BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Despite recent research progress, the biology of preeclampsia is still poorly understood and neither effective prediction nor causal therapy have yet emerged. Nevertheless, recent studies have documented new and exciting pathophysiological mechanisms for the origin and development of preeclampsia. These studies provide a more differentiated view on alterations of particular peptide systems with strong impact on angiogenesis and cardiovascular regulation in this pregnancy disorder. With the identification of the antiangiogenic factor soluble fms-like tyrosine kinase 1 and the agonistic autoantibody to the angiotensin II type 1 receptor, two factors have been described with a clear linkage to the development of the disease. This review focuses on the most recent and relevant insights into the biology of preeclampsia and develops hypotheses regarding possible links between the reported aspects of preeclampsia.
During the process of spindle-chromosome complex depletion in the oocyte, it is unclear whether both gamma-tubulin and nuclear mitotic apparatus protein 1 (NUMA1), which are required for mitotic organization and spindle assembly, are removed. The role of the donor cell centrosome and donor nuclear NUMA1 in the initial spindle morphogenesis and chromosome remodeling also remains unclear. In the present study, we show that in the mouse, the level of gamma-tubulin in the poles and around the metaphase II spindle declines significantly, whereas only approximately 10% of NUMA1 is removed during spindle-chromosome complex depletion in the recipient oocyte. This process does not impede initial spindle morphogenesis and is regulated by the centrosome of the donor cumulus cell. Retaining the donor cell centrosome establishes a monopolar spindle, whereas prior removal of the centrosome by a narrow-bore micropipette leads to bipolar spindle formation. Our data show that the centrosome of the donor cell regulates initial spindle morphogenesis and that the donor cumulus cell NUMA1 compensates for the deficiency in recipient NUMA1 during the formation of metaphase-like structures after nuclear transfer. Full-term offspring of cloned mice were obtained after injection of donor cells only with a pipette having an inner diameter of 7–8 μm, which retained the donor cell centrosome. In contrast, removing the donor cell centrosome with a small pipette impaired preimplantation development and prevented full-term development. In conclusion, the initial spindle assembly of a metaphase-like spindle is regulated by the centrosome from the donor cell in the mouse.
The mammalian type I GNRH receptor (GNRHR) is unique among G protein-coupled receptors (GPCRs) because of the absence of an intracellular C-terminus. Previously, we have found that the murine GNRHR is constitutively localized to low-density membrane microdomains termed lipid rafts. As such, association of the GNRHR with lipid rafts may reflect both a loss (C-terminus) and a gain (raft association address) of structural characteristics. To address this, we fused either the full-length C-terminus from the nonraft-associated LH receptor (LHCGR; GNRHR-LF) or a truncated (t631) LHCGR C-terminus to the GNRHR. These chimeric receptors are trafficked to the plasma membrane, bind ligand, and display increased agonist-induced receptor internalization, but they do not partition into lipid rafts. Thus, a heterologous C-terminus from a nonraft-associated GPCR redirects localization of the GNRHR to nonraft domains. In contrast to the murine GNRHR, the catfish GNRHR (cfGNRHR) possesses an intracellular C-terminus. We found that the cfGNRHR was localized to lipid rafts and that the cfGNRHR C-terminus did not alter raft localization of the mammalian receptor. Consistent with placement in different lipid microenvironments within the plasma membrane, fluorescence recovery after photobleaching revealed different lateral diffusion phenotypes of the raft-associated GNRHR and cfGNRHR versus the nonraft-associated GNRHR-LF fusion protein. We conclude that whereas an intracellular C-terminus is capable of redirecting the GNRHR to nonraft compartments, this is not a generalized feature of GPCR C-terminal tails. Thus, constitutive raft localization of the GNRHR is not simply a result of the loss of an intracellular C-terminus.
Sertoli cell number is considered to be stable and unmodifiable by hormones after puberty in mammals, although recent data using the seasonal breeding adult Djungarian hamster (Phodopus sungorus) model challenged this assertion by demonstrating a decrease in Sertoli cell number after gonadotropin depletion and a return to control levels following 7 days of FSH replacement. The present study aimed to determine whether adult Sertoli cells are terminally differentiated using known characteristics of cellular differentiation, including proliferation, junction protein localization, and expression of particular maturational markers, in the Djungarian hamster model. Adult long-day (LD) photoperiod (16L:8D) hamsters were exposed to short-day (SD) photoperiod (8L:16D) for 11 wk to suppress gonadotropins and then received exogenous FSH for up to 10 days. Sertoli cell proliferation was assessed by immunofluorescence by the colocalization of GATA4 and proliferating cell nuclear antigen and quantified by stereology. Markers of Sertoli cell maturation (immature, cytokeratin 18 [KRT18]; mature, GATA1) and junction proteins (actin, espin, claudin 11 [CLDN11], and tight junction protein 1 [TJP1, also known as ZO-1]) also were localized using confocal immunofluorescence. In response to FSH treatment, proliferation was upregulated within 2 days compared with SD controls (90% vs. 0.2%, P < 0.001) and declined gradually thereafter. In LD hamsters, junction proteins colocalized at the basal aspect of Sertoli cells, consistent with inter-Sertoli cell junctions, and were disordered within the Sertoli cell cytoplasm in SD animals. Exogenous FSH treatment promptly restored localization of these junction markers to the LD phenotype. Protein markers of maturity remain consistent with those of adult Sertoli cells. It is concluded that adult Sertoli cells are not terminally differentiated in the Djungarian hamster and that FSH plays an important role in governing the differentiation process. It is proposed that Sertoli cells can enter a transitional state, exhibiting features common to both undifferentiated and differentiated Sertoli cells.
The nucleolar precursor bodies (NPBs) are numerous discrete entities present in the nuclei of early mammalian embryos, which structurally support active rRNA genes. However, whether all rRNA genes, including those not transcribed, are spatially associated with NPBs, and moreover what is the general arrangement of ribosomal DNA (rDNA) in early mouse embryos, still remain unanswered questions. In our study, we examined the localization of rDNA in transcriptionally silent (one-cell and early two-cell) and transcriptionally active (late two-cell) mouse embryos by highly sensitive fluorescence in situ hybridization with probes complementary to mouse rDNA repeats. The results obtained showed that irrespective of the rDNA transcriptional status, one or more NPBs per nucleus were not structurally associated with rDNA. These observations support the idea that NPBs are heterogeneous in their ability to recruit rRNA genes and thus to participate in reassembly of the mature nucleolus. As in somatic cells, and despite the absence of the characteristic nucleoli, the general arrangement of rRNA genes in early mouse embryos reflected the intensity of rDNA transcription. Ribosomal RNA genes were unequally distributed with respect to repeat putative copy numbers between nucleolar organizing region (NOR)-bearing chromosomes at the first cleavage division, and more strikingly, between sister chromatid NORs of a single nucleolar organizing chromosome. The latter indicates that sister chromatids might harbor various numbers of rRNA gene copies, and that the genes might be unequally distributed between the two blastomeres during the first cleavage mitosis.
The first prion-like protein doppel, officially designed as prion protein dublet, does not seem to be needed for prion disease progression, whereas its physiological function seems to be related to male fertility. Its expression is primarily detected in the male genital tract, and Prnd-inactivated male mice are sterile. We investigated the location of Doppel in the testis of various species of mammal to determine its physiological function. Doppel is expressed early during ontogenesis, and is found in both germ cells and Sertoli cells in mice, rats, boars, and humans. Doppel is permanently expressed in the Sertoli cells but at different levels according to species. Its expression in testicular germ cells was primarily detected in spermatids, with a transient presence in the acrosome. These data suggest that Doppel may play a physiological role in acrosome biogenesis and may be of use in studies of patients suffering from idiopathic infertility.
Toll-like receptors (TLRs) are a family of pattern recognition receptors that recognize distinct molecular patterns shared by a broad range of pathogens, including nucleic acids. TLR9, for example, recognizes unmethylated deoxycytidyl-phosphate-deoxyguanosine (CpG) dinucleotides that are common in bacterial and some viral nucleic acids, whereas TLR3 recognizes double-stranded RNA and TLR7/TLR8 recognize single-stranded RNA, which would be found during viral replication. We were interested in whether TLR3, TLR9, and the related TLR9 family members TLR7/TLR8 might play a role in antiviral immune defense at the mucosal epithelial surface of the lower female reproductive tract. We studied cervical epithelial cells and found that they expressed mRNA for TLR3, TLR9, and TLR7, but had only a weak signal for TLR8. For TLR3 and TLR9, protein expression was confirmed to be intracellular. When epithelial cells were incubated with polyinosine-polycytidylic acid and CpG oligodinucleotides, we observed dose-dependent upregulation of interleukin-8 secretion. However, cells failed to respond to a variety of TLR7/TLR8 ligands. Polyinosine-polycytidylic acid also induced production of interferon-beta and chemokine C-C motif ligand 5, whereas CpG DNA did not. Cell activation by synthetic oligodinucleotides occurred only in response to the B class sequences, and required the presence of human-specific CpG motifs. In addition, responses to CpG oligodinucleotides could be inhibited by chloroquine, demonstrating the requirement for endosomal maturation. These data demonstrate that mucosal epithelial cells express functional TLR3 and TLR9, and suggest that these receptors play a role in regulating the proinflammatory cytokine and antiviral environment of the lower female reproductive tract during infection with viral and bacterial pathogens.
Ovariectomized (OVX) ewes were assigned to receive vehicle, progesterone (P4, 0.9-g controlled internal drug release vaginal implants), estradiol-17β (E2, 5 μg/kg bolus 6 μg kg−1 day−1), or P4 E2 for 10 days (n = 3/group). Uterine artery endothelial proteins were mechanically isolated on Day 10. The samples were used for protein expression profiling by the Ciphergen Proteinchip system and immunoblotting analysis of endothelial nitric oxide synthase (NOS3, also termed eNOS) and caveolin 1. Uterine artery rings were cut and analyzed by immunohistochemistry to localize NOS3 and caveolin 1 expression. With the use of the IMAC3 protein chip with loading as little as 2 μg protein/sample, many protein peaks could be detected. Compared to vehicle controls, a ∼133.1-kDa protein was identified to be upregulated by 2- to 4-fold in OVX ewes receiving E2, P4, and their combination, whereas a ∼22.6-kDa protein was downregulated by 2- to 4-fold in OVX ewes receiving E2 and E2/P4, but not P4 treatments. Western blot analysis revealed that E2, P4, and their combination all increased NOS3 protein, whereas E2 and its combination with P4, but not P4 alone, downregulated caveolin 1 expression. Immunohistochemical analysis revealed that NOS3 was mainly localized in the endothelium and upregulated by E2, whereas caveolin 1 was localized in both endothelium and smooth muscle and downregulated by E2. Thus, our data demonstrate that uterine artery endothelial NOS3 and caveolin 1 are regulated reciprocally by estrogen replacement therapy. In keeping with the facts that E2, but not P4, causes uterine vasodilatation and that E2 and P4 increase NOS3 expression, but only E2 decrease caveolin 1 expression, our current study suggests that both increased NOS3 expression and decreased caveolin 1 expression are needed to facilitate estrogen-induced uterine vasodilatation.
In the present study, we determined the contribution of myometrial hyperplasia, hypertrophy, and apoptosis to uterine growth during pregnancy. The changes in two endogenous markers of cell replication, proliferating cell nuclear antigen (PCNA) protein expression and bromodeoxyuridine (BrdU) incorporation, were studied. Myocyte hypertrophy was assessed by measuring the protein:DNA ratio. The expression levels of antiapoptotic regulatory proteins (BCL2 and BCL2L1) and enzymes involved in apoptosis (caspases 3, 6, 7, 9, and 10) were assessed by immunoblotting throughout gestation and postpartum. Myometrial cell apoptosis was determined by TUNEL staining and DNA fragmentation assays. Both BrdU incorporation and PCNA labeling were elevated in early pregnant myometrium and decreased dramatically after midgestation, with a simultaneous increase in cellular hypertrophy. Levels of BCL2 were high during early gestation, followed by significantly elevated levels of BCL2L1 at midgestation. The expression of caspase 10 in myometrial samples declined from a high nonpregnant level to a complete loss at early gestation. The cleaved forms of caspases (CC) 3, 6, 7, and 9, as well as poly(ADP-ribose)polymerase-1, were undetectable in the myometrial samples at early or late gestation but were transiently elevated at midgestation. Immunohistochemical staining of CC3 confirmed the activation of the caspase cascade, but TUNEL-positive staining or the increase in DNA fragmentation was not detected. Collectively, two distinct phases of myometrial growth were observed: myocyte hyperplasia associated with an increase in antiapoptotic proteins during the first half of gestation, and cellular hypertrophy during the second part of gestation. The transition between these phases was associated with transient activation of the caspase cascade that triggered the differentiation of uterine smooth muscle.
Experiments were conducted using female golden hamsters to identify the presence of nerve growth factor (NGF) and its receptors NTRK1 and TNFRSF1B in the uteri of female animals and regulation on their expression by estrogen and progesterone. NGF and its receptor NTRK1 were immunolocalized to luminal epithelial cells, glandular cells, and stromal cells. TNFRSF1B was immunolocalized in luminal epithelial and glandular cells, with no staining found in stromal cells of the uterine horns of normal cyclic golden hamsters. Strong immunostaining of NGF and its receptors NTRK1 and TNFRSF1B was observed in uteri on the day of proestrus as compared to the other stages of the estrous cycle. Results of immunoblot analysis of NGF revealed that there was a positive correlation between uterine NGF expression and plasma concentrations of estradiol-17β. To clarify the effects of estrogen and progesterone on NGF, NTRK1, and TNFRSF1B expression, adult female golden hamsters were ovariectomized and treated with estradiol-17β and/or progesterone. Immunoblot analysis and immunohistochemistry indicated that estradiol-17β stimulated expression of NGF and its two receptors in the uterus. Treatment with progesterone also increased NGF and NTRK1 expression in the uterus. However, no additive effect of these steroids on expression of NGF and its receptors was observed. Changes in uterine weights induced by estradiol-17β and/or progesterone showed the same profile with that of NGF, suggesting that a proliferative act of NGF may be involved in uterine growth. These results suggest that NGF may play important roles in action of steroids on uterine function.
To elucidate the involvement of aromatase in sex reversal, the gilthead seabream ovarian P450 aromatase (cyp19a1a) cDNA and its 5′-flanking region were isolated and characterized. Northern blot analysis revealed that only one cyp19a1a transcript (2.0 kb) is expressed in the ovary. Four cAMP-responsive elements were identified at the 5′-flanking region of seabream cyp19a1a indicating a high potential to respond to gonadotropin signaling. Studying the seasonal profile, two expression peaks of cyp19a1a transcripts in the ovarian tissues were found in July (about 15000 copies/ng total RNA) for ambisexual fish and in December (about 12000 copies/ng total RNA) for spawning females. Starting from September, transcript levels of cyp19a1a in the ovarian portions of the male-developing gonads gradually decreased. Furthermore, the ovarian portions of the female gonads expressed cyp19a1a at a significantly higher level than the ovarian portions of the male gonads after November. Taken together with levels of plasma estradiol in reversing females being significantly higher than those in developing males, the above results reinforce the importance of cyp19a1a in sex reversal. In vitro exposure of ovarian fragments to gonadotropins (hCG) at 1, 10, and 100 IU/ml significantly (P < 0.05) upregulated cyp19a1a expression. Additionally, expression of cyp19a1a displayed a stronger and significant correlation with the transcript expression of ovarian Lh receptor rather than Fsh receptor during the ambisexual stage. Our results indicate that the differential expression of cyp19a1a gene is associated with sex reversal and that gonadotropin signals (particularly Lh) may serve as major players in regulating the expression of cyp19a1a during the process of sex reversal.
This study investigated the effects on fertilized embryo development of somatic cytoplasm after its injection into intact mouse oocytes. Mature oocytes collected from female B6D2F1 mice were injected with cumulus cell cytoplasm of different volumes and from different mouse strains (B6D2F1, ICR, and C57BL/6), or with embryonic cytoplasm. After culture for 1 h, B6D2F1 sperm were injected into those oocytes by intracytoplasmic sperm injection (ICSI). The oocytes were examined for pre- and postimplantation developmental competence. Increases in the volume of the somatic cytoplasm from onefold to fourfold resulted in an impairment of blastocyst development and full-term development (28% and 7%, respectively, vs. 96% and 63%, respectively, in the control group; P < 0.01). An increase in the volume of somatic cytoplasm reduced the expression of POU5F1 (more commonly known as OCT4) in expanded blastocysts. The frequency of embryos that developed to the blastocyst stage did not differ when B6D2F1 or ICR somatic cytoplasm was injected, but injection of C57BL/6 somatic cytoplasm induced a two-cell block in embryo development. Injection of the cytoplasm from fertilized embryos did not reduce the frequency of embryos attaining full-term development. Interestingly, somatic cytoplasm significantly increased the placental weight of ICSI embryos, even the injection of onefold cytoplasm (0.20 ± 0.02 [n = 32] vs. 0.12 ± 0.02 in the control group [n = 87]; P < 0.01). These findings indicate that the injection of somatic cytoplasm into oocytes before ICSI causes a decrease in preimplantation development, clearly impairs full-term development, and causes placental overgrowth in fertilized embryos. To our knowledge, placental overgrowth phenotypes are only caused by interspecies hybridization and cloning, and in genetically modified mice. Here, we report for the first time that somatic cytoplasm causes abnormal placentas in fertilized embryos. This study suggests that somatic cell cytoplasmic material is one cause of the low rate of full-term development in cloned mammals.
Phospholipase A2 (PLA2) enzymes catalyze the rate-limiting step in eicosanoid production by liberating arachidonic acid from membrane phospholipids. There is limited information regarding the expression pattern and activity of uterine PLA2 enzymes during pregnancy. Polychlorinated biphenyls (PCBs) are a group of persistent environmental toxicants previously associated with decreased gestation length that are capable of activating PLA2. The purpose of the present study was to determine whether uterine sensitivity to PCB stimulation is dependent on PLA2 expression, comparing rat uterine PLA2 expression in Gestational Day (gd) 10 versus gd20. Western blot analysis revealed a significant increase in the expression of calcium-dependent PLA2G2A and a 50-kDa protein immunoreactive to calcium-independent PLA2G6 antibody in gd20 compared to gd10 rat uterine tissue. The increased expression of the 50-kDa PLA2G6 was associated with a gestational age-related increase in endometrial calcium-independent PLA2 activity that was sensitive to inhibition by bromoenol lactone (P < 0.05). Longitudinal uterine strips isolated from gd10 or gd20 rat were suspended in muscle baths to evaluate uterine contractions following exposure to the ortho substituted congener PCB 50. Exposure to 50 and 100 μM PCB 50 significantly increased the frequency of gd20, but not gd10, uteri compared to solvent (dimethyl sulfoxide) controls (P < 0.05). Pharmacologic inhibition of PLA2G6, but not PLA2G2A, attenuated PCB-induced stimulation of gd20 uterine contractions (P < 0.05). These data suggest that PCB 50 stimulates uterine contractions by activating endometrial PLA2G6. Furthermore, gestation age-related sensitivity to PCB is associated with an increase in the expression of a previously unidentified 50-kDa PLA2G6 in rat uterus.
Glucose concentration during cumulus-oocyte complex (COC) maturation influences several functions, including progression of oocyte meiosis, oocyte developmental competence, and cumulus mucification. Glucosamine (GlcN) is an alternative hexose substrate, specifically metabolized through the hexosamine biosynthesis pathway, which provides the intermediates for extracellular matrix formation during cumulus cell mucification. The aim of this study was to determine the influence of GlcN on meiotic progression and oocyte developmental competence following in vitro maturation (IVM). The presence of GlcN during bovine IVM did not affect the completion of nuclear maturation and early cleavage, but severely perturbed blastocyst development. This effect was subsequently shown to be dose-dependent and was also observed for porcine oocytes matured in vitro. Hexosamine biosynthesis upregulation using GlcN supplementation is well known to increase O-linked glycosylation of many intracellular signaling molecules, the best-characterized being the phosphoinositol-3-kinase (PI3K) signaling pathway. We observed extensive O-linked glycosylation in bovine cumulus cells, but not oocytes, following IVM in either the presence or the absence of GlcN. Inhibition of O-linked glycosylation significantly reversed the effect of GlcN-induced reduction in developmental competence, but inhibition of PI3K signaling had no effect. Our data are the first to link hexosamine biosynthesis, involved in cumulus cell mucification, to oocyte developmental competence during in vitro maturation.
The organization of membrane subdomains in mammalian sperm has recently generated controversy, with several reports describing widely differing localization patterns for the ganglioside GM1. Using the pentameric B subunit of cholera toxin (CTB), we found GM1 to be restricted to the plasma membrane overlying the acrosome in the heads of live murine sperm. Interestingly, CTB had minimal binding to live bovine and human sperm. To investigate whether this difference in GM1 localization was because of species differences or differences between collection from the epididymis (mouse) or an ejaculate (bull, human), we examined epididymal bovine and human sperm. We found that GM1 localized to the plasma membrane overlying the acrosome in sperm from these species. To determine whether some component of seminal plasma was interfering with the ability of CTB to access GM1, we incubated epididymal mouse sperm with fluid from murine seminal vesicles and epididymal bull sperm with bovine seminal plasma. This treatment largely abolished the ability of the CTB to bind to GM1, producing a fluorescence pattern similar to that reported for the human. The most abundant seminal plasma protein, PDC-109, was not responsible for this loss. As demonstration that the seminal plasma was not removing GM1, sperm exposed to seminal plasma were fixed before CTB addition, and again displayed fluorescence over the acrosome. These observations reconcile inconsistencies reported for the localization of GM1 in sperm of different species, and provide evidence for the segregation of GM1 to a stable subdomain in the plasma membrane overlying the acrosome.
Human embryo implantation is a complex process involving blastocyst attachment to the endometrial epithelium and subsequent trophoblast invasion of the decidua. Chemokines, critical regulators of leukocyte migration, are abundant in endometrial epithelial and decidual cells at this time. We hypothesized that endometrial chemokines stimulate trophoblast invasion. Chemokine receptors CX3CR1 and CCR1 were immunolocalized in human first-trimester implantation sites, specifically to endovascular extravillous trophoblasts, but not to the invading interstitial EVTs (iEVTs), with weak staining also on syncytium. CCR3 was localized to invading iEVTs and to microvilli on the syncytial surface. Expression of CX3CL1 (fractalkine), CCL7 (MCP-3), and their receptors (CX3CR1, CCR1, CCR2, CCR3, and CCR5) mRNA was examined in cellular components of the maternal-embryonic interface by RT-PCR. Both chemokines were abundant in entire endometrium and placenta, endometrial cells (primary cultures and HES, a human endometrial epithelial cell line) and trophoblast cell lines (JEG-3, ACIM-88, and ACIM-32). Chemokine receptor mRNA was expressed by placenta and trophoblast cell lines: CCR1 by all trophoblast cell types, whereas CCR2, CCR3, and CX3CR1 were more variable. CX3CR1, CCR1, CCR2, and CCR5 were also expressed by endometrial cells. Migration assays used the trophoblast cell line most closely resembling extravillous cytotrophoblast (AC1M-88). Trophoblast migration occurred in response to CX3CL1, CCL14, and CCL4, but not CCL7. Endometrial cell-conditioned media also stimulated trophoblast migration; this was attenuated by neutralizing antibodies to CX3CL1 and CCL4. Thus, chemokines are expressed by maternal and embryonic cells during implantation, whereas corresponding receptors are on trophoblast cells. Promotion of trophoblast migration by chemokines and endometrial cell conditioned medium indicates an important involvement of chemokines in maternal-fetal communication.
Aurora kinase B (AURKB) is a chromosomal passenger protein that is essential for a number of processes during mitosis. Its activity is regulated by association with two other passenger proteins, INCENP and Survivin, and by phosphorylation on Thr 232. In this study, we examine expression and phosphorylation on Thr-232 of AURKB during meiotic maturation of pig oocytes in correlation with histone H3 phosphorylation and chromosome condensation. We show that histone H3 phosphorylation on Ser-10, but not on Ser-28, correlates with progressive chromosome condensation during oocyte maturation; Ser-10 phosphorylation starts around the time of the breakdown of the nuclear envelope, with the maximal activity in metaphase I, whereas Ser-28 phosphorylation does not significantly change in maturing oocytes. Treatment of oocytes with 50 μM butyrolactone I (BL-I), an inhibitor of cyclin-dependent kinases, or cycloheximide (10 μg/ml), inhibitor of proteosynthesis, results in a block of oocytes in the germinal vesicle stage, when nuclear membrane remains intact; however, condensed chromosome fibers or highly condensed chromosome bivalents can be seen in the nucleoplasm of BL-I- or cycloheximide-treated oocytes, respectively. In these treated oocytes, no or only very weak AURKB activity and phosphorylation of histone H3 on Ser-10 can be detected after 27 h of treatment, whereas phosphorylation on Ser-28 is not influenced. These results suggest that AURKB activity and Ser-10 phosphorylation of histone H3 are not required for chromosome condensation in pig oocytes, but might be required for further processing of chromosomes during meiosis.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10–16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.
Sperm adhesion molecule 1 (SPAM1), is a glycosyl phoshatidylinositol-linked sperm membrane protein that is dually expressed in testis and epididymis. Epididymal SPAM1 is secreted in all three regions of the epididymis in all mammalian species studied, including humans. It shares the same molecular mass and neutral hyaluronidase activity as the testicular and sperm isoforms that are responsible for the penetration of the cumulus during fertilization. Using wild-type (W/T) sperm and those from mice homozygous for either a null (Spam1−/−) or mutant Spam1 allele, which results in decreased mRNA and protein, we demonstrate that sperm binding of epididymal SPAM1 occurs in vitro after exposure to W/T sperm-free epididymal luminal fluid (ELF). Binding or adsorption that occurred after incubation at room temperature or 32°C was detected immunocytochemically and confirmed quantitatively using flow cytometry. The localization of SPAM1 on the plasma membrane of Spam1-null sperm mimicked that seen in the W/T. The remarkable increase in binding on W/T caudal sperm indicates that they are not fully saturated with SPAM1 during storage, and suggests that uptake of epididymal SPAM1 in vivo augments testicular SPAM1. Spam1-null sperm exposed to W/T ELF for 45–60 min during in vitro capacitation to allow epididymal SPAM1 binding showed a highly significant (P < 0.001) increase in cumulus penetration after 6–7 h compared to those incubated in ELF from null males. Similarly, the number of cumulus-free oocytes was also highly significantly greater (P < 0.001) than that for sperm capacitated in W/T SPAM1-antibody-inhibited ELF. Because epididymal SPAM1 uptake significantly increases cumulus penetration, we conclude that it is a marker of sperm maturation.
GnRH neuronal function is regulated by gonadal hormone feedback. In males, testosterone can act directly or be converted to either dihydrotestosterone (DHT) or estradiol (E2). We examined central steroid feedback by recording firing of green fluorescent protein (GFP)-identified GnRH neurons in brain slices from male mice that were intact, castrated, or castrated and treated with implants containing DHT, E2, or E2 DHT. Castration increased LH levels. DHT or E2 alone partially suppressed LH, whereas E2 DHT reduced LH to intact levels. Despite the inhibitory actions on LH, the combination of E2 DHT increased GnRH neuron activity relative to other treatments, reflected in mean firing rate, amplitude of peaks in firing rate, and area under the curve of firing rate vs. time. Cluster8 was used to identify peaks in firing activity that may be correlated with hormone release. Castration increased the frequency of peaks in firing rate. Treatment with DHT failed to reduce frequency of these peaks. In contrast, treatment with E2 reduced peak frequency to intact levels. The frequency of peaks in firing rate was intermediate in animals treated with E2 DHT, perhaps suggesting the activating effects of this combination partially counteracts the inhibitory actions of E2. These data indicate that E2 mediates central negative feedback in males primarily by affecting the pattern of GnRH neuron activity, and that androgens combined with estrogens have a central activating effect on GnRH neurons. The negative feedback induced by E2 DHT to restore LH to intact levels may mask an excitatory central effect of this combination.
The first activating mutation of the FSH receptor (FSHR*D567G) was identified in a gonadotropin-deficient hypophysectomized man who exhibited persistent spermatogenesis and fertility with only androgen replacement. We have determined the ability of FSHR* activity to maintain spermatogenesis and/or steroidogenesis during gonadotropin and androgen deprivation in mature transgenic FSHR* mice (Tg(Abpa-FSHR*D567G)1Cmal), hereafter referred to as Tg-FSHR* mice. Testes of untreated adult Tg-FSHR* males were equivalent in weight to nontransgenic controls but exhibited increased total Sertoli cell (24%) and spermatogonia (34%) numbers and nonsignificantly elevated spermatocyte-spermatid numbers (13%–17%). During sustained GNRH1 agonist treatment that markedly reduced (96%–98%) serum LH and testosterone (T) and decreased serum FSH (68%–72%), the testes of GNRH1 agonist-treated Tg-FSHR* mice remained significantly larger than treated nontransgenic controls. After 4 wk of gonadotropin suppression, Sertoli cell numbers were reduced in Tg-FSHR* testes to levels comparable with nontransgenic testes, whereas spermatogonia numbers were maintained at higher levels relative to nontransgenic testes. However, after 8 wk of GNRH1 agonist treatment, the total spermatogonia, spermatocyte, or postmeiotic spermatid numbers were reduced to equivalent levels in Tg-FSHR* and nontransgenic mice. FSHR* effects were further examined in gonadotropin-deficient hypogonadal Gnrh1hpg/Gnrh1hpg (Gnrh1−/−) mice during testicular regression following withdrawal of T after maximal T-stimulated spermatogenesis. After 6 wk of T withdrawal, spermatogonia, spermatocyte, and postmeiotic spermatid numbers in Tg-FSHR* Gnrh1−/− testes decreased to levels found in untreated Tg-FSHR* Gnrh1−/− testes. Basal serum T levels in untreated Tg-FSHR* Gnrh1−/− males were 2-fold higher than Gnrh1−/− controls, but following T treatment/withdrawal, serum T and epididymal weights declined to basal levels found in nontransgenic Gnrh1−/− mice. Therefore, FSHR* was unable to sustain circulating T or androgen-dependent epididymal size or postmeiotic spermatogenic development. We conclude that FSHR* activity enhances Sertoli and spermatogenic development in normal testes but has limited ability to maintain spermatogenesis during gonadotropin deficiency, in which the testicular response provided by the FSHR*D567G mutation resembled typical FSH-mediated but not steroidogenic activity.
The new peptide hormone insulin-like peptide 3 (INSL3) is a member of the insulin-relaxin family, yet, unlike insulin, it signals through a new G-protein coupled receptor, LGR8, distantly related to the receptors for LH and FSH. INSL3 is produced in large amounts by the Leydig cells of the testis in both fetal and adult mammals. Using a combination of mRNA analysis by RT-PCR, immunohistochemistry, ligand-binding, and/or bioactivity assays, the distribution of LGR8 expression was assessed in testicular tissues and cells and in the epididymis. There was consistent agreement that LGR8 was expressed in meiotic and particularly postmeiotic germ cells and in Leydig cells, though not in Sertoli or peritubular cells. Leydig cells appear to express only a low level of the LGR8 gene product; other transcripts may be present, representing nonfunctional products. Messenger RNA analysis suggested that LGR8 transcripts in germ cells represented mostly full-length forms. LGR8 mRNA was also expressed in the epididymis, though no function can yet be ascribed to this expression. Therefore, the INSL3/LGR8 system represents a further paracrine hormone-receptor system in the testis, which conveys information about Leydig cell status to germ cells, and possibly as part of an autocrine feedback loop.
The ability of sperm to fertilize the egg is primarily dependent on sperm motility and membrane integrity. Nitric oxide (NO) plays a decisive role in regulating multiple functions within the male reproductive system. The aim of the present study is to determine the mechanism by which l-arginine confers a protective action on spermatozoa obtained from the goat epididymis. NO is synthesized from l-arginine by the enzyme nitric oxide-synthase (NOS) present in spermatozoa. A possible participation of NO and NOS in arginine action has been suggested.
The placenta represents a critically important fetal-maternal interaction. Trophoblast migration and invasion into the uterine wall is a precisely controlled process and aberrations in these processes are implicated in diseases such as preeclampsia. Integrin-linked kinase (ILK) is a multifunctional, cytoplasmic, serine/threonine kinase that has been implicated in regulating processes such as cell proliferation, survival, migration, and invasion; yet the temporal and spatial pattern of expression of ILK in human chorionic villi and its role in early human placental development are completely unknown. We hypothesized that ILK would be expressed in trophoblast subtypes of human chorionic villi during early placental development and that it would regulate trophoblast migration. Immunoblot analysis revealed that ILK protein was highly detectable in placental tissue samples throughout gestation. In floating branches of chorionic villi, from 6 to 15 wk of gestation immunofluorescence analysis of ILK expression in placental tissue sections demonstrated that ILK was highly detectable in the cytoplasm and membranes of villous cytotrophoblast cells and in stromal mesenchyme, whereas it was barely detectable in the syncytiotrophoblast layer. In anchoring branches of villi, ILK was highly localized to plasma membranes of extravillous trophoblast cells. Transient expression of dominant negative E359K-ILK in the villous explant-derived trophoblast cell line HTR8-SVneo dramatically reduced migration into wounds compared to cells expressing wild-type ILK or empty vector. Therefore, our work has demonstrated that ILK is highly expressed in trophoblast subtypes of human chorionic villi during the first trimester of pregnancy and is a likely mediator of trophoblast migration during this period of development.
Mitochondrial dysfunction may be acquired or inherited by oocytes without detectable morphological abnormalities. This pathology may account for some examples of unexplained pregnancy loss in women following transfer of morphologically normal in vitro fertilization (IVF) embryos. The present study was intended to determine whether sublethal mitochondrial injury in mouse oocytes before IVF negatively affects pre- and postimplantation development, and to further define the latency of developmental compromise in relation to aberrant mitochondrial metabolism. Mature mouse oocytes were loaded with the mitochondrial fluorophore rhodamine-123 and photosensitized for 20 sec, a duration previously found to permit preimplantation embryo development to the blastocyst stage and so deemed “sublethal.” This treatment resulted in some aberrations in cytoplasmic patterning of organelles, but did not inhibit zygote mitochondrial metabolism. Blastocyst development following IVF was not signficantly inhibited following sublethal oocyte photosensitization; however, a decrease in trophectoderm cell numbers was observed relative to untreated controls. Following intrauterine transfer, blastocysts derived from sublethally photosensitized oocytes implanted but later aborted at a higher rate, formed fetuses with lower average weights, and, in rare cases, formed abnormal fetuses relative to controls. Photosensitization for more prolonged durations resulted in failed fertilization (2 min) and rapid oocyte degeneration (10 min). Therefore, photosensitization duration and the consequent degree of mitochondrial dysfunction are negatively related to the onset of developmental compromise. Acquired low-level mitochondrial injury is heritable by the resultant embryos and can cause postimplantation developmental compromise that may be relevant to some clinically observed outcomes following human assisted reproduction strategies, including reduced birth weights for gestational age. Future strategies for the detection and prevention of mitochondrial dysfunction may assist in improving outcomes for some clinically infertile women.
Sexually dimorphic differentiation of gonads is accomplished through balanced interactions between positive and negative regulators. One of the earliest features of gonadal differentiation is the divergent patterning of the vasculature. A male-specific coelomic vessel develops on the anterior to posterior of the XY gonad, whereas this vessel is absent in XX gonads. It is postulated that the testis-determining gene Sry controls formation of the coelomic vessel, but the exact molecular mechanism remains unknown. Here we reveal a novel role for inhibin beta B in establishing sex-specific gonad vasculature. In the testis, inhibin beta B contributes to proper formation of the coelomic vessel, a male-specific artery critical for testis development and, later in development, hormone transportation. On the other hand, in the ovary, inhibin beta B is repressed by WNT4 and its downstream target follistatin, leading to the absence of the coelomic vessel. When either Wnt4 or follistatin was inactivated, the coelomic vessel appeared ectopically in the XX ovary. However, when inhibin beta B was also removed in either the Wnt4-null or follistatin-null background, normal ovarian development was restored and no coelomic vessel was found. Our results indicate that the sex-specific formation of the coelomic vessel is established by positive components in the testis as well as an antagonizing pathway from the ovary. Inhibin beta B is strategically positioned at the intersection of these opposing pathways.
Cysteine-rich secretory proteins (CRISPs) are present in a diverse population of organisms and are defined by 16 conserved cysteine residues spanning a plant pathogenesis related-1 and a C-terminal cysteine-rich domain. To date, the diversification of mammalian CRISPs is evidenced by the existence of two, three, and four paralogous genes in the rat, human, and mouse, respectively. The current study identifies a third rat Crisp paralog we term Crisp4. The gene for Crisp4 is on rat chromosome 9 within 1 Mb of both the Crisp1 and Crisp2 genes. The full-length transcript for this gene was cloned from rat epididymal RNA and encodes a protein that shares 69% and 91% similarity with human CRISP1 and mouse CRISP4, respectively. Expression of rat Crisp4 is most abundant in the epididymis, with the highest levels of transcription observed in the caput and corpus epididymis. In contrast, rat CRISP4 protein is most abundant in the corpus and cauda regions of the epididymis. Rat CRISP4 protein is also present in caudal sperm extracts, appearing as a detergent-soluble form at the predicted MWR (26 kDa). Our data identify rat Crisp4 as the true ortholog to human CRISP1 and mouse Crisp4, and demonstrate its interaction with spermatozoa in the epididymis.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere