somatic cells by encoding a novel 67-amino acid N-terminal extension, the testis-specific region (TSR), producing a spermatogenic cell-specific PFKM variant isozyme (PFKMS). An antiserum generated to the TSR demonstrated that PFKMS is present in the principal piece and is insoluble in 1% Triton X-100 detergent. In subsequent yeast two-hybrid screens, the TSR was found to interact with glutathione S-transferase mu class 5 (GSTM5), identified previously as a spermatogenic cell-specific component of the FS. These results demonstrated that HK1S is tethered in the principal piece region by PFKMS, which in turn is bound tightly to GSTM5 in the FS.
Tight junctions between Sertoli cells of the testicular seminiferous epithelium establishes the blood-testis barrier (BTB) and creates a specialized adluminal microenvironment above the BTB that is required for the development of the germ cells that reside there. Actin filament-based anchoring junctions between Sertoli cells and germ cells are important for maintaining close physical contact between these cells as well as regulating the release of mature spermatids into the lumen. Previously, we reported that Sertoli cell injury in rodents after mono-(2-ethylhexyl) phthalate (MEHP) exposure results in the activation of matrix metalloproteinase 2 (MMP2) and increases the sensitivity of germ cells to undergo apoptosis. A disruption in the physical association between Sertoli cells and germ cells and premature loss of germ cells from the seminiferous epithelium has been widely described after phthalate treatment. In this study, we investigate the functional participation of MMP2 in the mechanism underlying MEHP-induced disruption of junction complexes and the resultant loss of germ cells. Exposure of C57BL/6J mice to MEHP (1 g/kg, oral gavage) decreased the expression of occludin in the tight junctions between Sertoli cells and caused gaps between adjacent Sertoli cells as observed by transmission electron microscopy. A reduced expression of laminin-gamma3 and beta1-integrin in apical ectoplasmic specializations between Sertoli cells and germ cells in a time-dependent manner was also observed. Treatment with specific MMP2 inhibitors (TIMP2 and SB-3CT) both in vitro and in vivo significantly suppressed MEHP-induced germ cell sloughing and changes in the expression of these junctional proteins, indicating that MMP-2 plays a primary role in this process. Furthermore, the detachment of germ cells from Sertoli cells appears to be independent of the apoptotic signaling process since MEHP-induced germ cell detachment from Sertoli cells could not be prevented by the addition of a pan-caspase inhibitor (z-VAD-FMK).
The mouse oviductal epithelium is a simple monolayer until Postnatal Day 7 and subsequently consists of differentiated secretory cells and ciliated cells. In adult oviduct, the two types of epithelial cells are unevenly distributed; ciliated cells are dominant in the ampulla and secretory cells are dominant in the isthmus. Recombinants of enzymatically separated epithelial and mesenchymal tissues of oviducts were grafted under kidney capsule for 4 wk. The recombinants developed structures with a lumen covered with a monolayer of ciliated cells and secretory cells, demonstrating that the recombinant tissues reconstructed oviductal structure. Geographically (ampulla versus isthmus) heterotypic recombinants were prepared from neonatal oviducts at Day 3. The epithelia in reconstructed oviducts took the patterns of cell distribution depending on the origin of the mesenchymal tissues. The results indicate that the mesenchyme geographically has distinct abilities to determine undifferentiated epithelial cells to ciliated cells or secretory cells in the mouse oviduct.
In the pig, transforming growth factor beta (TGFB), TGFB receptors (TGFBRs), and integrins are present during the peri-implantation period. Latency-associated peptide (LAP), a part of latent TGFB, can bind to integrin heterodimers via its Arg-Gly-Asp (RGD) sequence; therefore, ligand-receptor interactions between TGFB and TGFBRs, along with LAP and integrin heterodimers, may be functional in mediating events supporting conceptus elongation and attachment. With the use of surgically implantable osmotic pumps, we were able to maintain pregnancy with the aim of mechanistically altering in vivo receptor-ligand interactions involving TGFB with TGFBRs and LAP with integrins during porcine pregnancy. Day 9 pregnant gilts received intrauterine infusions of LAP-RGD, a recombinant mutant of LAP (LAP-RGE), or vehicle control and were ovariohysterectomized on Day 13 or 24 of pregnancy. We hypothesized that intrauterine infusion of LAP-RGD would decrease downstream signaling of TGFB while increasing LAP-integrin interactions and that net effect would enhance conceptus survival and attachment early in the peri-implantation period but possibly increase the chance of abnormal placentation later in pregnancy. Additionally, we hypothesized that infusion of LAP-RGE would disrupt TGFB signals but not alter integrin signaling, and thus the net result would be decreased conceptus survival and abnormal development. Unexpectedly, LAP-RGD intrauterine infusions resulted in a reduction of conceptus elongation, whereas infusions of LAP-RGE permitted implantation and placentation but resulted in larger fetal weight, allantois length, and allantoic fluid volume. Results suggest TGFB and integrins are contributing factors in the regulation of conceptus elongation and placental and fetal size.
Gene function prediction has proven valuable in formulating testable hypotheses. It is particularly useful for exploring biological processes that are experimentally intractable, such as meiotic initiation and progression in the human fetal ovary. In this study, we developed the first functional gene network for the human fetal ovary, HFOnet, by probabilistically integrating multiple genomic features using a naïve Bayesian model. We demonstrated that this network could accurately recapture known functional connections between genes, as well as predict new connections. Our findings suggest that known meiosis-specific genes (i.e., with functions only in meiotic processes in the germ cells) make either no or a few functional connections but are highly clustered with neighbor genes. In contrast, known nonspecific meiotic genes (i.e., with functions in both meiotic and nonmeiotic processes in the germ cells and somatic cells) exhibit numerous connections but low clustering coefficients, indicating their role as central modulators of diverse pathways, including those in meiosis. We also predicted novel genes that may be involved in meiotic initiation and DNA repair. This global functional network provides a much-needed framework for exploring gene functions and pathway components in early human female meiosis that are difficult to tackle by traditional in vivo mammalian genetics.
J.R. Herrick, M. Campbell, G. Levens, T. Moore, K. Benson, J. D'Agostino, G. West, D.M. Okeson, R. Coke, S.C. Portacio, K. Leiske, C. Kreider, P.J. Polumbo, W.F. Swanson
Studies of in vitro fertilization (IVF) and sperm cryopreservation have been conducted in several small cat species, but virtually no data exist for black-footed cats (Felis nigripes) (BFCs) or sand cats (Felis margarita) (SCs). The objectives of this study were 1) to compare in vitro motility and acrosome status of fresh and cryopreserved (frozen in pellets on dry ice or in straws in liquid nitrogen vapor) BFC and SC spermatozoa cultured in feline-optimized culture medium (FOCM) or Ham F-10, 2) to assess ovarian responsiveness in BFCs and SCs following exogenous gonadotropin treatment and laparoscopic oocyte recovery, and 3) to evaluate the fertility of fresh and frozen-thawed spermatozoa from both species using homologous and heterologous (domestic cat oocytes) IVF in the two culture media. Motility and acrosomal integrity of fresh and frozen-thawed spermatozoa from BFCs and SCs were similar (P > 0.05) in both media during 6 h of culture. Although effects were more pronounced in SCs, cryopreservation in straws was superior (P < 0.05) to cryopreservation in pellets for both species. Gonadotropin stimulation produced ∼16 ovarian follicles per female, and >80% of recovered oocytes were of optimal (grade 1) quality. The BFC and SC spermatozoa fertilized 60.0%–79.4% of homologous and 37.7%–42.7% of heterologous oocytes in both culture media, with increased (P < 0.05) cleavage of homologous (SC) and heterologous (BFC and SC) oocytes in FOCM. These results provide the first information to date on the gamete biology of two imperiled cat species and further our capacity to apply reproductive technologies for their conservation.
Ooplasmic transfer (OT) has been used in basic mouse research for studying the segregation of mtDNA, as well as in human assisted reproduction for improving embryo development in cases of persistent developmental failure. Using cattle as a large-animal model, we demonstrate that the moderate amount of mitochondria introduced by OT is transmitted to the offspring's oocytes; e.g., modifies the germ line. The donor mtDNA was detectable in 25% and 65% of oocytes collected from two females. Its high variation in heteroplasmic oocytes, ranging from 1.1% to 33.5% and from 0.4% to 15.5%, can be explained by random genetic drift in the female germ line. Centrifugation-mediated enrichment of mitochondria in the pole zone of the recipient zygote's ooplasm and its substitution by donor ooplasm led to elevated proportions of donor mtDNA in reconstructed zygotes compared with zygotes produced by standard OT (23.6% ± 9.6% versus 12.1% ± 4.5%; P < 0.0001). We also characterized the proliferation of mitochondria from the OT parents—the recipient zygote (Bos primigenius taurus type) and the donor ooplasm (B. primigenius indicus type). Regression analysis performed for 57 tissue samples collected from the seven OT fetuses at different points during fetal development found a decreasing proportion of donor mtDNA (r2 = 0.78). This indicates a preferred proliferation of recipient taurine mitochondria in the context of the nuclear genotype of the OT recipient expressing a B. primigenius indicus phenotype.
Sperm-associated alpha-l-fucosidases have been identified in diverse organisms. Their wide phylogenetic distribution and known properties support the likelihood that l-fucose and alpha-l-fucosidase have fundamental function(s) during gamete interaction. This is consistent with the substantial evidence in the literature documenting the importance of carbohydrate moieties during fertilization. Direct enzyme assays were employed to evaluate the functional distribution of alpha-l-fucosidase in preparations of hamster sperm. In vitro fertilization was performed using Syrian hamster sperm and eggs to identify the functional role of hamster sperm-associated alpha-l-fucosidase during zona pellucida binding/penetration, sperm-egg membrane fusion, and postfusion events. Results reported here document the presence of hamster sperm-associated alpha-l-fucosidase and demonstrate that it functions during fertilization at the stage of sperm-oocyte membrane interaction and/or postfusion events within the zygote. Understanding the role of alpha-l-fucosidase during human fertilization could lead to development of improved infertility treatments.
SPEF2 is expressed in all ciliated cells and is essential for correct sperm tail development and male fertility. We have previously identified a mutation within the SPEF2 gene as the cause for infertility because of immotile and malformed sperm tails in pigs. This mutation in pigs alters the testis-specific long SPEF2 isoform and exclusively affects the sperm tail development. In infertile boars, axonemal and all accessory structures of the sperm tail are affected; thus, SPEF2 seems to participate in the organization of these structures. In the present study, we have investigated the expression of SPEF2 during mouse spermatogenesis. SPEF2 mRNA and protein products appear to be localized both in germ cells and in Sertoli cells. In differentiating germ cells, SPEF2 protein is localized in the Golgi complex, manchette, basal body, and midpiece of the sperm tail. In mature murine sperm, SPEF2 is present in the distal part of the sperm tail midpiece. Using yeast two-hybrid assay and coimmunoprecipitation experiments, we identified an interaction between SPEF2 and the intraflagellar transport protein IFT20 in the testis. Furthermore, these two proteins colocalize in differentiating male germ cells. These results support the crucial importance of SPEF2 in sperm differentiation and involvement of SPEF2 in structuring of the sperm tail.
Insulin-like growth factor 1 (IGF-1)-stimulated amphibian oocyte maturation has been studied extensively by a number of laboratory groups, but in previous studies possible effects of IGF-1 on ovarian follicle cells had not been tested directly. In the study reported here, biochemical and immunofluorescent techniques were used to test Xenopus ovarian follicle cells for the presence of hormone-sensitive IGF-1 receptor. Anti-xIGF-1 receptor beta-subunit antibodies detected a 90- and 98-kDa protein doublet in manually dissected oocyte cortices (plasma membrane-vitelline envelope complexes) by protein immunoblotting both before and after removal of follicle cells from oocytes by sandpaper rolling. The 90-kDa IGF-1 receptor beta-subunit was also detected in follicle cell pellets. Tyrosine phosphorylation of the receptor beta-subunits was increased by treatment of cortices with 10 nM IGF-1 both in the presence and absence of associated follicle cells, was reduced by removal of follicle cells, and was detected in follicle cell pellets. Treatment of follicle cell pellets with nanomolar concentrations of IGF-1 stimulated receptor tyrosine phosphorylation in a dose-dependent fashion that correlated with dose-dependent stimulation of oocyte maturation. IGF-1 receptor was also detected in cultured follicle cells by immunofluorescence. Removal of follicle cells significantly reduced the IGF-1-stimulated oocyte maturation response. These results offer the first direct evidence for hormone-responsive IGF-1 receptors in Xenopus laevis ovarian follicle cells and demonstrate that follicle cells somehow support IGF-1-stimulated oocyte maturation.
The ovarian surface epithelium (OSE) has a prominent role in ovarian cancer in women, but no studies have been conducted to evaluate its role in normal ovarian function. Data from other species suggest the OSE is needed for ovulation. We have tested whether the OSE is needed for follicle rupture, a necessary step in ovulation, using the nonhuman primate, rhesus macaque. The OSE was removed in two different short-term protocols spanning a single periovulatory interval—one protocol used a cytology brush to remove the OSE only from the follicle apex, and one used mild detergent to remove the entire OSE—and in one long-term protocol spanning 6 wk (two periovulatory intervals) that removed the entire OSE with detergent. Serum levels of estrogen and progesterone (E and P) were monitored, and sectioned ovaries were examined for evidence of successful OSE removal and follicle rupture. In the short-term protocols, removal of the OSE over the follicle apex did not prevent follicle rupture (n = 4 ovaries), but removal of the entire OSE using detergent did in four of six cases. In the long-term protocol, when ovaries were collected after the second periovulatory interval, all the ovaries (n = 5) showed evidence of follicle rupture. In all the protocols, E and P production appeared unaffected. Detergent penetrated up to 40 μm into the ovary. This may have transiently disrupted the stroma and caused follicle rupture failure. We conclude that the primate OSE is not essential for ovulation and perhaps can be removed without lasting consequence.
Capacitated human and rabbit spermatozoa can sense temperature differences as small as those within the oviduct of rabbits and pigs at ovulation, and they respond to them by thermotaxis (i.e., by swimming from the cooler to the warmer temperature). The molecular mechanism of sperm thermotaxis is obscure. To reveal molecular events involved in sperm thermotaxis, we took a pharmacological approach in which we examined the effect of different inhibitors and blockers on the thermotactic response of human spermatozoa. We found that reducing the intracellular, but not extracellular, Ca2 concentration caused remarkable inhibition of the thermotactic response. The thermotactic response was also inhibited by each of the following: La3 , a general blocker of Ca2 channels; U73122, an inhibitor of phospholipase C (PLC); and 2-aminoethoxy diphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate receptors (IP3R) and store-operated channels. Inhibitors and blockers of other channels had no effect. Likewise, saturating concentrations of the chemoattractants for the known chemotaxis receptors had no effect on the thermotactic response. The results suggest that the IP3R Ca2 channel, located on internal Ca2 stores, operates in sperm thermotaxis, and that the response is mediated by PLC and requires intracellular Ca2 . They also suggest that the thermosensors for thermotaxis are not the currently known chemotaxis receptors.
We have developed an in vitro human vaginal epithelial cell (EC) model using the innovative rotating wall vessel (RWV) bioreactor technology that recapitulates in vivo structural and functional properties, including a stratified squamous epithelium with microvilli, tight junctions, microfolds, and mucus. This three-dimensional (3-D) vaginal model provides a platform for high-throughput toxicity testing of candidate microbicides targeted to combat sexually transmitted infections, effectively complementing and extending existing testing systems such as surgical explants or animal models. Vaginal ECs were grown on porous, collagen-coated microcarrier beads in a rotating, low fluid-shear environment; use of RWV bioreactor technology generated 3-D vaginal EC aggregates. Immunofluorescence and scanning and transmission electron microscopy confirmed differentiation and polarization of the 3-D EC aggregates among multiple cell layers and identified ultrastructural features important for nutrient absorption, cell-cell interactions, and pathogen defense. After treatment with a variety of toll-like receptor (TLR) agonists, cytokine production was quantified by cytometric bead array, confirming that TLRs 2, 3, 5, and 6 were expressed and functional. The 3-D vaginal aggregates were more resistant to nonoxynol-9 (N-9), a contraceptive and previous microbicide candidate, when compared to two-dimensional monolayers of the same cell line. A dose-dependent production of tumor necrosis factor-related apoptosis-inducing ligand and interleukin-1 receptor antagonist, biomarkers of cervicovaginal inflammation, correlated to microbicide toxicity in the 3-D model following N-9 treatment. These results indicate that this 3-D vaginal model could be used as a complementary tool for screening microbicide compounds for safety and efficacy, thus improving success in clinical trials.
An appropriate balance between uterine quiescence and activation during pregnancy is essential for a successful outcome. Sphingosine 1-phosphate (S1P), a bioactive lipid, increases cell survival, proliferation, and angiogenesis, all important to maintain the pregnancy. Indeed progesterone increases sphingosine kinase 1 (SPHK1) mRNA, which produces S1P. In contrast, induction of prostaglandin endoperoxide synthase 2 by S1P and stimulation of SPHK1 by estradiol and cytokines suggests a role for S1P in the termination of pregnancy. Human decidua is important for regulating the maintenance and termination of pregnancy with production of progesterone receptors, cytokines, and prostaglandins. We hypothesized that S1P is produced by and acts on the decidua to stimulate production of mediators that induce labor. Our objective was to investigate the metabolism of S1P and its receptors in human decidua during pregnancy. We found that SPHK1 protein and activity positively correlated with increasing gestational age in human decidua parietalis. This was accompanied at term by increased expression of the S1P lyase, which irreversibly degrades S1P. This implies increased S1P turnover in the decidua at term. Although the mRNA level of phosphatidic acid phosphatase type 2A and 2B (PPAP2A,B), which dephosphorylate extracellular S1P, were increased at term, PPAP2 activity did not change. Sphingosine 1-phosphate receptor 3 protein expression also increased at term, indicating increased signaling by S1P in the decidua. There were no differences in any parameter tested in decidua from women in labor compared to those who were not. This work provides the first evidence of increased S1P synthesis, degradation, and signaling in human decidua during gestation.
TCDD (2,3,7,8-tetrachlorodebenzo-p-dioxin) requires the presence of the aryl hydrocarbon receptor (Ahr) gene for its toxic effects, such as reproductive disorders in male offspring of maternally exposed rats and mice. To study the involvement of the Ahr gene in producing the toxic phenotype with respect to testicular development, we administered a relatively high dose of TCDD to mice with three different maternally derived Ahr genotypic traits, and then compared several Ahr-dependent alterations among male reproductive systems on Postnatal Day 14. Reduction in anogenital distance and expression of prostatic epithelial genes in the urogenital complex (UGC) were detected in Ahr / and Ahr /− mice exposed to TCDD, whereas no difference was observed in Ahr−/− mice. In situ hybridization revealed the absence of probasin mRNA expression in the prostate epithelium, despite the obvious development of prostatic lobes in TCDD-exposed mice. In contrast to obvious prostatic dysfunction and induction of cytochrome P450 (CYP) family genes in the UGC by TCDD, no alterations in testicular functions were observed in germ cell/Sertoli cell/interstitial cell marker gene expression or CYP family induction. No histopathological changes were observed among the three genotypes and between control and TCDD-exposed mice. Therefore, mouse external genitalia and prostatic development are much more sensitive to TCDD treatment than testis. Further, the Ahr gene, analyzed in this study, does not significantly contribute to testicular function during perinatal and immature stages, and the developing mouse testis appears to be quite resistant to TCDD exposure.
Cryopreservation introduces extreme temperature and osmolality changes that impart lethal and sublethal effects on spermatozoa survival. Additionally, evidence indicates that the osmotic stress induced by cryopreservation causes oxidative stress to spermatozoa as well. Our objective was to determine the effect of reactive oxygen species (ROS) on rhesus macaque (Macaca mulatta) sperm function and to determine whether osmotic stress elicits the production of ROS. In the first experiment, the xanthine-xanthine oxidase (X-XO) system was used to generate the ROS superoxide anion (O2−·) and hydrogen peroxide (H2O2) in the presence or absence of the ROS scavengers superoxide dismutase and catalase, respectively. In the second experiment, osmotic stress was introduced by incubation of spermatozoa in a series of anisosmotic media ranging from 100 to 1000 mOsmol/kg in the presence or absence of the antioxidant alpha-tocopherol. Treatment with the X-XO system resulted in a significant increase in the generation of O2−· and H2O2 that was detectable using flow cytometry. The ROS generated by the X-XO system was dose dependent, and as the concentration of ROS increased, motility decreased and lipid peroxidation increased while no affect was observed on viability. Incubation of spermatozoa in anisosmotic media also resulted in an increase in O2−· generation and lipid peroxidation that was significantly decreased in the presence of the powerful antioxidant alpha-tocopherol. These results clearly indicate that osmotic stress causes oxidative stress in rhesus macaque spermatozoa, which strongly supports the hypothesis that cryopreservation-induced osmotic stress may lead to oxidative cell damage.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere