BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Knockout mice have been highly useful tools in helping to understand the functional roles of specific genes in development and diseases. However, in many cases, knockout mice are embryonic lethal, which prevents investigation into a number of important questions, or they display developmental abnormalities, including fertility defects. In contrast, conditional knockout, which is achieved by the Cre-LoxP system, can be used to delete a gene in a specific organ or tissue, or at a specific developmental stage. This technique has advantages over conventional knockout, especially when conventional knockout causes embryonic lethality or when the function of maternal transcripts in early development needs to be defined. Recently, a widely used practice has been used to specifically delete genes of interest in oocytes: Zp3-Cre or Gdf9-Cre transgenic mouse lines, in which Cre-recombinase expression is driven by oocyte-specific zona pellucida 3 (Zp3) promoter or growth differentiation factor 9 (Gdf9) promoter, are crossed with mice bearing floxed target genes. This novel in vivo approach has helped to increase the understanding of the functions of specific genes in folliculogenesis/oogenesis, oocyte maturation, fertilization, and embryogenesis. In this minireview we discuss recent advances in understanding the molecular mechanisms regulating major reproductive and developmental events as revealed by oocyte-specific conditional knockout and perspectives on this technology and related studies.
The heterotrimeric G-protein pathway controls numerous cellular processes, including proliferation, differentiation, migration, membrane trafficking, and embryonic development. Regulator of G-protein signaling (RGS) proteins are known to function at the G-protein level. Here, the functional role of a novel RGS protein, regulator of G-protein signaling 22 (RGS22), in the testis was investigated at the mRNA and protein levels. Our results demonstrate that RGS22 is a testis-specific gene. However, significantly decreased expression of RGS22 was found in the testes of patients with azoospermia. RGS22 was translated or posttranslationally modified into multiple proteins of different molecular sizes in prokaryocytes as well as in the testes. Its protein (NP_056483) was localized in spermatogenic cells and Leydig cells and could interact with guanine nucleotide binding protein, alpha 12, 13, and 11 (GNA12, GNA13, and GNA11). Fragmental GFP-fusion protein tracking revealed that the N-terminal of RGS22 was localized in the nucleus. RGS22 and GNA13 were localized in the nucleus from the elongated spermatid stage onward. Indirect immunofluorescence studies revealed defective expression of GNA13 in macrocephalic and global nucleus spermatozoa. These findings suggest that their functions in this subcellular compartment are likely related to the postmeiotic developmental phase, spermiogenesis. RGS22 may also play a role in GNA13 translocation from the cytoplasm to the nucleus during spermiogenesis.
MicroRNAs (miRNAs) mediate posttranscriptional gene regulation by binding to the 3′ untranslated region of messenger RNAs to either inhibit or enhance translation. The extent and hormonal regulation of miRNA expression by ovarian granulosa cells and their role in ovulation and luteinization is unknown. In the present study, miRNA array analysis was used to identify 212 mature miRNAs as expressed and 13 as differentially expressed in periovulatory granulosa cells collected before and after an ovulatory dose of hCG. Two miRNAs, Mirn132 and Mirn212 (also known as miR-132 and miR-212), were found to be highly upregulated following LH/hCG induction and were further analyzed. In vivo and in vitro temporal expression analysis by quantitative RT-PCR confirmed that LH/hCG and cAMP, respectively, increased transcription of the precursor transcript as well as the mature miRNAs. Locked nucleic acid oligonucleotides complementary to Mirn132 and Mirn212 were shown to block cAMP-mediated mature miRNA expression and function. Computational analyses indicated that 77 putative mRNA targets of Mirn132 and Mirn212 were expressed in ovarian granulosa cells. Furthermore, upon knockdown of Mirn132 and Mirn212, a known target of Mirn132, C-terminal binding protein 1, showed decreased protein levels but no change in mRNA levels. The following studies are the first to describe the extent of miRNA expression within ovarian granulosa cells and the first to demonstrate that LH/hCG regulates the expression of select miRNAs, which affect posttranscriptional gene regulation within these cells.
Nuclear receptor subfamily 0, group B, member 1 (Nr0b1; hereafter referred to as Dax1) is an orphan nuclear receptor that regulates adrenal and gonadal development. Dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 (Dax1) mutations in the mouse are sensitive to genetic background. In this report, a spectrum of impaired gonadal differentiation was observed as a result of crossing the Dax1 knockout on the 129SvIm/J strain onto the C57BL/6J strain over two generations of breeding. Dax1-mutant XY mice of a mixed genetic background (129;B6Dax1−/Y [101 total]) developed gonads that were predominantly testislike (n = 61), ovarianlike (n = 27), or as intersex (n = 13). During embryonic development, Sox9 expression in the gonads of 129;B6Dax1−/Y mutants was distributed across a wide quantitative range, and a threshold level of Sox9 (>0.4-fold of wild-type) was associated with testis development. Germ cell fate also varied widely, with meiotic germ cells being more prevalent in the ovarianlike regions of embryonic gonads, but also observed within testicular tissue. Ptgds, a gene associated with Sox9 expression and Sertoli cell development, was markedly downregulated in Dax1−/Y mice. Stra8, a gene associated with germ cell meiosis, was upregulated in Dax1−/Y mice. In both cases, the changes in gene expression also occurred in pure 129 mice but were amplified in the B6 genetic background. Sertoli cell apoptosis was prevalent in 129;B6Dax1−/Y gonads. In summary, Dax1 deficiency on a partial B6 genetic background results in further modulation of gene expression changes that affect both Sertoli cell and germ cell fate, leading to a phenotypic spectrum of gonadal differentiation.
Cysteine-rich secretory protein 1 (CRISP1) is a secretory glycoprotein produced by the rat epididymal epithelium in two forms, referred to as proteins D and E. CRISP1 has been implicated in sperm-egg fusion and has been shown to suppress capacitation in rat sperm. Several studies have suggested that CRISP1 associates transiently with the sperm surface, whereas others have shown that at least a portion of CRISP1 persists on the surface. In the present study, we demonstrate that protein D associates transiently with the sperm surface in a concentration-dependent manner, exhibiting saturable binding to both caput and cauda sperm in a concentration range that is consistent with its capacitation-inhibiting activity. In contrast, protein E persists on the sperm surface after all exogenous protein D has been dissociated. Comparison of caput and cauda sperm reveal that protein E becomes bound to the sperm in the cauda epididymidis. We show that protein E associates with caput sperm, which do not normally have it on their surfaces, in vitro in a time- and temperature-dependent manner. These studies demonstrate that most CRISP1 interacts with sperm transiently, possibly with a specific receptor on the sperm surface, consistent with its action in suppressing capacitation during epididymal storage of sperm. These studies also confirm a tightly bound population of protein E that could act in the female tract.
Haemochorial placentation is a unique physiological process in which the fetal trophoblast cells remodel the maternal decidual spiral arteries to establish the fetoplacental blood supply. Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen family. PSGs are produced by the placenta of rodents and primates and are secreted into the bloodstream. PSG23 is one of 17 members of the murine PSG family (designated PSG16 to PSG32). Previous studies determined that PSGs have immunoregulatory functions due to their ability to modulate macrophage cytokine secretion. Here we show that recombinant PSG23 induces transforming growth factor (TGF) beta1, TGFB1, and vascular endothelial growth factor A (VEGFA) in primary murine macrophages and the macrophage cell line RAW 264.7 cells. In addition, we identified new cell types that responded to PSG23 treatment. Dendritic cells, endothelial cells, and trophoblasts, which are involved in maternal vasculature remodeling during pregnancy, secreted TGFB1 and VEGFA in response to PSG23. PSG23 showed cross-reactivity with human cells, including human monocytes and the trophoblast cell line, HTR-8/SVneo cells. We analyzed the binding of PSG23 to the tetraspanin CD9, the receptor for PSG17, and found that CD9 is not essential for PSG23 binding and activity in macrophages. Overall these studies show that PSGs can modulate the secretion of important proangiogenic factors, TGFB1 and VEGFA, by different cell types involved in the development of the placenta.
By differential display technique followed by RT-PCR and DNA sequence analyses, we isolated carcinoembryonic antigen-related cell adhesion molecule 6 (Ceacam6) and its novel spliced variant Ceacam6-Long (Ceacam6-L) from rat testis. Ceacam6-L mRNA was generated by retention of 67 nucleotide-length third intron in Ceacam6 gene. Ceacam6-L is a member of an immunoglobulin superfamily and encodes a protein of 50 kDa with a signal sequence at the N-terminus, one immunoglobulin (Ig)-like domain, three IgCAM domains, a transmembrane region, and a short intracellular region. Expression analyses by RT-PCR and Northern blot showed that Ceacam6-L was exclusively expressed in rat testis and first detectable at 5 wk during postnatal development of testis. We performed immunoblot analyses and immunohistochemistry using the anti-CEACAM6-L antibody. Confocal laser scanning microscopy revealed that CEACAM6-L was not present at blood-testis barrier junctions between Sertoli cells but localized at the interface between Sertoli cells and germ cells, possibly to work as an adhesion molecule in the apical compartment of the seminiferous epithelium. At stages VII–VIII, at which all of the elongated spermatids migrated to the luminal surface of the seminiferous tubules, CEACAM6-L was found to locate at the concave side of elongated spermatid heads, following the curvature of their sickle-shaped nuclei, suggesting that CEACAM6-L might be involved in the anchoring of spermatids to Sertoli cells and spermiation. We concluded that CEACAM6-L might be a novel adhesion molecule constructing the apical ectoplasmic specialization in testis.
The nuclear receptor steroidogenic factor 1 (SF-1 [officially designated NR5A1]) is essential for fetal gonadal development, but its roles in postnatal ovarian function are less well defined. Herein, we have extended our analyses of knockout (KO) mice with markedly decreased SF-1 expression in granulosa cells. As described, these SF-1 KO mice had hypoplastic ovaries that contained a decreased number of follicles and lacked corpora lutea. In the present study, we showed that SF-1 KO mice exhibited abnormal estrous cycles, were infertile, and released significantly fewer oocytes in response to a standard superovulation regimen. Moreover, they had blunted induction of plasma estradiol in response to gonadotropins. The granulosa cell-specific SF-1 KO also significantly affected ovarian expression of putative SF-1 target genes. Consistent with their decreased follicle number, these mice had reduced ovarian expression of anti-müllerian hormone (Amh), which correlates with the reserve pool of ovarian follicles, as well as decreased gonadotropin-induced ovarian expression of aromatase (Cyp19a1) and cyclin D2 (Ccnd2). In contrast, perhaps because of their abnormal cyclicity, SF-1 KO ovaries had higher basal expression of inhibin-alpha. They also had decreased immunoreactivity for genes related to proliferation (Ccnd2 and Mki67 [also known as Ki67]) and increased expression of Cdkn1b, also known as p27, which inhibits cyclin-dependent kinases, arguing for a role of SF-1 in granulosa cell proliferation. These findings demonstrate that SF-1 has a key role in female reproduction via essential actions in granulosa cells.
Ricardo A. Fochi, Ana P. S. Perez, Carlos V. Bianchi, Sabrina S. Rochel, Rejane M. Góes, Patrícia S. L. Vilamaior, Sebastião R. Taboga, Fernanda C. A. Santos
The hormonal oscillations that occur during the female reproductive cycle influence the morphophysiology of several organs of the reproductive system. The female prostate is a functional organ sensitive to the action of steroidal hormones, but it is not known whether the hormonal oscillations that occur during the reproductive cycle can alter the biology of this gland. Thus, the present work aims to evaluate the morphofunctional aspects of the female prostate during the gerbil estrous cycle. For this purpose, morphological, morphometric-stereological, serological, and immunocytochemical analyses were carried out. The results of the present study show that the hormonal oscillations that occurred during the estrous cycle altered both the structure and functionality of the gerbil female prostate. These alterations include increased prostatic growth and augmented secretory activity during the proestrus and estrus phases and a gradual decrease of the secretory activity and glandular development in the diestrus I and II phases. These cyclical oscillations appear to be determined by the hormonal peaks of estrogen in diestrus II and by the high levels of progesterone during estrus, since the androgen levels remained constant throughout the estrous cycle.
Heat-shock factor 1 (HSF1) protects cells and organisms against various types of stress, either by triggering a complex response that promotes cell survival or by triggering cell death when stress-induced alterations cannot be rescued. Although this dual role of HSF1 was observed in spermatogenesis exposed to heat shock or proteotoxic stress, HSF1 was also reported to contribute to cell resistance against genotoxic stress, such as that caused by doxorubicin, an anticancer drug in common clinical use. To better understand the stress/cell-dependent functions of HSF1, we used wild-type and Hsf1tm1Ijb/Hsf1tm1Ijb males to determine the role of HSF1 in the genotoxic stress response elicited in spermatogenic cells. Within 2 days after a single intraperitoneal injection of doxorubicin (DOXO; 5 mg/kg), proliferation of Hsf1 / but not Hsf1−/− spermatogenic cells was significantly reduced, whereas cell death was increased in mitotic germ cells and metaphase I spermatocytes. By 21 days, meiotic cells were depleted in all treated Hsf1 / testes but not in Hsf1−/− ones. Nevertheless, after 3 mo, spermatogenesis showed better signs of recovery in Hsf1 / than in Hsf1−/− males. Taken together, these data indicate that acute response to genotoxic stress in the testis involves HSF1-dependent mechanisms that induce apoptotic cell death in a TRP53-independent manner, but also intervene on a longer term to restore seminiferous tubules.
During meiotic maturation, the majority of oocytes from LT/Sv mice arrest at metaphase I. However, anaphase may be induced through parthenogenetic activation. If this happens within the ovary, it often results in the development of ovarian teratomas. Here, we show that the induction of first meiotic anaphase in LT/Sv oocytes results in incorrect chromosome segregation. In search of the molecular basis of this complex phenotype, we analyzed the localization/destruction of cohesins, as well as the function of the components of the spindle assembly checkpoint (SAC). Both localization and removal of meiotic cohesin REC8 from chromosomes are unperturbed. In contrast, there is prolonged localization of SAC proteins BUB1 and MAD2L1 (MAD2) at the metaphase I kinetochores in mutant oocytes compared with the wild-type. Interfering with BUB1 function through expression of a dominant-negative mutant protein resulted in the increase of the number of LT/Sv oocytes completing the first meiosis, which indicates SAC involvement in metaphase I arrest. These data show for the first time that there is a direct link between the SAC function and the heritable meiotic incompetence of a mammalian oocyte.
Protandrous black porgy fish, Acanthopagrus schlegeli, have a striking life cycle, with male sex differentiation at the juvenile stage, a bisexual gonad during first 2 yr of life, and a male-to-female sex change (with vitellogenic oocytes) at 3 yr of age. The present study investigated the role of aromatase (cyp19a1a/Cyp19a1a) in gonadal development in this species, especially in relation to sexual differentiation and sex change. Fish of various ages were treated with estradiol (E2) or aromatase inhibitor (AI) to determine whether manipulation of the hormonal environment has an impact on these processes. We report an integrative immunohistochemical, cellular, and molecular data set describing these interesting phenomena. During male sex differentiation, high levels of cyp19a1a/Cyp19a1a expression were observed in the undifferentiated gonad (4 mo of age), in marked contrast to the low cyp19a1a/Cyp19a1a levels detected in the differentiated testis at the age of 5–6 mo. A low dose of E2 (0.25 mg/kg feed) stimulated testicular growth and function in sexually differentiated fish, whereas a high dose of E2 (6 mg/kg feed) induced female development. Furthermore, administration of AI suppressed male development and promoted female sexual differentiation. An increased number of figla transcripts (an oocyte-specific gene) were observed prior to cyp19a1a expression, concomitant with the development of oogonia and early primary oocytes in the ovaries of both E2- and AI-treated groups. Immunohistochemical Pcna staining showed that the regression of testicular tissue occurred prior to the development of ovarian tissue in both E2- and AI-induced females. The importance of cyp19a1a in female development was further demonstrated by the increase in cyp19a1a transcripts during the naturally occurring sex change. Transcripts of foxl2 increased in the gonads of 2- to 3-yr-old black porgy during the early stages of the natural sex change, followed by a gradual elevation of cyp19a1a levels. The levels of both genes peaked in the resulting ovarian tissue. Thus, cyp19a1a/Cyp19a1a plays dual roles in the gonadal development, namely, in testicular development during the initial period of sexual differentiation and later in ovarian development during the natural sex change.
Spermatogonial stem cells (SSCs) continue to proliferate in the testis to support spermatogenesis throughout life, which makes them ideal targets for germline modification. Although recent success in the production of transgenic and knockout animals using SSCs has opened up new experimental possibilities, several problems, including the low efficiency of germ cell transplantation and poor fertility rates, remain to be resolved. In the present study, we took advantage of the xenogeneic transplantation to resolve these problems. Rat SSCs were transduced in vitro with a lentiviral vector that expressed enhanced green fluorescent protein (EGFP), and then transplanted into the testes of immunodeficient mice. The transduced rat SSCs produced EGFP-expressing spermatogenic cells, and microinsemination using these cells was used to produce transgenic rats, which stably transmitted the transgene to the next generation. Thus, xenogeneic transplantation is a powerful strategy for transgenesis, and smaller xenogeneic surrogates can be used for male germline modification using SSCs.
The family of mammalian cysteine-rich secretory proteins (CRISP) have been well characterized in the rat, mouse, and human. Here we report the molecular cloning and expression analysis of CRISP1, CRISP2, and CRISP3 in the boar. A partial sequence published in the National Center for Biotechnology Information (NCBI) database was used to derive the full-length sequences for CRISP1 and CRISP2 using rapid amplification of cDNA ends. RT-PCR confirmed the expression of these mRNAs in the boar reproductive tract, and real time RT-PCR showed CRISP1 to be highly expressed throughout the epididymis, with CRISP2 highly expressed in the testis. A search of the porcine genomic sequence in the NCBI database identified a BAC (CH242-199E6) encoding the CRISP1 gene. This BAC is derived from porcine Chromosome 7 and is syntenic with the regions of the mouse, rat, and human genomes encoding the CRISP gene family. This BAC was found to encode a third CRISP protein with a predicted amino acid sequence of high similarity to human CRISP3. Using RT-PCR we show that CRISP3 expression in the boar reproductive tract is confined to the prostate. Recombinant porcine (rp) CRISP2 protein was produced and purified. When incubated with capacitated boar sperm, rpCRISP2 induced an acrosome reaction, consistent with its demonstrated ability to alter the activity of calcium channels.
This study provides the first evidence that rat epididymis is fully capable of initiating an inflammatory response to lipopolysaccharide (LPS) from Escherichia coli through activation of Toll-like receptor 4 (TLR4). TLR4 functionality was demonstrated by in vivo LPS challenge, which induced a time- and dose-dependent activation of the transcription factor nuclear factor kappa B (NFKB) in caput and cauda epididymides. NFKB activation by LPS in caput epididymidis was abrogated when rats were pretreated with the NFKB inhibitor PDTC, confirming the specificity of this response. Within 2 h of LPS treatment (0.01 and 1 mg/kg, i.v.), NFKB activation in caput and cauda was accompanied by upregulation of Il1b, Nfkbia, and Cd14, but not Tlr4, mRNA. These effects, however, were not sustained after 24 h of LPS treatment. Lipopolysaccharide systemic effects were not restricted to epididymides, since Il1b, Nfkbia, and Cd14 mRNAs were also upregulated in other male reproductive tissues from LPS-treated rats (1 mg/kg, i.v., 2 h). Constitutive TLR4 was immunolocalized in some, but not all, epididymal epithelial cells and in interstitial cells, some of them identified as resident ED2-positive macrophages. No change in TLR4 immunostaining pattern was observed when epididymides from control and LPS-treated rats were compared (1 mg/kg, i.v., 2 h and 24 h). Significant NFKB activation was also achieved within 1 min of in vitro incubation of caput epididymidis with LPS (0.01–5 μg/ml), confirming that components for TLR4 signaling cascade activation are fully active in this tissue. This study contributes to a better understanding of the innate immune response in the epididymis and other tissues from the male reproductive tract.
To examine how androgens affect endocrine events associated with increased ovulation rate, gilts were injected with androgen receptor agonists, an antagonist, or a combination of both. Blood samples were collected hourly from Day 13 to estrus (Day 0 = onset of estrus) coincident with gilts (n = 6 per treatment) receiving daily treatments of vehicle (corn oil), 10 mg of testosterone, 10 mg of 5 alpha-dihydrotestosterone (dihydrotestosterone), 1.5 g of flutamide (an androgen receptor antagonist), testosterone plus flutamide, or dihydrotestosterone plus flutamide. Treatment of gilts with testosterone or dihydrotestosterone alone increased (P < 0.05) concentrations of FSH in serum, and these effects were blocked by cotreatment with flutamide. Estradiol-17beta and androstenedione concentrations in serum were increased (P < 0.05) at 2 h after injection of testosterone or testosterone plus flutamide but not after dihydrotestosterone treatment, probably because of the role of testosterone as a substrate for estradiol-17beta and androstenedione synthesis. There were no effects of the six treatments on serum concentrations of progesterone during luteolysis, but treating gilts with testosterone shortened (P < 0.05) the proestrous period. Total embryonic loss by Day 11 in gilts treated with dihydrotestosterone was reversed when gilts were cotreated with dihydrotestosterone plus flutamide. Results of this experiment indicated that androgen actions both increased FSH secretion and reduced embryonic survival by a mechanism(s) dependent on the androgen receptor.
Prior to fertilization, mammalian spermatozoa need to acquire fertilizing ability (capacitation) in the female reproductive tract. On the other hand, capacitated spermatozoa reversibly lose their capacitated state when treated with seminal plasma (decapacitation). Previously, we demonstrated that a mouse seminal plasma protein, SVS2, is a decapacitation factor and regulates sperm fertilizing ability in vivo. Here, we examined the mechanisms of regulation of fertilizing ability by SVS2. Capacitation appears to be mediated by dynamic changes in lipid rafts since release of the cholesterol components of lipid rafts in the sperm plasma membrane is indispensable for capacitation. When the ejaculated spermatozoa were stained with a cholera toxin subunit B (CTB) that preferably interacts with ganglioside GM1, another member of the lipid rafts, the staining pattern of the sperm was the same as the binding pattern of SVS2. Interestingly, SVS2 and CTB competitively bound to the sperm surface with each other, suggesting that the binding targets of both molecules are the same, that is, GM1. Molecular interaction studies by the overlay assay and the quartz crystal microbalance analysis revealed that SVS2 selectively interacts with GM1 rather than with other gangliosides. Furthermore, external addition of GM1 nullified SVS2-induced sperm decapacitation. Thus, ganglioside GM1 is a receptor of SVS2 and plays a crucial role in capacitation in vivo.
We previously demonstrated that the number and height of oocyte microvilli were reduced in baboon fetuses deprived of estrogen in utero and restored to normal in animals supplemented with estradiol. Phosphorylated ezrin and Na/H exchange regulatory factor 1 (NHERF, now termed SLC9A3R1) link f-actin bundles to the membrane, whereas alpha-actinin cross-links f-actin to form microvilli. Therefore, we determined whether these proteins were expressed in oocytes of the fetal baboon ovary and whether expression and/or localization were altered between mid and late gestation in association with an increase in estrogen and in late gestation in animals in which estrogen was suppressed (>95%) or restored by treatment with an aromatase inhibitor with or without estradiol. Expression of alpha-actinin was low at mid gestation, increased on the surface of oocytes of primordial follicles in late gestation, and was negligible in the ovaries of estrogen-suppressed fetuses and normal in animals treated with estrogen. Ezrin (total and phosphorylated) and SLC9A3R1 expression was localized to the surface of oocytes at mid and late gestation in estrogen-replete baboons and to the cytoplasm in late gestation after estrogen suppression. These results are the first to show that the fetal baboon oocyte expressed ezrin, SLC9A3R1, and alpha-actinin, and that these proteins were localized to the oocyte surface consistent with their role in microvilli development in epithelial cells. The current study also showed that the developmental increase in oocyte expression of alpha-actinin is regulated by estrogen and correlated with the estrogen-dependent increase in oocyte microvilli demonstrated previously. Therefore, we propose that development of oocyte microvilli requires expression of alpha-actinin and that expression of alpha-actinin and localization of ezrin-phosphate and SLC9A3R1 to the oocyte membrane are regulated by estrogen.
Adrenomedullin (AM) is a multifunctional peptide vasodilator that signals through a G-protein-coupled receptor when the receptor, called calcitonin receptor-like receptor (CL), is associated with a receptor activity-modifying protein 2 (RAMP2). We demonstrated previously that haploinsufficieny for each of these genes led to reduced maternal fertility, and that even a modest genetic reduction of AM peptide caused maternal defects in implantation, placentation, and fetal growth. Here, we further demonstrate that Adm /− female mice displayed reduced pregnancy success rates that were not caused by defects in folliculogenesis, ovulation, or fertilization. The poor fertility of Adm /− female mice could not be rescued by transfer of wild-type blastocysts, which suggested an underlying defect in uterine receptivity. In fact, we found that Adm, Calcrl, and Ramp2 gene expressions are tightly and spatiotemporally regulated in the luminal epithelial cells of the uterus during the estrus cycle and the peri-implantation period. RAMP3, which also generates an AM receptor when associated with CL, had a diametrically opposite expression pattern than that of Adm, Calcrl, and Ramp2 and was most robustly induced in the stroma of the uterus. Finally, we discovered that Adm /− female mice have a substantially reduced number of pinopodes on the uterine luminal epithelial surface, which is indicative and possibly causative of the poor uterine receptivity. Taken together, our studies identify a new class of pharmacologically tractable proteins that are involved in establishing uterine receptivity through the regulation of pinopode formation.
We previously discovered a germ cell-specific spermatogenesis and oogenesis basic helix-loop-helix transcription factor, Sohlh2. We generated Sohlh2-deficient mice to understand physiologic consequences of Sohlh2 deletion. We discovered that Sohlh2-knockout adult female mice are infertile due to lack of ovarian follicles. Sohlh2-deficient ovaries can form primordial follicles and, despite limited oocyte growth, do not differentiate surrounding granulosa cells into cuboidal and multilayered structures. Oocytes are rapidly lost in Sohlh2-deficient ovaries, and few are present by 14 days of postnatal life. However, the primordial oocytes are abnormal at the molecular level because they misexpress numerous germ cell- and oocyte-specific genes, including Sohlh1, Nobox, Figla, Gdf9, Pou5f1, Zp1, Zp3, Kit, Oosp1, Nlrp14, H1foo, and Stra8. Our findings show that Sohlh2 is a critical factor for maintenance and differentiation of the oocyte during early oogenesis.
Posttranslational modification of proteins by phosphorylation is involved in regulation of sperm function. Protein phosphatase 1 gamma isoform 2 (PPP1CC_v2) and protein YWHA (also known as 14-3-3) are likely to be key molecules in pathways involving sperm protein phosphorylation. We have shown that phosphorylated PPP1CC_v2 is bound to protein YWHAZ in spermatozoa. In somatic cells, protein YWHA is known to bind a number of phosphoproteins involved in signaling and energy metabolism. Thus, in addition to PPP1CC_v2, it is likely that sperm contain other YWHA-binding proteins. A goal of the present study was to identify these sperm YWHA-binding proteins. The binding proteins were isolated by affinity chromatography with GST-YWHAZ followed by elution with a peptide, R-11, which is known to disrupt YWHA complexes. The YWHA-binding proteins in sperm can be classified as those involved in fertilization, acrosome reaction, energy metabolism, protein folding, and ubiquitin-mediated proteolysis. A subset of these putative YWHA-binding proteins contain known amino acid consensus motifs, not only for YWHA binding but also for PPP1C binding. Identification of sperm PPP1CC_v2-binding proteins by microcystin-agarose chromatography confirmed that PPP1CC_v2 and YWHA interactomes contain several common proteins. These are metabolic enzymes phosphoglycerate kinase 2, hexokinase 1, and glucose phosphate isomerase; proteins involved in sperm-egg fusion; angiotensin-converting enzyme, sperm adhesion molecule, and chaperones; heat shock 70-kDa protein 5 (glucose-regulated protein 78 kDa; and heat shock 70-kDa protein 1-like. These proteins are likely to be phosphoproteins and potential PPP1CC_v2 substrates. Our data suggest that in addition to potential regulation of a number of important sperm functions, YWHA may act as an adaptor molecule for a subset of PPP1CC_v2 substrates.
Previously, we found high levels of skin-embryo-brain-oocyte homeobox (Sebox) gene expression in germinal vesicle (GV)-stage oocytes. The objective of the present study was to determine the role played by SEBOX in oocyte maturation and early embryogenesis using RNA interference (RNAi). Microinjection of Sebox double-stranded RNA into GV oocytes resulted in a marked decrease in Sebox mRNA and protein expression. However, Sebox RNAi affects neither oocyte maturation rate nor morphological characteristics, including spindle and chromosomal organization of metaphase II oocytes. In addition, Sebox RNAi had no discernible effect on the activities of M-phase promoting factor or mitogen-activated protein kinase. In contrast, microinjection of Sebox double-stranded RNA into pronuclear-stage embryos resulted in holding embryo development at the two-cell (84.9%) and the four- and eight-cell (15.1%) stages. We concluded that Sebox is a new addition to maternal effect genes that produced and stored in oocytes and function in preimplantation embryo development.
Cell division cycle 20 (CDC20) and fizzy/cell division cycle 20 related 1 (FZR1) are activators of the anaphase-promoting complex (APC), which ubiquitinates M-phase regulating proteins, such as cyclin B and securin, and induces their degradation. In the present study, porcine CDC20 and FZR1 were cloned by reverse transcriptase-polymerase chain reaction, and their functions in the meiotic maturation of porcine oocytes were analyzed. FZR1 was readily detected in porcine immature oocytes by immunoblotting, but its levels decreased substantially during maturation. In contrast, CDC20 levels rose during oocyte maturation and were highest by the second meiotic metaphase. The inhibition of CDC20 expression by the injection of CDC20 antisense RNA induced the meiotic arrest at the first meiotic metaphase (M1) and the accumulation of a large amount of cyclin B. On the other hand, the inhibition of FZR1 expression accelerated cyclin B accumulation and the start of germinal vesicle breakdown (GVBD), but did not affect the exit from M1. Conversely, the overexpression of FZR1 by the injection of FZR1 mRNA suppressed the cyclin B accumulation and retarded GVBD. Surprisingly, the injection of CDC20 mRNA into the immature oocytes could not increase CDC20 expression, but increased cyclin B accumulation and accelerated the meiotic progression. As CDC20 is a substrate of APC (FZR1), CDC20 might have competed with cyclin B and inhibited the FZR1 function. These results suggest that porcine FZR1 and CDC20 work on the maintenance of meiotic arrest at the first meiotic prophase and on the exit from M1, respectively, and that their functional phases are strictly distinguished during porcine oocyte maturation.
In the mammalian testis, peritubular myoid cells (PMCs) surround seminiferous tubules. These cells are contractile, express the cytoskeletal markers of true smooth muscle—alpha-isoactin and F-actin—and participate in the contraction of seminiferous tubules during the transport of spermatozoa and testicular fluid to the rete testis. Myosin from PMCs (PMC-myosin) was isolated from adult rat testis and purified by cycles of assembly-disassembly and sucrose gradient centrifugation. PMC-myosin was recognized by a monoclonal anti-smooth muscle myosin antibody, and the peptide sequence shared partial homology with rat smooth muscle myosin-II, MYH11 (also known as SMM-II). Most PMC-myosin (95%) was soluble in the PMC cytosol, and purified PMC-myosin did not assemble into filaments in the in vitro salt dialysis assay at 4°C, but did at 20°C. PMC-myosin filaments are stable to ionic strength to the same degree as gizzard MYH11 filaments, but PMC-myosin filaments were more unstable in the presence of ATP. When PMCs were induced to contract by endothelin 1, a fraction of the PMC-myosin was found to be involved in the contraction. From these results we infer that PMCs express an isoform of smooth muscle myosin-II that is characterized by solubility at physiological ionic strength, a requirement for high temperature to assemble into filaments in vitro, and instability at low ATP concentrations. PMC-myosin is part of the PMC contraction apparatus when PMCs are stimulated with endothelin 1.
Methods to predict numbers of healthy oocytes in the ovaries of young adults could have important diagnostic relevance in family planning and animal agriculture. We have observed that peak antral follicle count (AFC) determined by serial ovarian ultrasonography during follicular waves is very highly reproducible within individual young adult cattle, despite 7-fold variation among animals. Herein, we tested the hypothesis that AFC is positively associated with the number of morphologically healthy oocytes and follicles in ovaries and with serum concentrations of anti-Müllerian hormone (AMH), an indirect marker for number of healthy follicles and oocytes in ovaries. In the present study, age-matched young adult cattle (12–18 mo old) were subjected to serial ultrasonography to identify animals with a consistently high (≥25 follicles that were ≥3 mm in diameter) or low (≤15 follicles) AFC during follicular waves. Differences in serum AMH concentrations, ovary weight, and number of morphologically healthy and atretic follicles and oocytes were determined. The phenotypic classifications of cattle based on AFC during follicular waves or AMH concentrations both predict reliably the relative number of morphologically healthy follicles and oocytes in ovaries of age-matched young adult cattle.
Progesterone (P4) is unequivocally required to maintain a uterine environment conducive to pregnancy. This study investigated the effects of P4 treatment on expression of selected growth factors (fibroblast growth factor 7 [FGF7], FGF10, hepatocyte growth factor [HGF], and insulin-like growth factors [IGF1 and IGF2]), their receptors (MET, FGFR2(IIIB), and IGF1R), and IGF binding proteins (IGFBPs) in the ovine uterus. Ewes received daily injections of corn oil vehicle (CO) or 25 mg of P4 in vehicle from 36 h after mating (Day 0) to hysterectomy on Day 9 or Day 12. Another group received P4 to Day 8 and 75 mg of mifepristone (RU486, a P4 receptor antagonist) from Day 8 through Day 12. Endometrial FGF10 mRNA levels increased between Day 9 and Day 12 and in response to P4 on Day 9 in CO-treated ewes, which had larger blastocysts, and were substantially reduced in P4 RU486-treated ewes, which had no blastocysts on Day 12. Endometrial FGF7 or HGF mRNA levels were not affected by day or reduced by RU486 treatment, but MET mRNA levels were higher in P4-treated ewes on Day 9 and Day 12. Levels of IGF1, IGF2, and IGF1R mRNA in the endometria were not affected by early P4 treatment. Although stromal IGFBPs were unaffected by P4, levels of IGFBP1 and IGFBP3 mRNA in uterine luminal epithelia were increased substantially between Day 9 and Day 12 of pregnancy in CO-treated ewes and on Day 9 in early P4-treated ewes. Therefore, FGF10, MET, IGFBP1, and IGFBP3 are P4-regulated factors within the endometrium of the ovine uterus that have potential effects on endometrial function and peri-implantation blastocyst growth and development.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere