BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The equatorial segment of the acrosome underlies the domain of the sperm that fuses with the egg membrane during fertilization. Equatorial segment protein (ESP), a novel 349-amino acid concanavalin-A-binding protein encoded by a two-exon gene (SP-ESP) located on chromosome 15 at q22, has been localized to the equatorial segment of ejaculated human sperm. Light microscopic immunofluorescent observations revealed that during acrosome biogenesis ESP first appears in the nascent acrosomal vesicle in early round spermatids and subsequently segregates to the periphery of the expanding acrosomal vesicle, thereby defining a peripheral equatorial segment compartment within flattened acrosomal vesicles and in the acrosomes of early and late cap phase, elongating, and mature spermatids. Electron microscopic examination revealed that ESP segregates to an electron-lucent subdomain of the condensing acrosomal matrix in Golgi phase round spermatids and persists in a similar electron-lucent subdomain within cap phase spermatids. Subsequently, ESP was localized to electron-dense regions of the equatorial segment and the expanded equatorial bulb in elongating spermatids and mature sperm. ESP is the earliest known protein to be recognized as a marker for the specification of the equatorial segment, and it allows this region to be traced through all phases of acrosomal biogenesis. Based on these observations, we propose a new model of acrosome biogenesis in which the equatorial segment is defined as a discrete domain within the acrosomal vesicle as early as the Golgi phase of acrosome biogenesis.
Abnormal spermatogenesis in men with Y-chromosome microdeletions suggests that genes important for spermatogenesis have been removed from these individuals. VCY2 is a testis-specific gene that locates in the most frequently deleted azoospermia factor c region in the Y chromosome. We have raised an antiserum to VCY2 and used it to characterize the localization of VCY2 in human testis. Using Western blot analysis, the affinity-purified polyclonal VCY2 antibody gave a single specific band of approximately 14 kDa in size, corresponding to the expected size of VCY2 in all the collected human testicular biopsy specimens with normal spermatogenesis. Immunohistochemical analyses showed that VCY2 localized to the nuclei of spermatogonia, spermatocytes, and round spermatids, except elongated spermatids. At the ultrastructural level, VCY2 expression was found in the nucleus of human ejaculated spermatozoa. To determine the possible relationship of VCY2 with the pathogenesis of male infertility, we examined a group of infertile men with and without Y-chromosome microdeletions and with known testicular pathology using VCY2 antibody. VCY2 was weakly expressed at the spermatogonia and immunonegative in spermatocytes and round spermatids in testicular biopsy specimens with maturation arrest or hypospermatogenesis. The specific localization of the protein in germ cell nuclei indicates that VCY2 is likely to function in male germ cell development. The impaired expression of VCY2 in infertile men suggests its involvement in the pathogenesis of male infertility.
Although the apoptotic cell death process in the prostate is known to be under the control of androgens, the key components targeted by the hormones remain to be investigated. In the present study, we report that the expression and the activation of the effector caspases-3 and -6 are under the control of testosterone in the adult rat ventral prostate. By using a model of adult castrated rats supplemented (or not) with androgens, we observed an increase in caspase-3 (3-fold) and -6 (4-fold) mRNA (P < 0.0001) and procaspase-3 (32 kDa) and -6 (34 kDa) protein levels by 3 days and 1 wk, respectively, after castration in the ventral prostate. Castration also induced an increase in the activation of the procaspases in the ventral prostate, since active (cleaved) caspase-3 (17 kDa) and -6 (12 kDa) forms reached maximal levels by 1 wk after castration. Testosterone administration to castrated adult rats prevented the increase in caspase-3 and -6 mRNA as well as in procaspase-3 and -6 and active caspase-3 and -6 levels in the ventral prostate lobe. In contrast, no changes were observed in the initiator caspase-8 mRNA and protein (procaspase and active) levels after castration. No changes in caspase-3 and -6 expression and activation were observed in the dorsolateral and anterior prostate lobes after castration and testosterone supplementation. Together, the present results show that testosterone inhibits apoptosis in the ventral prostate by potentially targeting the transcriptional activity of effector caspase-3 and -6 genes (but not of casapase-8 gene) as well as the cleavage of procaspase-3 and -6 into active enzymes.
We have previously shown that the type I diabetic condition significantly alters meiotic regulation in mouse oocytes. In the present study, possible physiological deficiencies underlying such meiotic dysfunction were examined in oocyte-cumulus cell complexes (OCC) from type I diabetic mice. Whereas the diabetic condition did not affect glycolysis or the tricarboxylic acid cycle, the increased flux of glucose through the pentose phosphate pathway in response to FSH treatment was suppressed. De novo purine synthesis was also compromised, and ATP levels were reduced in freshly isolated OCC. Additionally, diabetes resulted in a reduction in FSH-mediated cAMP synthesis. The responsiveness of the oocyte to cAMP was also affected; fewer oocytes were induced to resume maturation after a stimulatory pulse with cAMP analogs. Meiotic induction triggered by FSH was significantly reduced, but that stimulated by phorbol ester or epidermal growth factor was affected to a much lesser extent. In addition to metabolic deficiencies, the cell-cell communication between the oocyte and the cumulus cells was reduced in diabetic mice as determined by coupling assays. Thus, numerous physiological parameters are affected by type I diabetes, and these changes may collectively contribute to altered meiotic regulation.
Recent studies indicate that trichloroethylene (TCE) may be a male reproductive toxicant. It is metabolized by conjugation with glutathione and cytochrome P450-dependent oxidation. Reactive metabolites produced along both pathways are capable of forming protein adducts and are thought to be involved in TCE-induced liver and kidney damage. Similarly, in situ bioactivation of TCE and subsequent binding of metabolites may be one mechanism by which TCE acts as a reproductive toxicant. Cysteine-conjugate β-lyase (β-lyase) bioactivates the TCE metabolite dichlorovinyl cysteine (DCVC) to a reactive intermediate that is capable of binding cellular macromolecules. In the present study, Western blot analysis indicated that the soluble form of β-lyase, but not the mitochondrial form, was present in the epididymis and efferent ducts. Both forms of β-lyase were detected in the kidney. When rats were dosed with DCVC, no protein adducts were detected in the epididymis or efferent ducts, although adducts were present in the proximal tubule of the kidney. Trichloroethylene can also be metabolized and form protein adducts through a cytochrome P450-mediated pathway. Western blot analysis detected the presence of cytochrome P450 2E1 (CYP2E1) in the efferent ducts. Immunoreactive proteins were localized to efferent duct and corpus epididymis epithelia. Metabolism of TCE was demonstrated in vitro using microsomes prepared from untreated rats. Metabolism was inhibited 77% when efferent duct microsomes were preincubated with an antibody to CYP2E1. Dichloroacetyl adducts were detected in epididymal and efferent duct microsomes exposed in vitro to TCE. Results from the present study indicate that the cytochrome P450-dependent formation of reactive intermediates and the subsequent covalent binding of cellular proteins may be involved in the male reproductive toxicity of TCE.
Embryonic mortality in cattle may occur because of inadequate inhibition of uterine secretion of prostaglandin (PG) F2α mediated by bovine interferon-τ (bIFN-τ). The objectives of the present study were to determine whether polyunsaturated fatty acids inhibit secretion of PGF2α from bovine endometrial cells induced by stimulating protein kinase C with phorbol 12,13 dibutyrate (PDBu) and to investigate possible mechanisms of action. Confluent cells were exposed for 24 h to 100 μM of linoleic, arachidonic (AA; C20:4, n-6), linolenic (LNA; C18:3, n-3), eicosapentaenoic (EPA; C20:5, n-3), or docosahexaenoic (DHA; C22:6, n-3) acid. After incubation, cells were washed and stimulated with PDBu. The EPA, DHA, and LNA attenuated secretion of PGF2α in response to PDBu. The EPA and DHA were more potent inhibitors than LNA. The EPA inhibited secretion of PGF2α at 6.25 μM. Secretion of PGF2α in response to PDBu decreased with increasing incubation time with EPA. Both bIFN-τ and EPA inhibited secretion of PGF2α, and their inhibitory effects were additive. The bIFN-τ, but not EPA, reduced the abundance of PG endoperoxide synthase-2 (PGHS-2) mRNA. Incubation with 100 μM EPA, DHA, or AA for 24 h followed by treatment with PDBu did not affect concentrations of PGHS-2 and phospholipase A2 proteins. The EPA and DHA inhibit secretion of PGF2α through a mechanism different from that of bIFN-τ. The effect of EPA on PGF2α secretion may be caused by competition with AA for PGHS-2 activity or reduction of PGHS-2 activity. The use of EPA and DHA to inhibit uterine secretion of PGF2α and to improve embryonic survival in cattle warrants further investigation.
The testicular haploid expressed gene (Theg) encodes for a novel ∼42.0-kDa nuclear protein, which is specifically expressed in spermatid cells. Its expression is upregulated by some unknown factor(s) from Sertoli cells. To elucidate the function of Theg protein and its role in spermatogenesis, we disrupted the Theg locus in mouse by homologous recombination. For functional dissection of the domain structure of the Theg protein, two different knockout approaches were undertaken. In the first knockout mouse (Th14), the C-terminal region of the Theg protein (amino acids 137–376) was deleted. Both Th14 /− and Th14−/− mice from genetic backgrounds of C57BL/6J × 129X1/SvJ hybrid and 129X1/SvJ inbred exhibited a normal phenotype and were fertile. The testes of Th14−/− mice were smaller than those of Th14 /− and Th14 / mice; however, the testicular morphology and the properties of sperm, including morphology and motility, from Th14−/− mice were similar to those of Th14 /− and Th14 / mice. These results demonstrate that the C-terminal region of Theg (amino acids 137–376) does not play an important role in progression of spermatogenesis. In the second knockout mouse (Th15), we deleted the N-terminal domain of the Theg protein, which resulted in complete loss of Theg transcripts. Both Th15 /− and Th15−/− mice from genetic backgrounds C57BL/6J × 129X1/SvJ hybrid, C3H/J congenic, and 129X1/SvJ inbred appeared normal and were fertile, with no gross abnormalities detected in testicular morphology or sperm properties. Our results from both knockout mouse model systems clearly illustrate that Theg is not essential for spermatogenesis in the mouse.
To identify genes developmentally regulated in the somatic cells of the testis, serial analysis of gene expression (SAGE) has been used to generate gene expression profiles from these cells in the fetal and adult mouse. To avoid germ cell transcripts, a fetal SAGE library was generated from germ cell-free fetal Wv/Wv mice, and an adult SAGE library was generated from adult testes depleted of germ cells with busulfan. The combined SAGE libraries contained 147 570 tags identifying 12 976 unique transcripts. Of these transcripts, 3607 were present in only the fetal library and 3941 were present in only the adult library. Most of the abundant differentially expressed tags in the adult testis library were from characterized genes, whereas 3′ rapid amplification of complementary ends was required to identify most differentially expressed tags in the fetal library. These fetal tags were mostly associated with uncharacterized UniGene clusters. These data provide a comprehensive and quantitative analysis of gene expression in the somatic cells of the fetal and adult testis (including unknown transcripts) and identify genes differentially expressed in these cells during testis development. These differentially regulated genes are likely to provide insight into mechanisms regulating testis function both during development and in the adult animal.
Sperm reservoirs have been found in the oviducts of several species of mammals. In cattle, the reservoir is formed by the binding of sperm to fucose-containing glycoconjugates on the surface of oviductal epithelial cells. A fucose-binding molecule was purified from sperm extracts and identified as PDC-109 (BSP-A1/A2), a protein that is secreted by the seminal vesicles and associates with the plasma membrane of sperm upon ejaculation. The objective of this study was to demonstrate that PDC-109 promotes bull sperm binding to oviductal epithelium. PDC-109 was purified from bovine seminal plasma, and polyclonal antibodies were produced in rabbits. The antibodies detected PDC-109 on ejaculated sperm by indirect immunofluorescence and Western blots of extracts, but PDC-109 was not detected on epididymal sperm. When added to epididymal sperm, purified PDC-109 was absorbed onto the plasma membrane overlying the acrosome, as demonstrated by indirect immunofluorescence and by labeling sperm directly with fluorescein-conjugated PDC-109. When added to explants of oviductal epithelium, significantly fewer epididymal sperm than ejaculated sperm became bound. Addition of PDC-109 to epididymal sperm increased epithelial binding to the level observed for ejaculated sperm. In addition, binding of ejaculated sperm to oviductal epithelium was inhibited by addition of excess soluble PDC-109. Ejaculated sperm lost the ability to bind to oviductal epithelium after heparin-induced capacitation, but treatment with PDC-109 restored binding. These results demonstrate that PDC-109 enables sperm to bind to oviductal epithelium and plays a major role in formation of the bovine oviductal sperm reservoir.
Erectile dysfunction (ED) is a common and debilitating pathological development that affects up to 75% of diabetic males. Neural stimulation is a crucial aspect of the normal erection process. Nerve injury causes ED and disrupts signaling of the Sonic hedgehog (Shh) cascade in the smooth muscle of the corpora cavernosa. Shh and targets of its signaling establish normal corpora cavernosal morphology during postnatal differentiation of the penis and regulate homeostasis in the adult. Interruption of the Shh cascade in the smooth muscle of the corpora cavernosa results in extensive changes in corpora cavernosal morphology that lead to ED. Our hypothesis is that the neuropathy observed in diabetics causes morphological changes in the corpora cavernosa of the penis that result in ED. Disruption of the Shh cascade may be involved in this process. We tested this hypothesis by examining morphological changes in the penis, altered gene and protein expression, apoptosis, and bromodeoxyuridine incorporation in the BB/WOR rat model of diabetes. Extensive smooth muscle and endothelial degradation was observed in the corpora cavernosa of diabetic penes. This degradation accompanied profound ED, significantly decreased Shh protein in the smooth muscle of the corpora cavernosa, and increased penile Shh RNA expression in the intact penis (nerves, corpora, and urethra). Localization and expression of Shh targets were also disrupted in the corpora cavernosa. Increasing our understanding of the molecular mechanisms that regulate Shh signaling may provide valuable insight into improving treatment options for diabetic impotence.
Oviduct-specific glycoprotein (OGP) displays estrus-associated regional and temporal differences in expression and localizes to the zona pellucida, perivitelline space, and plasma membrane of oviductal oocytes and embryos, suggesting that it may have a role in regulation of fertilization and/or early embryonic development. The aims of this study were to evaluate the effect of exogenous OGP on in vitro fertilization (IVF) and embryo development in the pig using a defined serum-free culture system. In vitro-matured porcine oocytes were incubated with homologous OGP (0, 1, 10, 20, and 40 μg/ml) for 3 h and then washed prior to IVF. Exposure of oocytes to 10 or 20 μg/ml porcine OGP (pOGP) significantly reduced the incidence of polyspermy compared with the control (P < 0.01) while maintaining high penetration rates. When oocytes, spermatozoa, or both were preincubated with 10 μg/ml pOGP prior to IVF, the incidence of polyspermy was similarly reduced (P < 0.01) by all three treatments without affecting penetration rates. The ability of spermatozoa to undergo calcium ionophore-induced acrosome reaction was similar with or without exposure to pOGP. However, significantly fewer spermatozoa (P < 0.01) bound to the zona pellucida when oocytes were preincubated with pOGP. To evaluate the effect of pOGP on embryo development, embryos were cultured in pOGP-supplemented medium for 48 h or 144 h. Both transient and continuous exposure to pOGP significantly enhanced cleavage and blastocyst formation rate compared with the control (P < 0.01). These data demonstrate that exposure of either in vitro-matured oocytes or spermatozoa to pOGP decreased polyspermy and spermatozoa binding while maintaining high penetration rates of pig oocytes fertilized in vitro. Furthermore, pOGP exerted an embryotrophic effect independent of effects demonstrated on spermatozoa and oocytes at fertilization.
The development of the corpus luteum (CL), which involves angiogenesis, is essential for the establishment of early pregnancy. We investigated the roles of the prostaglandin synthases cyclooxygenase (COX) I and COX-II in angiogenesis and progesterone production in the newly formed CL, using inhibitors of the COX enzymes and the gonadotropin-induced pseudopregnant rat as a model. Injection of indomethacin, a nonselective COX inhibitor, on the day of ovulation and the following day decreased serum levels of progesterone, as did injection of the selective COX-II inhibitor NS-398. In contrast, a selective COX-I inhibitor, SC-560, had no effect on serum progesterone concentrations. None of the inhibitors had any effect on the weight of the superovulated ovaries or on the synthesis of progesterone by cultured luteal cells. To determine whether changes in angiogenesis are responsible for the decrease in progesterone synthesis, we measured hemoglobin and CD34 levels in luteinized ovaries following injection of COX inhibitors and measured the relative frequency of cells positive for platelet-endothelial cell adhesion molecule as a specific marker for endothelial cells. All of these parameters were reduced by the COX-II inhibitors, suggesting that changes in the vasculature are responsible for the decrease in serum progesterone. Histological examination of ovarian corrosion casts indicated that NS-398 inhibited the establishment of luteal capillary vessels following the injection of hCG. The results are consistent with the hypothesis that the activity of COX-II is associated with the formation of functional CL via its stimulation of angiogenesis.
Uterine gland development or adenogenesis in the neonatal ovine uterus involves budding and tubulogenesis followed by coiling and branching morphogenesis of the glandular epithelium (GE) from the luminal epithelium (LE) between birth (Postnatal Day [PND] 0) and PND 56. Activins, which are members of the transforming growth factor β superfamily, and follistatin, an inhibitor of activins, regulate epithelial branching morphogenesis in other organs. The objective of the present study was to determine effects of postnatal age on expression of follistatin, inhibin α subunit, βA subunit, βB subunit, activin receptor (ActR) type IA, ActRIB, and ActRII in the developing ovine uterus. Ewes were ovariohysterectomized on PND 0, 7, 14, 21, 28, 35, 42, 49, or 56. The uterus was analyzed by in situ hybridization and immunohistochemistry. Neither inhibin α subunit mRNA or protein was detected in the neonatal uterus. Expression of βA and βB subunits was detected predominantly in the endometrial LE and GE and myometrium between PND 0 and PND 56. In all uterine cell types, ActRIA, ActRIB, and ActRII were expressed, with the highest levels observed in the endometrial LE and GE and myometrium. Between PND 0 and PND 14, follistatin was detected in all uterine cell types. However, between PND 21 and PND 56, follistatin was only detected in the stroma and myometrium and not in the developing GE. Collectively, the present results indicate that components of the activin-follistatin system are expressed in the developing neonatal ovine uterus and are potential regulators of endometrial gland morphogenesis.
Postnatal development of the ovine uterus between birth and Postnatal Day (PND) 56 involves differentiation of the endometrial glandular epithelium from the luminal epithelium followed by tubulogenesis and branching morphogenesis. Previous results indicated that ovariectomy of ewes at birth did not affect uterine growth or initial stages of endometrial gland genesis on PND 14 but did affect uterine growth after PND 28. Available evidence from a number of species supports the hypothesis that the ovary does not affect endometrial gland morphogenesis in the postnatal uterus. To test this hypothesis in our sheep model, ewes were assigned at birth to a sham surgery as a control or bilateral ovariectomy (OVX) on PND 7. Uteri were removed and weighed on PND 56. Ovariectomy did not affect circulating levels of estradiol-17β. Uterine weight was 52% lower in OVX ewes. Histomorphological analyses indicated that the thickness of the endometrium and myometrium, total number of endometrial glands, and endometrial gland density in the stratum spongiosum stroma was reduced in uteri of OVX ewes. In contrast, the number of superficial ductal gland invaginations and gland density in the stratum compactum stroma was not affected by ovariectomy. The uteri of OVX ewes contained lower levels of βA subunit, activin receptor (ActR) type IA, ActRIB, and follistatin protein expression but higher levels of βB subunit. In the neonatal ovary, follistatin, inhibin α subunit, βA subunit, and βB subunit were expressed in antral follicles between PNDs 0 and 56. These results led to rejection of the hypothesis that the ovary does not influence endometrial adenogenesis. Rather, the ovary and, thus, an ovarian-derived factor regulates, in part, the coiling and branching morphogenetic stage of endometrial gland development after PND 14 and expression of specific components of the activin-follistatin system in the neonatal ovine uterus that appear to be important for that critical process.
Zygote arrest 1 (ZAR1) is an ovary-specific maternal factor that plays essential roles during the oocyte-to-embryo transition. In mice, the Zar1 mRNA is detected as a 1.4-kilobase (kb) transcript that is synthesized exclusively in growing oocytes. To further understand the functions of ZAR1, we have cloned the orthologous Zar1 cDNA and/or genes for mouse, rat, human, frog, zebrafish, and pufferfish. The entire mouse Zar1 gene and a related pseudogene span approximately 4.0 kb, contain four exons, and map to adjacent loci on mouse chromosome 5. The human ZAR1 orthologous gene similarly consists of four exons and resides on human chromosome 4p12, which is syntenic with the mouse Zar1 chromosomal locus. Rat (Rattus norvegicus) and pufferfish (Fugu rubripes) Zar1 genes were recognized by database mining and deduced protein alignment analysis. The rat Zar1 gene also maps to a region that is syntenic with the mouse Zar1 gene locus on rat chromosome 14. Frog (Xenopus laevis) and zebrafish (Danio rerio) Zar1 orthologs were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends analysis of ovarian mRNA. Unlike mouse and human, the frog Zar1 is detected in multiple tissues, including lung, muscle, and ovary. The Zar1 mRNA appears in the cytoplasm of oocytes and persists until the tailbud stage during frog embryogenesis. Mouse, rat, human, frog, zebrafish, and pufferfish Zar1 genes encode proteins of 361, 361, 424, 295, 329, and 320 amino acids, respectively, and share 50.8%–88.1% amino acid identity. Regions of the N-termini of these ZAR1 orthologs show high sequence identity among these various proteins. However, the C-terminal 103 amino acids of these proteins, encoded by exons 2–4, contain an atypical eight-cysteine Plant Homeo Domain motif and are highly conserved, sharing 80.6%–98.1% identity among these species. These findings suggest that the carboxyl-termini of these ZAR1 proteins contain an important functional domain that is conserved through vertebrate evolution and that may be necessary for normal female reproduction in the transition from oocyte to embryonic life.
The extracellular cAMP-adenosine pathway refers to the local production of adenosine mediated by cAMP egress into the extracellular space, conversion of cAMP to AMP by ectophosphodiesterase (PDE), and the metabolism of AMP to adenosine by ecto-5′-nucleotidase. The goal of this study was to assess whether the cAMP-adenosine pathway is expressed in oviduct cells. Studies were conducted in cultured bovine oviduct cells (mixed cultures of fibroblasts and epithelial cells, 1:1 ratio). Confluent monolayers of oviduct cells were exposed to cAMP (0.01–100 μmol/L) in the presence and absence of 3-isobutyl-1-methylxanthine (IBMX, 1 mmol/L, an inhibitor of both extracellular and intracellular PDE activity), 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX, 100 μmol/L, a xanthine that can inhibit extracellular or ecto-PDE activity at high concentrations), or α,β-methylene-adenosine-5′-diphosphate (AMPCP, 100 μmol/L, an ecto-5′-nucleotidase inhibitor) for 0–60 min. The medium was then sampled and assayed for AMP, adenosine, and inosine. Addition of exogenous cAMP to oviduct cells increased extracellular levels of AMP, adenosine, and inosine in a concentration- and time-dependent manner. This effect was attenuated by blockade of total (extracellular and intracellular) PDE activity (IBMX), ecto-PDE activity (DPSPX), or ecto-5′-nucleotidase (AMPCP). The functional relevance of the cAMP-adenosine pathway is supported by the findings that treatment with adenylyl cyclase stimulants (forskolin plus isoproterenol) resulted in the egress of cAMP (97% extracellular) into the extracellular space and its conversion into adenosine. The extracellular cAMP-adenosine pathway exists in oviduct cells and may play an important role in regulating the biology and physiology of the oviduct. This pathway also may play a critical role in regulating sperm function, fertilization, and early embryo development.
Day length regulates the effects of gonadal steroids on gonadotropin secretion and behavior in seasonal breeders. To determine whether this influence of photoperiod results from changes in androgen receptor expression in Siberian hamster brain regions that regulate neuroendocrine function, androgen receptor immunostaining was examined in castrated animals given either no androgen replacement or one of three doses of testosterone (T) resulting in physiological serum concentrations. Half of the animals were housed under inhibitory photoperiod conditions, and immunostaining was quantified 11 days later. Measurement of serum gonadotropin and prolactin concentrations confirmed that androgen exerted graded effects on pituitary function but that the animals were killed before photoperiodic influences had fully developed. T significantly increased the numbers of androgen receptor-immunoreactive cells in every brain region examined. Photoperiod exerted no significant influence on androgen receptor-immunoreactive cell number in the arcuate nucleus, bed nucleus of the stria terminalis (BNST), medial preoptic nucleus, or in medial amygdala. An interaction between T and photoperiod was observed in the BNST and in the rostral and middle portions of the arcuate nucleus. Although increasing concentrations of T resulted in more intense cellular immunostaining in the BNST and arcuate, this effect was not influenced by day length. These results indicate that relatively short-duration (11 days) exposure to inhibitory photoperiod triggers localized and regionally specific changes in androgen receptor expression.
We studied temporal changes in the subcellular localization and levels of a moonlighting protein, phospholipid hydroperoxide glutathione peroxidase (PHGPx), in spermatogenic cells and mature sperm of the rat by immunofluorescence and immunoelectron microscopy. The PHGPx signals were detected in chromatoid bodies, clear nucleoplasm, mitochondria-associated material, mitochondrial aggregates, granulated bodies, and vesicles in residual bodies in addition to mitochondria, nuclei, and acrosomes as previously reported. Within mitochondria, PHGPx moved from the matrix to the outermost membrane region in step 19 spermatid, suggesting that this spatiotemporal change is synchronized with the functional change of PHGPx in mitochondria. In the nucleus, PHGPx was associated with electron-lucent spots and with the nuclear envelope, and PHGPx in the latter region increased after step 16. In early pachytene spermatids, PHGPx signals were noted in the nuclear material exhibiting a very similar density to chromatoid bodies and in the intermitochondrial cement, supporting the previous proposal that chromatoid bodies originate from the nucleus and intermitochondrial cement. The presence of PHGPx in such various compartments suggested versatile roles for this protein in spermatogenesis. Quantitative immunoelectron microscopic analysis also revealed dynamic changes in the labeling density of PHGPx in different subcellular compartments as follows: 1) Total cellular PHGPx rapidly increased after step 5 and reached a maximum at step 18; 2) mitochondrial labeling density increased after step 1 and achieved a maximum in steps 15–17; 3) nuclear labeling density suddenly increased in steps 12–14 to a maximum; 4) in cytoplasmic matrix, the density remained low in all steps; and 5) the labeling density in chromatoid bodies gradually decreased from pachytene spermatocytes to spermatids at step 18. These spatiotemporal changes in the level of PHGPx during the differentiation of spermatogenic cells to sperm infer that PHGPx plays a diverse and important biological role in spermatogenesis.
Development to blastocyst following nuclear transfer is dependent on the donor cell's ability to reprogram its genome to that of a zygote. This reprogramming step is inefficient and may be dependent on a number of factors, including chromatin organization. Trichostatin A (TSA; 0–5 μM), a histone deacetylase inhibitor, was used to increase histone acetylation and 5-aza-2′-deoxycytidine (5-aza-dC; 0–5 μM), a DNA methyl-transferase inhibitor, was used to decrease methylation of chromatin in donor cells in an attempt to improve their reprogrammability. Adult fibroblast cells treated with 1.25 or 5 μM TSA had elevated histone H3 acetylation compared to untreated controls. Cells treated with 0.3 μM 5-aza-dC had decreased methylation compared to untreated controls. Both drugs at 0.08 μM caused morphological changes of the donor cells. Development to blastocysts by embryos cloned from donor cells after 0.08 or 0.3 μM 5-aza-dC treatments was lower than in embryos cloned from untreated control cells (9.7% and 4.2%, respectively, vs. 25.1%), whereas 0.08 μM TSA treatment of donor cells increased blastocyst development compared to controls (35.1% vs. 25.1%). These results indicate that partial erasure of preexisting epigenetic marks of donor cells improves subsequent in vitro development of cloned embryos.
Cloning by somatic cell nuclear transfer requires that epigenetic information possessed by the donor nucleus be reprogrammed to an embryonic state. Little is known, however, about this remodeling process, including when it occurs, its efficiency, and how well epigenetic markings characteristic of normal development are maintained. Examining the fate of epigenetic information associated with imprinted genes during clonal development offers one means of addressing these questions. We examined transcript abundance, allele specificity of imprinted gene expression, and parental allele-specific DNA methylation in cloned mouse blastocysts. Striking disruptions were seen in total transcript abundance and allele specificity of expression for five imprinted genes. Only 4% of clones recapitulated a blastocyst mode of expression for all five genes. Cloned embryos also exhibited extensive loss of allele-specific DNA methylation at the imprinting control regions of the H19 and Snprn genes. Thus, epigenetic errors arise very early in clonal development in the majority of embryos, indicating that reprogramming is inefficient and that some epigenetic information may be lost.
Trophoblast cells are unique because they do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to interferon-γ (IFN-γ). The absence of MHC class II antigens on trophoblasts is thought to play a critical role in preventing rejection of the fetus by the maternal immune system. The inability of trophoblasts to express MHC class II genes is primarily due to lack of the class II transactivator (CIITA), a transacting factor that is required for constitutive and IFN-γ-inducible MHC class II transcription. We, therefore, investigated the silencing of CIITA expression in trophoblasts. In transient transfection assays, transcription from the IFN-γ-responsive CIITA type IV promoter was upregulated by IFN-γ in trophoblasts, which suggests that CIITA is silenced by an epigenetic mechanism in these cells. Polymerase chain reaction analysis demonstrated that the CIITA type IV promoter is methylated in both the human choriocarcinoma cell lines JEG-3 and Jar and in 2fTGH fibrosarcoma cells, which are IFN-γ inducible for CIITA. Conversely, methylation of the CIITA type IV promoter was not observed in human primary cytotrophoblasts isolated from term placentae or in mouse or rat trophoblast cell lines. Simultaneous treatment with IFN-γ and the histone deacetylase inhibitor trichostatin A weakly activated CIITA transcription in mouse trophoblasts. Stable hybrids between human choriocarcinoma and fibrosarcoma cells and between mouse trophoblasts and fibroblasts expressed CIITA following treatment with IFN-γ. These results suggest that silencing of CIITA transcription is recessive in trophoblasts and involves an epigenetic mechanism other than promoter methylation. The fact that CIITA is expressed in the stable hybrids implies that trophoblasts may be missing a factor that regulates chromatin structure at the CIITA promoter.
Kit and its ligand, Kitl, function in hematopoiesis, melanogenesis, and gametogenesis. In the testis, Kitl is expressed by Sertoli cells and Kit is expressed by spermatogonia and Leydig cells. Kit functions are mediated by receptor autophosphorylation and subsequent association with signaling molecules, including phosphoinositide (PI) 3-kinase. We previously characterized the reproductive consequences of blocking Kit-mediated PI 3-kinase activation in KitY719F/KitY719F knockin mutant male mice. Only gametogenesis was affected in these mice, and males are sterile because of a block in spermatogenesis during the spermatogonial stages. In the present study, we investigated effects of the KitY719F mutation on Leydig cell development and steroidogenic function. Although the seminiferous tubules in testes of mutant animals are depleted of germ cells, the testes contain normal numbers of Leydig cells and the Leydig cells in these animals appear to have undergone normal differentiation. Evaluation of steroidogenesis in mutant animals indicates that testosterone levels are not significantly reduced in the periphery but that LH levels are increased 5-fold, implying an impairment of steroidogenesis in the mutant animals. Therefore, a role for Kit signaling in steroidogenesis in Leydig cells was sought in vitro. Purified Leydig cells from C57Bl6/J male mice were incubated with Kitl, and testosterone production was measured. Kitl-stimulated testosterone production was 2-fold higher than that in untreated controls. The Kitl-mediated testosterone biosynthesis in Leydig cells is PI 3-kinase dependent. In vitro, Leydig cells from mutant mice were steroidogenically more competent in response to LH than were normal Leydig cells. In contrast, Kitl-mediated testosterone production in these cells was comparable to that in normal cells. Because LH levels in mutant males are elevated and LH is known to stimulate testosterone biosynthesis, we proposed a model in which serum testosterone levels are controlled by elevated LH secretion. Leydig cells of mutant males, unable to respond effectively to Kitl stimulation, initially produce lower levels of testosterone, reducing testosterone negative feedback on the hypothalamic-pituitary axis. The consequent secretion of additional LH, under this hypothesis, causes a restoration of normal levels of serum testosterone. Kitl, acting via PI 3-kinase, is a paracrine regulator of Leydig cell steroidogenic function in vivo.
Considerable evidence suggests that human immunodeficiency virus (HIV)-infected macrophages and/or lymphocytes may mediate sexual transmission of HIV. We and others have previously demonstrated that when vitally stained donor mouse lymphocytes or macrophages are placed in the vaginas of mice, some of the stained cells can later be found in the iliac lymph nodes. The aim of this study was to assess the extent of mononuclear cell trafficking from the vagina and to test the possibility that carrageenan formulation, a sulfated polysaccharide formulation containing 3% PDR98-15 carrageenan (PC-515; FMC Biopolymer, Rockland, ME), a vaginal microbicide, would prevent vaginal transmigration of macrophages. When supravitally stained mouse macrophages and T cells were inoculated into the vagina of recipient mice, discrete numbers of donor cells migrated to the recipient iliac and inguinal lymph nodes and spleen. When recipient mice were preinoculated with the carrageenan formulation, the number of macrophages in lymph nodes and spleen was reduced by >90%. In contrast, a methylcellulose formulation, which is believed to be inactive, did not significantly reduce migration to the lymphoid organs. Our findings suggest that the carrageenan formulation blocks cell trafficking of macrophages from vagina and that blocking does not result from cytotoxicity. Blocking cell trafficking may help to prevent sexual transmission of HIV.
Tachykinins may be involved in reproduction. A reverse transcription-polymerase chain reaction assay was used to analyze the expression of tachykinins and tachykinin receptors in different types of reproductive cells from mice. The preprotachykinin (PPT) genes, PPT-A, PPT-B and PPT-C, that encode substance P/neurokinin A, neurokinin B, and hemokinin-1, respectively, and the genes that encode the tachykinin NK1, NK2, and NK3 receptors were all expressed, at different levels, in the uterus of superovulated, unfertilized mice. The mRNA of neprilysin (NEP), the main enzyme involved in tachykinin metabolism, was also expressed in the uterus. Isolated cumulus granulosa cells expressed PPT-A, PPT-B, PPT-C, and NEP and low levels of the tachykinin NK1 and NK2 receptors. Mouse oocytes expressed PPT-A and -B mRNA transcripts. A low expression of the three tachykinin receptors was observed but PPT-C and NEP were undetectable. Two- and 8- to 16-cell mouse embryos expressed only a low-abundance transcript corresponding to the NK1 receptor. However, the mRNAs of PPT-B, PPT-C and NEP appeared in blastocyst-stage embryos. A low-abundance transcript corresponding to the NK2 receptor was the only target gene detected in mice sperm. Female mice or rats treated neonatally with capsaicin showed a reduced fertility. A reduction in litter size was observed in female rats treated in vivo with the tachykinin NK3 receptor antagonist SR 142801. These data show that tachykinins of both neuronal and nonneuronal origin are differentially expressed in various types of reproductive cells and may play a role in female reproductive function.
The ovary of the brushtail possum (Trichosurus vulpecula) secretes steroids; however, little is known about the identity of the steroidogenic cells in the ovary. The aim of the present study was to determine the identity of the ovarian cell types expressing mRNAs encoding proteins important for steroidogenesis and determine at what stage of follicular development they are expressed. The genes examined were those for steroidogenic factor-1 (SF-1), steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), 3β-hydroxysteroid dehydrogenase/Δ5,Δ4 isomerase (3βHSD), cytochrome P45017αhydroxylase (P45017αOH), and P450 aromatase (P450arom). None of the genes examined were expressed in oocytes at any stage of follicular development. SF-1 was expressed in granulosa cells from the type 2 or the primary stage of development and thereafter to the preovulatory stage. In addition, the theca interna of small and medium-size antral but not preovulatory follicles and the interstitial glands and corpora lutea expressed SF-1 mRNA. Granulosa cells of preantral and small to medium-size antral follicles were not capable of synthesizing steroids from cholesterol because they did not contain P450scc mRNA. However, granulosa cells of many of the small to medium-size antral follicles expressed P450arom and 3βHSD mRNA. The interstitial glands, theca interna, and corpus luteum expressed StAR, P450scc, 3βHSD, and P45017αOH mRNA, suggesting that these tissues are capable of synthesizing progestins and androgens. The corpus luteum expressed P450arom, indicating that this tissue also has the potential to secrete estrogens in this species.
Although the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 mg/kg on Gestation Days 11–17, and reproductive development in male offspring was evaluated. Prenatal administration of EDS compromised fetal testosterone (T) levels, compared with controls. EDS-exposed pups recovered their steroidogenic capacities after birth because T production by hCG-stimulated testis parenchyma from prepubertal male offspring was unchanged. However, prepubertal testes from prenatally exposed males contained seminiferous tubules (STs) devoid of germ cells, indicating a delay in spermatogenesis. In adults, some STs in exposed males still contained incomplete germ cell associations corroborating observed reductions in epididymal sperm reserves, fertility ratios, and litter size. Morphometry revealed an EDS-induced increase in interstitial area and a concomitant decrease in ST area, but stereology revealed an unexpected decrease in the number and size of the LCs per testis in exposed males. Paradoxically, there was an increase in both serum LH and T production by adult testis parenchyma, indicating that the LCs were hyperstimulated. These data demonstrate permanent lesions in LC development and spermatogenesis caused by prenatal exposure in mice. Thus, although adult mouse LCs are insensitive to EDS, EDS appears to have direct action on fetal LCs, resulting in abnormal testis development.
To generate an animal model that is suitable for the analysis of regulation and expression of human testis-specific protein, Y-encoded TSPY, a transgenic mouse line, TgTSPY9, harboring a complete structural human TSPY gene was generated. Fluorescence in situ hybridization and Southern analyses show that approximately 50 copies of the human TSPY transgene are integrated at a single chromosomal site that maps to the distal long arm of the Y chromosome. The transgene is correctly transcribed and spliced according to the human pattern and is mainly expressed in testicular tissue, with spermatogonia and early primary spermatocytes (leptotene and zygotene) as expressing germ cells. TSPY transgenic mice are phenotypically normal, and spermatogenesis is neither impaired nor enhanced by the human transgene. The present study shows that a human TSPY gene integrated into the mouse genome follows the human expression pattern although murine tspy had lost its function in rodent evolution millions of years ago.
The cyclic growth, differentiation, and cell death of endometrium represents the most dynamic example of steroid-driven tissue turnover in human adults. Key effectors in these processes—matrix metalloproteinases (MMPs) and their specific inhibitors (TIMPs)—are regulated by ovarian steroids and, locally, by cytokines. We used reverse transcription-polymerase chain reaction to evaluate the expression of both transcriptionally regulated molecules such as estrogen receptor-α, progesterone receptor, and prolactin and a large array of MMPs and TIMPs (MMP-1, -2, -3, -7, -8, -9, -11, -12, -19, -26, MT1-MMP, MT2-MMP, MT3-MMP, TIMP-1, -2, -3). Altogether, three distinct patterns of MMP and two patterns of TIMP expression were detected in cycling endometrium: 1) MMPs restricted to the menstrual period (MMPs-1, -3, -8, -9, -12); 2) MMPs and TIMPs expressed throughout the cycle (MMP-2, MT1-MMP, MT2-MMP, MMP-19, TIMP-1, and TIMP-2); 3) MMPs predominantly expressed during the proliferative phase (MMP-7, MMP-11, MMP-26, and MT3-MMP); and 4) TIMP-3, which, contrary to the other TIMPs, shows significant modulations, with maximum expression during the late secretory and menstrual phases. These specific patterns of MMP expression associated with each phase of the cycle may point to specific roles in the processes of menstruation, housekeeping activities, angiogenesis, tissue growth, and extracellular matrix remodeling.
Overexpression of vascular endothelial growth factor (VEGF) in the testis of transgenic mice induces infertility, suggesting a potential role for VEGF in the process of spermatogenesis. Spermatogenesis occurs within the confines of the seminiferous tubules, and the seminiferous epithelium lining these tubules consists of Sertoli cells and germ cells in various stages of maturation. We investigated the source of VEGF and VEGF-target cells within the seminiferous tubules of the normal mouse testis. Sections of testes fixed in Bouin solution and embedded in paraffin were subjected to immunofluorescent staining with specific antibodies against VEGF, and its receptors, VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1). Total RNA was extracted from isolated populations of Sertoli cells, type A spermatogonia, pachytene spermatocytes, and spermatids. Primer pairs specific for VEGF and its receptors were designed and reverse-transcriptase polymerase chain reaction (RT-PCR) was performed. Immunofluorescent studies indicated that VEGF is strongly expressed in the cytoplasm of Sertoli cells. VEGFR-1 and VEGFR-2 were not expressed by the Sertoli cell. In contrast, a differential expression of VEGF receptors was observed in germ cells. Although VEGFR-2 was expressed in the cytoplasm of type A spermatogonia, VEGFR-1 was expressed in the acrosomal region of spermatids and spermatozoa. Pachytene spermatocytes did not exhibit any staining. Further, we examined the transcription of VEGF and its receptors by RT-PCR. VEGF was actively transcribed only in Sertoli cells. The transcription of VEGFR-2 was confined to type A spermatogonia. Interestingly, VEGFR-1 was transcribed both in pachytene spermatocytes and round spermatids. The mRNA expression of VEGFR-1 and VEGFR-2 in germ cells was inversely correlated during postnatal development of the mouse testis. Thus, VEGF may play a potential role in regulating the initial stages of the process of spermatogonial proliferation through VEGFR-2 and spermiogenesis through VEGFR-1.
Jang-Won Lee, Shin-Chih Wu, X. Cindy Tian, Michele Barber, Thomas Hoagland, John Riesen, Kun-Hsiung Lee, Ching-Fu Tu, Winston T. K. Cheng, Xiangzhong Yang
Cloning by somatic cell nuclear transfer has been successfully achieved by both fusing of a donor cell with and injecting an isolated donor cell nucleus into an enucleated oocyte. However, each of the above methods involves extended manipulation of either the oocytes (fusion) or the donor cells (nucleus isolation). Additionally, cloning efficiency can be reduced by low fusion rate of the cell fusion method, and specialized micromanipulation equipment and exacting nucleus isolation techniques are required for the nucleus injection method. Here we report a whole-cell injection technique for nuclear transfer in pigs and the production of cloned piglets with comparable, if not higher, efficiency than the other two nuclear transfer procedures. First, we tested the feasibility of this technique with three types of frequently used donor cells (cumulus, mural granulosa, and fibroblasts) and obtained the optimal nuclear reprogramming conditions for these cells. We further improved our protocol by avoiding ultraviolet exposure during enucleation and achieved a 37% blastocyst rate. We then conducted whole-cell injection using skin fibroblasts from the ear of a sow transgenic for two genes, the porcine lactoferrin and the human factor IX, and produced four live-born cloned transgenic piglets from three recipients. The present study demonstrated the applicability of producing normal, cloned piglets by the simple and less labor-intensive whole-cell intracytoplasmic injection.
Considerable embryonic loss occurs between Gestation Days 15 and 18 in cattle when critical cellular and molecular events occur, including maternal recognition of pregnancy. To gain insight into these events, mRNA differential display analysis was used to identify eight unique cDNA fragments present in greater abundance in 17.5-day than in 15.5-day bovine embryos. Four cDNA fragments, confirmed to be upregulated in 17.5-day embryos using Northern analysis, were cloned and sequenced. Three cDNA fragments shared sequence identities with known homologs: human allograft inflammatory factor-1 (AIF-1), human LERK-5, and bovine interferon-τ. One novel cDNA fragment did not share sequence identity to previously reported genes, except for a similar DNA sequence in the human genome. AIF-1 mRNA was present in developing placenta through Gestation Day 36, and abundant levels were observed in adult bovine spleen and lung. The novel gene, which we have named periattachment factor (PAF), was not detected in adult tissues using Northern analysis or in conceptuses between Days 30 and 36 of pregnancy. Additional sequence information for bPAF was obtained from a cDNA library constructed from a 25-day bovine embryo. The protein corresponding to the open reading frame has four protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, a nuclear targeting sequence, but no obvious DNA or RNA binding motifs. Abundant expression of this gene during a narrow but critical window of embryonic development makes it worthy of further study.
The aim of this study was to investigate the role of growth hormone (GH) on in vitro cumulus expansion and oocyte maturation in equine and porcine cumulus-oocyte complexes (COCs), and to approach its way of action. Equine COCs were cultured in a control medium (TCM199, 5 mg/ml BSA, 1 μg/ml estradiol, and antibiotics) supplemented with either 0.5 μg/ml equine GH or 5 μg/ml equine LH. Porcine COCs were cultured in a basal medium (TCM199 with 570 μM cysteamine) supplemented with 0, 0.1, 0.5, or 1 μg/ml porcine GH or in a control medium (basal medium with 10 ng/ml epidermal growth factor and 400 ng/ml FSH) supplemented with 0 or 0.5 μg/ml porcine GH. After culture, cumulus expansion and nuclear stage were assessed. The cytoplasmic maturation of porcine oocytes was evaluated by in vitro fertilization and development for 7 days. The modifications of the expression of proteins implicated in cumulus expansion were analyzed in equine COCs by SDS-PAGE with antibodies against connexins 32 and 43 and hyaluronan synthases (Has) 1, 2, and 3. The expression of GH receptor mRNA was studied in oocytes and cumulus cells of the two species using reverse transcription-polymerase chain reaction with specific primers. The addition of GH in maturation medium increased cumulus expansion in equine but not porcine COCs. It improved nuclear maturation in equine and porcine, but had no effect on porcine fertilization and embryo development. The GH receptor mRNA was detected in equine and porcine oocytes and cumulus cells. GH did not influence the expression of Has 1, Has 3, and connexin 43 in equine cumulus cells.
A wave phenomenon of ovarian follicular development in women has recently been documented in our laboratory. The objective of the present study was to characterize follicular waves to determine whether women exhibit major and minor wave patterns of follicle development during the interovulatory interval (IOI). The ovaries of 50 women with clinically normal menstrual cycles were examined daily using transvaginal ultrasonography for one IOI. Profiles of the diameters of all follicles ≥4 mm and the numbers of follicles ≥5 mm were graphed during the IOI. Major waves were defined as those in which one follicle grew to ≥10 mm and exceeded all other follicles by ≥2 mm. Minor waves were defined as those in which follicles developed to a diameter of <10 mm and follicle dominance was not manifest. Blood samples were drawn to measure serum concentrations of estradiol-17β, LH, and FSH. Women exhibited major and minor patterns of follicular wave dynamics during the IOI. Of the 50 women evaluated, 29/34 women with two follicle waves (85.3%) exhibited a minor-major wave pattern of follicle development and 5 women (14.7%) exhibited a major-major wave pattern. Ten of the 16 women with three follicle waves (62.5%) exhibited a minor-minor-major wave pattern, 3 women (18.8%) exhibited a minor-major-major wave pattern, and 3 women (18.8%) exhibited a major-major-major wave pattern. Documentation of major and minor follicular waves during the menstrual cycle challenges the traditional theory that a single cohort of antral follicles grows only during the follicular phase of the menstrual cycle.
The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei were synchronized by serum starvation (83.0%) than after roscovitine (80.0%) or contact-inhibition (80.0%). The fusion efficiency of in vivo and in vitro matured oocytes used as recipient cytoplasts of AWC donor nuclei (86.6% vs. 85.2%) was similar to the rates obtained with DSH donor nuclei, 83.7% vs. 73.0%, respectively. The only significant effect of source of donor nucleus (AWC vs. DSH) was on the rate of blastocyst formation in vitro. A higher percentage of the embryos derived from AWC nuclei developed to the blastocyst stage than did embryos produced from DSH nuclei, 24.2% vs. 3.3%, respectively (P < 0.05). In experiment 4, the effect of calcium in the fusion medium on induction of oocyte activation and development of AWC-DSH-cloned embryos was determined. The presence of calcium in the fusion medium induced a high incidence of cleavage of DSH oocytes (54.3%), while oocyte cleavage frequency was much lower in the absence of calcium (16.6%). The presence or absence of calcium in the fusion medium did not affect the fusion, cleavage, and blastocyst development of AWC-DSH-cloned embryos. In experiment 5, AWC-DSH-cloned embryos were transferred to the uteri of 11 synchronized domestic cat recipients on Day 6 or 7 after oocyte aspiration. Recipients were assessed by ultrasonography on Day 21 postovulation, but no pregnancies were observed. In the present study, after NT, AWC donor nuclei were able to dedifferentiate in DSH cytoplasts and support high rates of blastocyst development in vitro. Incomplete reprogramming of the differentiated nucleus may be a major constraint to the in vivo developmental potential of the embryos.
This study addresses the role of cAMP hydrolytic isoenzyme phosphodiesterase type 3 (PDE 3) modulation on human oocyte maturation in vitro. Presence of phosphodiesterase type 3 A (PDE 3A) mRNA was confirmed in human germinal vesicle-stage (GV) oocytes. Making use of a selective PDE 3 inhibitor, Org 9935 (10 μM), oocytes retrieved from immature follicles were arrested in prophase I with a high efficiency for up to 72 h. Cumulus oocyte complexes (COCs) were retrieved in the follicular phase of the cycle before or after exposure to endogenous LH or hCG administration in vivo and randomly distributed into maturation medium with or without the PDE 3 inhibitor. Previous exposure of small follicles to LH activity in vivo had no influence on the arresting capacity of the PDE 3 inhibitor. Reversal from pharmacological arrest leads to a progression through meiosis in a normal time frame with formation of a well-aligned metaphase plate. Ultrastructure analysis of COC derived from follicles between 8 and 12 mm showed that the induced extension of prophase I arrest in vitro resulted in cytoplasm changes but not in apparent nuclear changes during culture.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.
A system for somatic cell nuclear transfer (SCNT) was developed and led to the successful production of GFP-transfected piglets. In experiment 1, two groups of SCNT couplets reconstructed with porcine fetal fibroblasts (PFF) and enucleated sow (S) or gilt oocytes (G): 1) received a simultaneous electrical fusion/activation (S-EFA or G-EFA groups), or 2) were electrically fused followed by activation with ionomycin (S-EFIA or G-EFIA groups), or 3) were subjected to electrical fusion and subsequent activation by ionomycin, followed by 6-dimethylaminopurine treatment (S-EFIAD or G-EFIAD groups). The frequency of blastocyst formation was significantly higher in S-EFA (26%) compared with that observed in the other experimental groups (P < 0.05), but not with S-EFIA (23%). Sow oocytes yielded significantly higher cleavage frequencies (68%–69%) and total cell numbers of blastocysts when compared with gilt oocytes, regardless of fusion/activation methods (P < 0.05). However, the ratio of inner cell mass (ICM)/total cells in G-EFA and S-EFA was significantly lower than in the other groups (P < 0.05). In experiment 2, SCNT couplets reconstructed with PFF cultured in the presence or absence of serum and enucleated sow oocytes were subjected to EFA. There were no effects of serum starvation on cell-cycle synchronization, developmental competence, total cell numbers, and ratio of ICM/total cells. In experiment 3, SCNT couplets reconstructed with PFF transfected with an enhanced green fluorescence protein (EGFP) gene using FuGENE-6 and enucleated sow oocytes were subjected to EFA and cultured for 7 days. Expression frequencies of GFP gene during development were 100%, 78%, 72%, 71%, and 70% in fused, two-cell, four to eight cells, morulae, and blastocysts, respectively. In experiment 4, SCNT embryos derived from different recipient cytoplasts (sows or gilts) and donor karyoplasts (PFF or GFP-transfected) were subjected to EFA and transferred to the oviducts of surrogates. The pregnancy rates in SCNT embryos derived from sow oocytes (66%–69%) were higher than those with gilt oocytes (23%–27%) regardless of donor cell types. One live offspring from GFP-SCNT embryos and two from PFF-SCNT embryos were delivered. Microsatellite analysis confirmed that the clones were genetically identical to the donor cells and polymerase chain reaction (PCR) from genomic DNA of cloned piglets and subsequent southern blot analysis confirmed the integration of EGFP gene into chromosomes.
During spermatogenesis, postmeiotic germ cells utilize lactate produced by Sertoli cells as an energy metabolite. While the hormonal regulation of lactate production in Sertoli cells has been relatively well established, the transport of this energy substrate to the germ cells, particularly via the monocarboxylate transporters (MCTs), as well as the potential endocrine control of such a process remain to be characterized. Here, we report the developmentally and hormonally regulated expression of MCT2 in the testis. At Day 18, MCT2 starts to be expressed in germ cells as detected by Northern blot. The mRNA are translated into protein (40 kDa) in elongating spermatids. Ultrastructural analysis demonstrated that MCT2 protein is localized to the outer face of the cell membrane of spermatid tails. MCT2 mRNA levels are under the control of the endocrine, specifically follicle-stimulating hormone (FSH) and testosterone, and paracrine systems. Indeed, a 35-day-old rat hypophysectomy resulted in an 8-fold increase in testicular MCT2 mRNA levels. Conversely, FSH and LH administration to the hypophysectomized rats reduced MCT2 mRNA levels to the basal levels observed in intact animals. The decrease in MCT2 mRNA levels was confirmed in vitro using isolated seminiferous tubules incubated with FSH or testosterone. FSH or testosterone inhibited in a dose-dependent manner MCT2 mRNA levels with maximal inhibitory doses of 2.2 ng/ml and 55.5 ng/ml for FSH and testosterone, respectively. In addition to the endocrine control, TNFα and TGFβ also exerted an inhibitory effect on MCT2 mRNA levels with a maximal effect at 10 ng/ml and 6.6 ng/ml for TGFβ and TNFα, respectively. Together with previous studies, the present data reinforce the concept that among the key functions of the endocrine/paracrine systems in the testis is the control of the energy metabolism occurring in the context of Sertoli cell–germ cell metabolic cooperation where lactate is produced in somatic cells and transported to germ cells via, at least, MCT2.
The circulating concentrations of progesterone, FSH, and follistatin across the estrous cycle and gestation were compared in Australian merino sheep that were homozygous for the Booroola gene, FecB, or were noncarriers. The Booroola phenotype is due to a point mutation in the bone morphogenetic protein receptor 1B. Progesterone concentrations began to rise earlier and were higher in the Booroola ewes than in the noncarriers on most days of the luteal phase but not during the follicular phase of the cycle. Follistatin concentrations remained unchanged across the estrous cycle in both groups of ewes, with no differences between genotypes. FSH concentrations were higher in Booroola ewes than in noncarrier ewes on most days of the estrous cycle, with a significantly higher and broader peak of FSH around the time of estrus. Progesterone concentrations were significantly higher in early and midgestation in Booroola ewes but were lower toward the end of gestation than those in noncarriers. FSH declined in both groups across gestation, with lower concentrations of FSH in Booroola ewes during midgestation. Follistatin remained unchanged across gestation in Booroola ewes and noncarrier ewes with a twin pregnancy but declined across gestation in noncarrier ewes with a singleton pregnancy. These results suggest that follistatin concentration is not regulated by the FecB gene during the estrous cycle and pregnancy but is influenced by the number of fetuses. However, the FecB gene appears to positively affect both progesterone and FSH during the estrous cycle and across pregnancy, which suggests that bone morphogenetic proteins play an important role in the regulation of both hormones.
Blastocyst implantation and successful establishment of pregnancy require delicate interactions between the embryo and maternal environment. It is believed that the growth of transferred embryos of different ages is synchronized during preimplantation development and that such embryos are implanted in the uterus at the same time. To define the time of synchronization for developing embryos of different ages, embryos at two different stages of development were transferred separately into the oviducts of the same recipient. We then examined the subsequent development of the embryos at various time intervals after transfer. Pronucleus (PN) stage eggs were transferred separately to the right or left oviduct of recipients on Day 0, while eight-cell embryos (8C) were transferred to the other oviduct. For 8C, 5%, 63%, and 74% of transferred embryos were implanted in the uterus at 42, 66, and 90 h posttransfer, respectively. In contrast, none of the transferred PN was implanted until 90 h posttransfer. At 90 h posttransfer, 59% of the PN had successfully implanted. Histological examination revealed that developmental stage of the embryos in both groups synchronized around 162 h posttransfer, even though the implantation was accelerated in 8C compared with PN. Our results indicate that embryos of advanced stage transferred to the oviduct implant in the uterus in advance of younger embryos and that the uterine development is synchronized at the neural plate, presomite stage. Our results strongly suggest that uterine receptivity for implantation is expandable in pseudopregnant mice.
Recognizing that uterine stromal cells regulate several uterine epithelial cell function(s), the current study was undertaken to more fully define cell-cell communication in the uterus and to examine the role of uterine stromal cells in regulating epithelial cell monolayer integrity and cytokine release. Uterine epithelial and stromal cells from adult intact mice were isolated and cultured separately on cell culture inserts and/or in culture plates. Epithelial cells, which reach confluence as indicated by high transepithelial resistance (TER > 1000 ohms/well), preferentially release transforming growth factor-beta (TGFβ) into the basolateral chamber (≈70% > apical) and tumor necrosis factor-alpha (TNFα) into the apical compartment (≈30% > basolateral). When epithelial cells on cell culture inserts were transferred to plates containing stromal cells, coculture for 24–48 h increased epithelial cell TER (≈70% higher than control) and decreased TNFα release into both the apical and basolateral chambers (≈30%–50%). In contrast, TGFβ release was not affected by the presence of stromal cells. In other studies, the effects of stromal cells on epithelial cell TER and TNFα release persisted for 5–7 days following the removal of stromal cells and were also seen in coculture studies in which conditioned stromal media (CSM) was placed in the basolateral chamber. These studies indicate that uterine stromal cells produce a soluble factor(s) that regulates epithelial cell TER and release of TNFα without effecting TGFβ release. These results suggest that uterine stromal cells communicate with epithelial cells via a soluble factor(s) to maintain uterine integrity and epithelial secretory function.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere