BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Proper sperm function depends on adequate ATP levels. In the mammalian flagellum, ATP is generated in the midpiece by oxidative respiration and in the principal piece by glycolysis. In locations where ATP is rapidly utilized or produced, adenylate kinases (AKs) maintain a constant adenylate energy charge by interconverting stoichiometric amounts of ATP and AMP with two ADP molecules. We previously identified adenylate kinase 1 and 2 (AK1 and AK2) by mass spectrometry as part of a mouse SDS-insoluble flagellar preparation containing the accessory structures (fibrous sheath, outer dense fibers, and mitochondrial sheath). A germ cell-specific cDNA encoding AK1 was characterized and found to contain a truncated 3′ UTR and a different 5′ UTR compared to the somatic Ak1 mRNA; however, it encoded an identical protein. Ak1 mRNA was upregulated during late spermiogenesis, a time when the flagellum is being assembled. AK1 was first seen in condensing spermatids and was associated with the outer microtubular doublets and outer dense fibers of sperm. This localization would allow the interconversion of ATP and ADP between the fibrous sheath where ATP is produced by glycolysis and the axonemal dynein ATPases where ATP is consumed. Ak2 mRNA was expressed at relatively low levels throughout spermatogenesis, and the protein was localized to the mitochondrial sheath in the sperm midpiece. AK1 and AK2 in the flagellar accessory structures provide a mechanism to buffer the adenylate energy charge for sperm motility.
On ejaculation, sperm become coated with proteins secreted by the male accessory sex glands. In the bull, these proteins consist predominantly of the bovine seminal plasma family of proteins (BSPs): PDC-109 (BSP-A1/-A2), BSP-A3, and BSP-30-kDa. PDC-109 plays a role in forming an oviductal sperm reservoir by enabling sperm to bind to oviductal epithelium. Because PDC-109 has high sequence identity with the other BSPs, we tested BSP-A3 and BSP-30-kDa for the capacity to bind sperm to oviductal epithelium. BSP-A3 and BSP-30-kDa each increased binding of epididymal sperm to epithelium and were as effective as PDC-109 in competitively inhibiting binding of ejaculated sperm. Because binding extends the motile life of sperm, BSPs were tested for the ability to maintain sperm motility. BSP-treated epididymal sperm incubated with plasma membrane vesicles from bovine oviductal epithelium maintained progressive motility longer than untreated sperm. To our knowledge, this is the first report of this protective effect of BSPs. Similarities in function among the BSPs were reflected in their three-dimensional structure, whereas surface maps of electrostatic potential indicated differences in binding affinities and kinetics. Such differences may provide sperm with greater adaptability to variations among females. Altogether, these results indicate that BSPs play a crucial role in fertilization by maintaining sperm motility during storage.
The signal transducer and activator of transcription 5 (STAT5) is an essential factor in the signal transduction pathways for a number of cytokines that regulate the growth and differentiation of mammalian cells. In this study, we investigated the STAT5 signaling pathway in mouse embryos, to elucidate the mechanism of cytokine signal transduction that regulates preimplantation development. The results of the RT-PCR analysis showed that both STAT5A and B were expressed throughout preimplantation development. Immunocytochemistry revealed that the STAT5A/B proteins were located in the nucleus from the early 1-cell stage to the blastocyst stage. STAT5 activation appeared to be regulated by Janus kinases (JAKs) and SRC family kinases (SFKs), since inhibitors of these kinases inhibited the localization of STAT5 proteins to the nucleus. The JAK inhibitor Ag490 reduced both the developmental rate of the embryos and the expression levels of the downstream genes of the JAK-STAT5 signaling pathway. These findings suggest that STAT5 proteins function in preimplantation development by mediating the signals from cytokines.
A successful pregnancy is dependent on liberal placental perfusion via the maternal and fetal circulations. Doppler waveform analyses of umbilical arteries suggest increased resistance to flow in the fetoplacental circulation of pregnancies complicated by intrauterine growth restriction (IUGR). Neither the site nor the mediators responsible for this altered vascular reactivity are known, to date. In placentas in normal pregnancy, reduced oxygenation promotes contraction of the in vitro-perfused placental cotyledon and modulates agonist-induced contraction of chorionic plate arteries and veins. Placental oxygenation has also been suggested to be reduced in IUGR. We tested the hypothesis that oxygen tension could directly modify placental chorionic plate vessel vasoreactivity in IUGR. Small arteries and veins from the chorionic plate were dissected from biopsies from placentas of pregnancies complicated by IUGR and were studied using parallel wire myography. Vasoconstriction at 20%, 7%, and 2% oxygen was assessed utilizing the thromboxane mimetic U46619. Experiments were also performed in the presence of 4-aminopyridine (4AP), a blocker of voltage-gated potassium channels. Increased oxygenation reduced venous vasoconstriction but did not modify arterial vasoconstriction. 4AP increased basal tone in arteries and veins. We suggest that venoconstriction in response to hypoxia may provide a mechanism for increased fetoplacental vascular resistance associated with IUGR.
Cloning technology would allow targeted genetic alterations in the rat, a species which is yet unaccessible for such studies due to the lack of germline-competent embryonic stem cells. The present study was performed to examine the developmental ability of reconstructed rat embryos after transfer of nuclei from early preimplantation stages. We observed that single blastomeres from two-cell embryos and zygotes reconstructed by pronuclei exchange can develop in vitro until morula/blastocyst stage. When karyoplasts from blastomeres were used for the reconstruction of embryos, highest in vitro cleavage rates were obtained with nuclei in an early phase of the cell cycle transferred into enucleated preactivated oocytes or zygotes. However, further in vitro development of reconstructed embryos produced from blastomere nuclei was arrested at early cleavage stages under all conditions tested in this study. In contrast, immediate transfer to foster mothers of reconstructed embryos with nuclei from two-cell embryos at an early stage of the cell cycle in preactivated enucleated oocytes resulted in live newborn rats, with a general efficiency of 0.4%–2.2%. The genetic origin of the cloned offspring was verified by using donor nuclei from embryos of Black Hooded Wistar rats and transgenic rats carrying an ubiquitously expressed green fluorescent protein transgene. Thus, we report for the first time the production of live cloned rats using nuclei from two-cell embryos.
Diana Lucifero, João Suzuki, Vilceu Bordignon, Josée Martel, Christian Vigneault, Jacinthe Therrien, France Filion, Lawrence C. Smith, Jacquetta M. Trasler
Findings from recent studies have suggested that the low survival rate of animals derived via somatic cell nuclear transfer (SCNT) may be in part due to epigenetic abnormalities brought about by this procedure. DNA methylation is an epigenetic modification of DNA that is implicated in the regulation of imprinted genes. Genes subject to genomic imprinting are expressed monoallelically in a parent of origin-dependent manner and are important for embryo growth, placental function, and neurobehavioral processes. The vast majority of imprinted genes have been studied in mice and humans. Herein, our objectives were to characterize the bovine SNRPN gene in gametes and to compare its methylation profile in in vivo-produced, in vitro-produced, and SCNT-derived Day 17 elongating embryos. A CpG island within the 5′ region of SNRPN was identified and examined using bisulfite sequencing. SNRPN alleles were unmethylated in sperm, methylated in oocytes, and approximately 50% methylated in somatic samples. The examined SNRPN region appeared for the most part to be normally methylated in three in vivo-produced Day 17 embryos and in eight in vitro-produced Day 17 embryos examined, while alleles from Day 17 SCNT embryos were severely hypomethylated in seven of eight embryos. In this study, we showed that the SNRPN methylation profiles previously observed in mouse and human studies are also conserved in cattle. Moreover, SCNT-derived Day 17 elongating embryos were abnormally hypomethylated compared with in vivo-produced and in vitro-produced embryos, which in turn suggests that SCNT may lead to faulty reprogramming or maintenance of methylation imprints at this locus.
Female rhesus macaques show monthly menstrual cycles and eventually enter menopause at approximately 25 yr of age. To help identify early biomarkers of menopause in this nonhuman primate, we monitored reproductive hormones longitudinally from aged female macaques during the transitions from premenopause to perimenopause and postmenopause and found that, indeed, elevated plasma FSH was a better predictive factor of menopause onset than age. In a second experiment, we compared reproductive hormone profiles of young adult macaques (8–10 yr old) with those of regularly cycling old macaques (approximately 24 yr old). Indwelling vascular catheters were used for remote blood collection for at least 100 consecutive days, thereby covering three complete menstrual cycles in each macaque. Plasma levels of estradiol, progesterone, LH, FSH, follicular phase inhibin B, and anti-müllerian hormone (AMH) were determined during each menstrual cycle and were averaged for each animal; group mean differences were analyzed using one-way ANOVA. Old premenopausal macaques showed regular menstrual cycles that were qualitatively indistinguishable from those of young macaques; peak plasma levels of estradiol, progesterone, and LH were not significantly different. In marked contrast, peak plasma FSH concentrations were significantly higher, while inhibin B and AMH levels were generally lower, in the old premenopausal macaques compared with those in the young macaques. These data provide further evidence that rhesus macaques serve as an excellent model to study underlying mechanisms of human menopause. Furthermore, the data suggest that an age-related change in FSH, inhibin B, and AMH secretion may be the first endocrine manifestation of the transition into perimenopause, potentially having value in predicting the onset of the perimenopausal transition.
In livestock, most of the follicles on the ovarian surface are small follicles. A procedure that supports the in vitro growth and maturation of these small follicle-derived oocytes may offer a new source of useable oocytes for both biotechnological and fundamental research purposes. The objective of the current study was to test the hypothesis that providing a more growth-supporting and less maturation-promoting environment during the first phase of small follicle-derived oocyte maturation may improve oocyte competence for meiosis and embryo development upon activation. In our small follicle-derived oocyte growth-maturation system (SGM group), cumulus-oocyte complexes (COCs) from small follicles (1–3 mm) were first cultured in oocyte growth medium for 24 h, then in oocyte maturation medium for 20 h. As controls, COCs from small (SM group) and large (LM group) follicles were cultured using a conventional in vitro maturation (IVM) approach in which they were directly cultured in oocyte maturation medium. At 24 h of culture, the percentage of small follicle-derived oocytes that underwent germinal vesicle breakdown (GVBD) in the SGM group was comparable to that of large follicle-derived oocytes (LM group) but was significantly higher than that of the SM group (P < 0.05). At 44 h of culture, compared to 36% in the SM group, 55% of the SGM group oocytes reached metaphase II (MII; P < 0.05). In addition, the level of cyclin B in oocytes of the SGM group was comparable to that of oocytes from LM group and was significantly higher than that of oocytes from the SM group (P < 0.05). When activated and in vitro fertilized (IVF), 7.3 and 9.0 times more parthenogenetic and IVF embryos developed to blastocyst stage in the SGM group than in the SM group (P < 0.05). The mRNA expression levels of three developmentally important genes—DNA-methyltransferase 1, Pou domain class 5 transcription factor 1, and Fibroblast growth factor receptor 2—in embryos of the SGM group were comparable to those of embryos developed from the LM group, whereas they were significantly lower in those of the SM group (P < 0.05). Our data suggest that the oocyte growth-maturation system facilitates the final stage of oocyte growth and thus resulted in better oocyte nuclear, cytoplasmic maturation, and developmental competency compared with the conventional direct oocyte maturation system.
We previously demonstrated that mouse embryonic stem (ES) cells show a wide variation in the expression of platelet endothelial cell adhesion molecule 1 (PECAM1) and that the level of expression is positively correlated with the pluripotency of ES cells. We also found that PECAM1-positive ES cells could be divided into two subpopulations according to the expression of stage-specific embryonic antigen (SSEA)-1. ES cells that showed both PECAM1 and SSEA-1 predominantly differentiated into epiblast after the blastocyst stage. In the present study, we performed pairwise oligo microarray analysis to characterize gene expression profiles in PECAM1-positive and -negative subpopulations of ES cells. The microarray analysis identified 2034 genes with a more than 2-fold difference in expression levels between the PECAM1-positive and -negative cells. Of these genes, 803 were more highly expressed in PECAM1-positive cells and 1231 were more highly expressed in PECAM1-negative cells. As expected, genes known to function in ES cells, such as Pou5f1 (Oct3/4) and Nanog, were found to be upregulated in PECAM1-positive cells. We also isolated 23 previously uncharacterized genes. A comparison of gene expression profiles in PECAM1-positive cells that were either positive or negative for SSEA-1 expression identified only 53 genes that showed a more than 2-fold greater difference in expression levels between these subpopulations. However, many genes that are under epigenetic regulation, such as globins, Igf2, Igf2r, and H19, showed differential expression. Our results suggest that in addition to differences in gene expression profiles, epigenetic status was altered in the three cell subpopulations.
Although CD8 T lymphocytes are present in human decidua throughout pregnancy, albeit as a minor population in early pregnancy, their role in normal pregnancy is largely unknown. The present study aimed to characterize their effector phenotype, including cytolytic activity, cytokine profile, and capacity to affect placental invasion. CD8 lymphocytes were positively selected from normal early pregnancy decidua (7–14 wks gestational age). Decidual CD8 T lymphocytes were studied using standard and redirected chromium release assays to investigate natural killer cell-sensitive cytotoxicity and cytotoxicity that requires T-cell receptor signal transduction respectively, multiplex cytokine analysis to analyze cytokine production, and a placental explant invasion model to assess the effect of soluble products of decidual CD8 T lymphocytes on trophoblast invasion. Decidual CD8 T lymphocytes exhibited cytolytic ability against P815 target cells (mean % Specific Chromium Release at effector:target ratio of 32:1 [SCR32] of 32.7 ± 5.8) and against K562 target cells (mean SCR32 of 20.3 ± 0.5). Phytohemagglutinin-P (PHA-P)-stimulated decidual CD8 T lymphocytes produced high levels of both interferon gamma and interleukin (IL) 8, and low levels of granulocyte-macrophage colony-stimulating factor (CSF2), IL1B, IL2, IL6, IL10, IL12, and tumor necrosis factor; these did not vary with gestational age. IL4 was undetectable. Decidual CD8 T lymphocyte supernatants increased the capacity of extravillous trophoblast cells to invade through Matrigel compared with the PHA-P control. These findings suggest that decidual CD8 T cells can display cytolytic activity, do not evoke a predominant local intrauterine Th2 type cytokine environment, and may act to regulate invasion of extravillous trophoblast cells into the uterus, a crucial process for normal uteroplacental development.
Ovulation and luteal formation in primates are associated with the sustained synthesis of progesterone. The observed high intrafollicular concentrations of progesterone during the periovulatory interval raise the possibility that this steroid serves as a precursor for mineralocorticoids. The aim of this study was to determine if mineralocorticoids are synthesized by the luteinizing macaque follicle during controlled ovarian stimulation cycles in which follicular fluid and granulosa cell aspirates were obtained before or after an ovulatory hCG bolus. Follicular fluid concentrations of progesterone and 17alpha-hydroxyprogesterone increased within 3 h of an ovulatory hCG bolus. Their respective metabolites, 11-deoxycorticosterone (DOC) and 11-deoxycortisol, were not detectable before an ovulatory stimulus and increased starting at 6 h after hCG, while corticosterone and aldosterone were undetectable. Cortisol was present before and after hCG administration and had increased 2-fold at 24 h after an ovulatory stimulus. The expression of 21-hydroxylase (CYP21A2) mRNA increased within 3 h of hCG administration, while 11beta-hydroxylase-1 (CYP11B1) and 11beta-hydroxylase-2 (CYP11B2) mRNAs were not detectable. 11beta-Hydroxysteroid dehydrogenase-1 (HSD11B1) mRNA had increased at 12 h after hCG administration, and 11beta-hydroxysteroid dehydrogenase-2 (HSD11B2) had decreased by 3 h after hCG administration. Mineralocorticoid receptor mRNA levels did not change following hCG administration, while glucocorticoid receptor mRNA levels increased in response to an ovulatory stimulus. Treatment of granulosa cells with the mineralocorticoid receptor antagonist spironolactone blocked hCG-induced progesterone synthesis in vitro. These data indicate that macaque granulosa cells can synthesize mineralocorticoids in response to an ovulatory stimulus and that the mineralocorticoid receptor plays a key role in steroid synthesis associated with luteinization of macaque granulosa cells.
Transplantation of male germ cells into sterilized recipients has been widely used in mammals for conventional breeding and transgenesis purposes. This study presents a workable approach for germ cell transplantation between male chickens. Testicular cells from adult and prepubertal donors were dispersed and transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient seminiferous epithelium up to the production of heterologous sperm in about 50% of transplanted males. In comparison to males transplanted with testicular cell preparations from adult donors, in which the first ejaculates with sperm were recovered about 5 wk after transfer, a substantial interval (about 10 wk) was necessary to obtain ejaculates after the transfer of testicular cells from prepubertal donors. However, in both cases, recipient males produced ejaculates capable of fertilizing ova and producing progeny expressing donor genes.
The second cleavage of the mouse embryo is asynchronous. Some recent investigators have proposed that the sequence of division of blastomeres in two-cell embryos may predict the ultimate location of the descendants of these blastomeres within the blastocyst. To verify this model, we tracked the cells derived from two-cell stage blastomeres using tetramethylrhodamine-conjugated dextran as a lineage tracer. In the first variant of the experiment, we labeled one of two blastomeres in two-cell embryos and subsequently recorded which blastomere cleaved first. In the second variant of the experiment, fluorescent dextran was injected at the three-cell stage into the blastomere that had not yet cleaved. Subsequently, the fate of the progeny of labeled and unlabeled blastomeres was followed up to the blastocyst stage. Our results suggest that allocation of cells into the embryonic and abembryonic parts of the blastocyst is not determined by the order of cleavage of the first two blastomeres.
The objectives of this study were to map the ontogeny of tyrosine phosphorylation signal transduction pathways during germ cell development and to determine their association with the differentiation of a functional gamete. Until testicular germ cells differentiate into spermatozoa, cAMP-induced tyrosine phosphorylation is not detectable. Entry of these cells into the epididymis is accompanied by sudden activation of the tyrosine phosphorylation pathway, initially in the principal piece of the cell and subsequently in the midpiece. In the caput and corpus epididymides, the potential to express this pathway is inhibited by the presence of calcium in the extracellular medium. However, calcium has no effect on the expression of this pathway in caudal epididymal sperm. The competence of these cells to phosphorylate the entire sperm tail, from the neck to the tail-end piece, is accompanied by a capacity to exhibit hyperactivated motility on stimulation with cAMP. A distinctly different pattern of tyrosine phosphorylation, involving the acrosomal domain of the sperm head, is invoked as spermatozoa enter the caput epididymis, and phosphorylation remains high until these cells enter the distal corpus and cauda. The proportion of cells exhibiting this form of tyrosine phosphorylation is not affected by extracellular calcium or cAMP but is negatively correlated (R2 = 0.99) with their ability to acrosome-react. However, this relationship is not causative. Our findings indicate that the development of functional spermatozoa is accompanied by carefully orchestrated changes in tyrosine phosphorylation, controlled by independent regulatory mechanisms in distinct subcellular compartments of these highly specialized cells.
Previous evidence has shown that sperm maturation is the result of successive events that influence sperm cells as they move through different microenvironments from the caput to the cauda epididymis. The physiological basis for the creation and maintenance of specific microenvironments along the epididymis are poorly understood. Anatomically, the epididymis consists of segments or lobules of epididymal tubule separated by connective tissue septa (CTS). The fact that CTS restrict the diffusion of tracer substances between segments and that certain gene expression patterns are segment-specific suggest that segments may represent functional epididymal units. In this report, we have further investigated epididymal segmentation by focusing on the ability of CTS to limit the effect of biologically relevant molecules, in particular epidermal growth factor (EGF), basic fibroblast growth factor (FGF2), and vascular endothelial growth factor A (VEGFA), in Segments 1 and 2 of the rat epididymis. We have demonstrated that these growth factors activate mitogen-activated kinase (MAPK) in both segments studied and that growth factors injected into the interstitial space of these segments in vivo exhibited a stimulatory effect only in the segment into which they were injected, i.e., MAPK activation was not observed in the adjacent segment. This restricting influence of CTS was abrogated by treatment with collagenase. In addition, we demonstrate the expression of selected forms of these growth factors and their receptors in Segments 1 and 2, and identify potential downstream targets. These results suggest that CTS regulate the trophic influences of growth factors and potentially other paracrine molecules, thus creating functionally separate units within the epididymis.
The opposing actions of estrogen and progesterone during the menstrual cycle regulate the cyclical and predictable endometrial proliferation and differentiation that is required for implantation. Progesterone indirectly stimulates the expression of 17beta hydroxysteroid dehydrogenase type 2 (HSD17B2), which catalyzes the conversion of biologically potent estradiol to weakly estrogenic estrone in the endometrial epithelium. We previously demonstrated upregulation of the HSD17B2 gene in human endometrial epithelial cells by factors secreted from endometrial stromal cells in response to progesterone. We investigated the underlying mechanism by which these stroma-derived, progesterone-induced paracrine factors stimulate HSD17B2 expression. Here, we show that transcription factors SP1 and SP3 interact with specific motifs in HSD17B2 promoter to upregulate enzyme expression in human endometrial epithelial cell lines. Conditioned medium (CM) from progestin-treated stromal cells increased levels of SP1 and SP3 in endometrial epithelial cells and induced HSD17B2 mRNA expression. Mithramycin A, an inhibitor of SP1-DNA interaction, reduced epithelial HSD17B2 promoter activity in a dose-dependent manner. Serial deletion and site-directed mutants of the HSD17B2 promoter demonstrated that two overlapping SP1 motifs (nt −82/−65) are essential for induction of promoter activity by CM or overexpression of SP1/SP3. CM markedly enhanced, whereas anti-SP1/SP3 antibodies inhibited, binding of nuclear proteins to this region of the HSD17B2 promoter. In vivo, we demonstrated a significant spatiotemporal association between epithelial SP1/SP3 and HSD17B2 levels in human endometrial biopsies. Taken together, these data suggest that HSD17B2 expression in endometrial epithelial cells, and, therefore, estrogen inactivation, is regulated by SP1 and SP3, which are downstream targets of progesterone-dependent paracrine signals originating from endometrial stromal cells.
Mature mouse oocytes currently can be generated in vitro from the primary oocytes of primordial follicles but not from premeiotic fetal germ cells. In this study we established a simple, efficient method that can be used to obtain mature oocytes from the premeiotic germ cells of a fetal mouse 12.5 days postcoitum (dpc). Mouse 12.5-dpc fetal ovaries were transplanted under the kidney capsule of recipient mice to initiate oocyte growth from the premeiotic germ cell stage, and they were recovered after 14 days. Subsequently, the primary and early secondary follicles generated in the ovarian grafts were isolated and cultured for 16 days in vitro. The mature oocytes ovulated from these follicles were able to fertilize in vitro to produce live offspring. We further show that the in vitro fertilization offspring were normal and able to successfully mate with both females and males, and the patterns of the methylated sites of the in vitro mature oocytes were similar to those of normal mice. This is the first report describing premeiotic fetal germ cells able to enter a second meiosis and support embryonic development to term by a combination of in vivo transplantation and in vitro culture. In addition, we have shown that the whole process of oogenesis, from premeiotic germ cells to germinal vesicle (GV)-stage oocytes, can be carried out under the kidney capsule.
A molecular device that measures time on a daily, or circadian, scale is a nearly ubiquitous feature of eukaryotic organisms. A core group of clock genes, whose coordinated function is required for this timekeeping, is expressed both in the central clock and within numerous peripheral organs. We examined expression of clock genes in the rat ovary. Transcripts for core oscillator elements (Arntl, Clock, Per1, Per2, and Cry1) were present in the ovary as indicated by quantitative real-time RT-PCR. Rhythmic expression patterns ofArntl and Per2 transcripts and protein products were out of phase with respect to the central oscillator and in complete antiphase to each other. Expression of Arntl was significantly elevated after the LH surge on the day of proestrus. Finally, hCG treatment induced cyclic expression of both Arntl and Per2 gene products in hypophysectomized, immature rats primed with eCG. Collectively, these data suggest that the core underpinnings of the transcriptional/translational feedback loop that drives circadian rhythmicity is present in the rat ovary. Furthermore, the study identifies LH as a potential regulator of circadian clock gene rhythms in the ovary.
Follicle waves are preceded by follicle-stimulating hormone (FSH) peaks in ewes. The purpose of the present study was to see whether estradiol implant treatment would block FSH peaks to create a model in which the effect of the timing and mode of FSH peaks could be studied by ovine FSH (oFSH) injection. In Experiment 1, 10 ewes received estradiol-17beta implants on Day 4 after ovulation (Day 0, day of ovulation); five ewes received large implants, and five ewes received small implants. Five control ewes received empty implants. In Experiment 2, 12 ewes received large implants on Day 4. On Day 9, six ewes received oFSH twice, 8 h apart (0.5 μg/kg; s.c.). Implants were left in place for 10 days in both experiments. In both studies, ovarian ultrasonography and blood sampling was done daily. In Experiment 1, estradiol concentrations were significantly higher in ewes with large implants (10.4 ± 0.7 pg/ml) compared with controls (3.9 ± 0.7 pg/ml) and ewes with small implants (5.4 ± 0.7 pg/ml; P < 0.001). A significant reduction was found in mean FSH peak concentration (31%; P < 0.05) and FSH peak amplitude (45%; P < 0.05) in ewes with large implants compared with controls. Mean and basal FSH concentrations were unaffected by the large implants. The large implants halted follicle-wave emergence between Day 0 and 8 after implant insertion. The small follicle pool (2–3 mm in diameter) was unaffected by the large implants. When oFSH was injected into ewes with large implants, a follicle wave emerged 1.5 ± 0.5 days after injection; however, in ewes given saline alone, a follicle wave emerged 4.8 ± 0.8 days after injection (P < 0.01). We concluded that truncation of FSH peaks by estradiol implants prevented follicle-wave emergence, but injection of physiologic concentrations of oFSH reinitiated follicle-wave emergence.
Although molecular mechanisms underlying steroid effects on GnRH and dopamine receptors are well documented in mammals, little is known in fish. Herein, we describe the expression of pituitary GnRH and dopamine receptors relative to gonadotropin expression and release. We exposed female tilapia to graded doses of estradiol or 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP) in vitro, and of estradiol in vivo, and determined mRNA levels of gnrhr1, gnrhr3, drd2, lhb, and fshb by real-time PCR. We also determined gonadotropin levels using specific ELISAs. Exposure to low doses of estradiol caused increased gnrhr3 mRNA levels in vivo and in vitro, probably related to positive feedback on FSH release. Increasing concentrations of estradiol resulted in increased drd2 mRNA levels in vivo and in vitro, inhibition of LH and FSH release, and inhibition of lhb mRNA levels in vivo, possibly related to negative feedback. At high doses of estradiol, FSH release increased in preparation for a new generation of follicles. Exposure to nanomolar doses of DHP resulted in increased drd2 mRNA levels, probably related to negative feedback on LH release. A decrease in drd2 levels at the micromolar range of DHP (concomitant with increased gnrhr3 and fshb mRNA levels) may be related to the recruitment of a new generation of oocytes. Exposure to DHP also resulted in increased lhb mRNA levels toward final oocyte maturation. Salmon GnRH analog (sGnRHa) increased mRNA levels of gnrh1 and gnrh3; when combined with DHP, sGnRHa synergistically increased expression of gnrh3 only. These results emphasize the role of sex steroids on positive and negative feedbacks controlling the reproductive cycle.
Muscular autorhythmicity provides propulsion of spermatozoa through the epididymal duct, thereby ensuring sperm maturation. In the present study, the mechanisms underlying the bovine epididymal spontaneous phasic contractions (SCs) were analyzed by using muscle-tension recording and patch-clamp techniques. SCs were recorded from the caput, the corpus, and the proximal cauda region and found to be predominantly myogenic in origin. Removal of the luminal fluid induced a burstlike contraction pattern, and removal of the epithelium, a complete loss of SCs. Application of nifedipine, but not heparin and cyclopiazonic acid, suppressed SCs, indicating that influx of Ca2 through L-type Ca2 channels, but not Ca2 release from intracellular stores, was crucial for maintaining SCs. The prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitor NS-398 caused a region-dependent decrease in SCs and tone. These effects were mimicked by the mitogen-activated protein kinase (MAPK) kinase inhibitor PD-98059. Similarly, the prostaglandin F2alpha (PGF2alpha)-receptor antagonist AL-8810 reduced SC generation, whereas PGF2alpha induced SC-like activity in epithelium-denuded segments. Cell-isolation experiments revealed the existence of three morphologically different types of contractile cells, which also showed distinct biophysical properties: typical smooth muscle cells in the cauda, myofibroblast-like cells all along the duct, and atypical muscle cells (ATMs) with filament-like spurs in all regions with SCs. These data suggest that the bovine epididymal autorhythmicity is based on an epithelial PTGS2-dependent release of (an) excitatory prostaglandin(s) and a MAPK-dependent activation of L-type Ca2 channels in the contractile cells. ATM cells may provide electrical coupling between myofibroblasts, which is essential for the generation of regular myogenic activity.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere