BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Cyclic AMP signaling is involved in most aspects of differentiation and maturation of the granulosa cells in the ovarian follicle. As the genetic programs activated at different stages of follicle growth maturation are being elucidated, it is becoming increasingly difficult to reconcile the simplicity of the cAMP cascade with the complexity and the divergent patterns of gene expression activated in these cells. To account for these divergent outcomes of the cAMP signal, three aspects of this signaling cascade in granulosa cells will be reviewed. We will discuss the evidence for gonadotropin receptors coupling to different G proteins and effectors. Next, we will explore the possibility that the temporal and spatial dimensions of the cAMP signal itself may contribute to the diverse outcomes. Finally, we will summarize available data showing that the cAMP signal is distributed through several cascades of kinase activation. It is hoped this compendium will provide a framework with which to understand how the initial signals activated by gonadotropins control the complex patterns of gene expression that are required for follicle maturation and ovulation.
In recent years, there have been a number of efforts to identify genes that are expressed in mature ovarian follicles in response to an ovulatory dose of LH or its homologue hCG. This review keys on 20 ovulation-specific genes that we have identified by the molecular procedure known as differential display. The objective is to use this sampling of genes to illustrate the diversity in the temporal and spatial patterns of expression of genes in the ovary following the stimulus of this gonadal target tissue by a single glycoprotein hormone. The specific genes that are surveyed include 5-aminolevulinate synthase; early growth response protein-1; γ-glutamylcysteine synthetase; cyclooxygenase-2; epiregulin; pituitary adenylate cyclase-activating polypeptide; tumor necrosis factor-stimulated gene-6; regulator of G-protein signaling protein-2; adrenodoxin; steroidogenic acute regulatory protein; 3α-hydroxysteroid dehydrogenase; CD63, a disintegrin and metalloproteinase with thrombospondin motifs; tissue inhibitor of metalloproteinase-1; carbonyl reductase, a G-protein-coupled receptor; pancreatitis-associated protein-III; glutathione S-transferase; and metallothionein-1. The ovulatory expression of these different genes is predominantly within the granulosa layer of mature follicles. However, there were also instances of expression in the thecal and stromal tissue of the ovary, as well as in vascular endothelial cells and in luteal tissue. The overwhelming impression is that the molecular events of ovulation are far more complex, and therefore more highly ordered, than originally imagined.
As early as 1985, ice-free cryopreservation of mouse embryos at −196°C by vitrification was reported in an attempted alternative approach to cryostorage. Since then, vitrification techniques have entered more and more the mainstream of animal reproduction as an alternative cryopreservation method to traditional slow-cooling/rapid-thaw protocols. In addition, the last few years have seen a significant resurgence of interest in the potential benefits of vitrification protocols and techniques in human-assisted reproductive technologies. The radical strategy of vitrification results in the total elimination of ice crystal formation, both within the cells being vitrified (intracellular) and in the surrounding solution (extracellular). The protocols for vitrification are very simple. They allow cells and tissue to be placed directly into the cryoprotectant and then plunged directly into liquid nitrogen. To date, however, vitrification as a cryopreservation method has had very little practical impact on human-assisted reproduction, and human preimplantation embryo vitrification is still considered to be largely experimental. Besides the inconsistent survival rates that have been reported, another problem is the wide variety of different carriers and vessels that have been used for vitrification. Second, many different vitrification solutions have been formulated, which has not helped to focus efforts on perfecting a single approach. On the other hand, the reports of successfully completed pregnancies following vitrification at all preimplantation stages is encouraging for further research and clinical implementation. Clearly, however, attention needs to be paid to the inconsistent survival rates following vitrification.
Mammalian reproduction evolved within Earth's 1-g gravitational field. As we move closer to the reality of space habitation, there is growing scientific interest in how different gravitational states influence reproduction in mammals. Habitation of space and extended spaceflight missions require prolonged exposure to decreased gravity (hypogravity, i.e., weightlessness). Lift-off and re-entry of the spacecraft are associated with exposure to increased gravity (hypergravity). Existing data suggest that spaceflight is associated with a constellation of changes in reproductive physiology and function. However, limited spaceflight opportunities and confounding effects of various nongravitational factors associated with spaceflight (i.e., radiation, stress) have led to the development of ground-based models for studying the effects of altered gravity on biological systems. Human bed rest and rodent hindlimb unloading paradigms are used to study exposure to hypogravity. Centrifugation is used to study hypergravity. Here, we review the results of spaceflight and ground-based models of altered gravity on reproductive physiology. Studies utilizing ground-based models that simulate hyper- and hypogravity have produced reproductive results similar to those obtained from spaceflight and are contributing new information on biological responses across the gravity continuum, thereby confirming the appropriateness of these models for studying reproductive responses to altered gravity and the underlying mechanisms of these responses. Together, these unique tools are yielding new insights into the gravitational biology of reproduction in mammals.
The present study was designed to investigate the effects of amino acids on the in vitro development of porcine parthenogenetic diploids that were produced by electrostimulation (El-St) and cytochalasin B treatment of in vitro-matured oocytes. The culture medium for development, based on Whitten medium, contained 0.5 mg/ml of hyaluronic acid (mWM), and a two-step culture system in which 290 mOsmol before the 4-cell stage (48 or 72 h after El-St) and, subsequently, 256 mOsmol up to the blastocyst stage (mWMs) were used. In experiment 1, the diploids were cultured for 168 h in mWMs supplemented with 0.01–5 mg/ml of polyvinyl alcohol (PVA). In experiment 2, the diploids were cultured in mWMs containing 0.5 mg/ml of PVA (PVA-mWMs) for 0, 48, or 72 h and then cultured for 168 h after El-St in PVA-mWMs supplemented with essential amino acids for Eagle basal medium without glutamine (E-AA) and nonessential amino acids for minimum essential medium (NE-AA). The results showed that diploids can develop up to the blastocyst stage in mWMs including 0.05–5.0 mg/ml of PVA (49%–53% vs. 63%, P > 0.05), but the replacement of BSA with PVA alone could not support the expansion of blastocysts (11%–20% vs. 39%, P < 0.05) or their proliferation. The addition of both E-AA and NE-AA (E NE-AA) to PVA-mWMs from the 1-cell stage resulted in severe inhibition of the development of diploids to the blastocyst stage. However, the addition of E NE-AA to PVA-mWMs later than 48 or 72 h after El-St well supported the development of diploids to the blastocyst stage and supported the expansion of blastocysts. In experiments 3–5, which types of amino acids in E-AA inhibited the development of diploids during the first 48 h after El-St were determined. In experiment 6, the stimulatory effects of E-AA and/or NE-AA after the 4-cell stage were examined. The results of those experiments clearly showed that the presence of nonpolar E-AA, especially for valine, leucine, isoleucine, and methionine, during the first 48 h after El-St caused severe delay of the first division and inhibition of development beyond the 4-cell stage. The presence of NE-AA after the 4-cell stage produced a favorable condition for the expansion of blastocysts (33%), whereas the presence of E-AA increased the cleavage rates of the diploids after compaction and the total number of cells in the blastocysts (53.7 ± 2.7) and inner cell mass (12 ± 0.5). These findings indicate that the presence of nonpolar E-AA in a protein-free medium during the first 48 h causes the 4-cell block in porcine parthenogenetic diploids.
Study of the multidrug resistance phenomenon in tumor cell lines has led to the discovery of the product of the multidrug resistance (MDR) type 1 genes, the plasma membrane P-glycoprotein (P-gp) that functions as an energy-dependent pump for the efflux of diverse anticancer drugs. P-gp was also recently identified in normal epithelial cells with secretory/excretory functions and in the endothelial cells of the capillary blood vessels in the brain and the testis. These endothelial cells are key elements of the blood-brain and blood-testis barriers, respectively. The aim of this study, in the rat, mouse, guinea pig, and human, was to determine whether testicular cells other than the capillary endothelial cells could express MDR type I genes. Immunohistochemistry on testicular sections revealed that P-gp is present in interstitial cells in the mouse, rat, and human testes, in early and late spermatids in guinea pig testis, and in late spermatids in the rat, mouse, and human. Reverse transcription-polymerase chain reaction analysis on isolated mouse, rat, and human cells showed that all somatic testicular cells (Leydig cells, macrophages, peritubular cells, and Sertoli cells) and the cytoplasmic lobes from rat late spermatids expressed MDR type I mRNAs, whereas spermatogonia, pachytene spermatocytes, and early spermatids did not. An ontogenesis study in the mouse reveals that type I MDR gene expression begins at 13.5 days postcoitum at the time when the seminiferous cords and the blood vessels appear and are maintained thereafter. Finally, two functional tests on isolated rat cells, the doxorubicin and rhodamine uptake assays, demonstrated that rat testicular macrophages, Leydig cells, peritubular cells, and Sertoli cells displayed a multidrug-resistance activity, whereas spermatogonia, pachytene spermatocytes, and early spermatids did not. Western blot experiments have revealed that a P-gp of 175 kDa is present in the human testis as well as in the rat Leydig cells, testicular macrophages, peritubular cells, and Sertoli cells, but is absent in spermatogonia, spermatocytes, and early spermatids. We conclude that P-gp is involved in the self-protection of the somatic cells and is most probably one of the molecules that confers its functionality to the blood-testis barrier. The absence of expression of MDR type I genes in mitotic and meiotic germ cells probably explains their particular vulnerability to various anticancer drugs. In contrast, expression of the P-gp in the haploid cells most likely reflects the ability of spermatozoa to assume their own antidrug defense.
To gain insight into the role of 11β-hydroxysteroid dehydrogenase (11β-HSD) enzymes and actions of glucocorticoids in the murine placenta and uterus, the expression pattern of the mRNA for 11β-HSD1 and 11β-HSD2 and the glucocorticoid receptor (GR) protein were determined from Embryonic Day 12.5 (E12.5, term = E19) to E18.5 by in situ hybridization and immunohistochemistry, respectively. Consistent with its putative role in regulating the transplacental passage of maternal glucocorticoid to the fetus, 11β-HSD2 mRNA was highly expressed in the labyrinthine zone (the major site of maternal/fetal exchange) at E12.5, and its level decreased dramatically at E16.5, when it became barely detectable. Remarkably, the silencing of 11β-HSD2 gene expression coincided with the onset of 11β-HSD1 gene expression in the labyrinth at E16.5 when moderate levels of 11β-HSD1 mRNA were detected and maintained to E18.5. By contrast, neither 11β-HSD1 mRNA nor 11β-HSD2 mRNA were detected in any cell types within the basal zone from E12.5 to E18.5. Moreover, the expression of 11β-HSD1 and 11β-HSD2 in the decidua exhibited a high degree of cell specificity in that the mRNA for both 11β-HSD1 and 11β-HSD2 was detected in the decidua-stroma but not in the compact decidua. A distinct pattern was also observed within the endometrium where the mRNA for 11β-HSD1 was expressed in the epithelium, whereas that for 11β-HSD2 was confined strictly to the stroma. By comparison, the expression of GR in the placenta and uterus was ubiquitous and unremarkable throughout late pregnancy. In conclusion, the present study demonstrates for the first time remarkable spatial and temporal patterns of expression of 11β-HSD1 and 11β-HSD2 and GR in the murine placenta and uterus and highlights the intricate control of not only transplacental passage of maternal glucocorticoid to the fetus but also local glucocorticoid action during late pregnancy.
Recently developed, assisted reproductive technologies (e.g., in vitro embryo production and nuclear transfer) have encountered perinatal morbidity/mortality of the offspring produced, which are likely to hinder the application of these techniques. Consequently we have sought to develop a system of hormonal stimulation that will ensure the delivery of offspring more prepared for extrauterine life. Here we examine deliveries outcome in sheep carrying in vitro-produced and nuclear transfer (NT) embryos in comparison to artificially inseminated and naturally mated control ewes. All groups (excluding NT, which received one treatment) were subjected to one of two hormonal treatments for induction of delivery, whereas the third part of each group was left without any treatment. The first (commonly used for naturally mated ewes) dexamethasone treatment did not solve a majority of parturition disturbances, and actually the number of deliveries necessitating assistance was reduced (P < 0.05) by this treatment in the control group. On the other hand, combined estradiol plus betamethasone stimulation (E B) solved a majority of complications regarding delivery performance such as lack of the preparation of the mammary gland, low myometrial contractility, insufficient cervical ripening, and impaired maternal behavior. Moreover, substantial reduction of neonatal mortality was observed following the combined treatment. In conclusion, the E B induction of delivery overcame the majority of physiological and behavioral intrapartum failures of sheep foster mothers and increased the survival of offspring, and thus can be recommended as a safe method for inducing delivery in foster mothers carrying in vitro-generated embryos.
A series of experiments have been carried out to determine whether follicles secrete factors able to affect the growth and development of other, like-sized follicles. Late preantral mouse ovarian follicles were either cocultured or cultured in media conditioned by previously cultured follicles. In particular, the experiments examined whether follicles do secrete such factors, whether the level of FSH in the culture media can affect that process, and what the nature of such secretory factor(s) might be. First, pairs of follicles were cocultured across a polycarbonate membrane containing pores. This showed that communication between the follicles resulted in the stimulation of growth and that the stimulation was due, at least in part, to the production of secretory factor(s). In subsequent experiments, follicles were cultured in media that had been preconditioned by previously cultured follicles. The concentration of FSH in the cultures determined the effect of the conditioned media: conditioned media was stimulatory to follicle growth when levels of FSH remained high throughout the culture, but inhibitory when FSH levels were dropped midway through the cultures. Heat inactivation removed this inhibitory effect, showing that the factor was likely to be a protein; addition of follistatin to the conditioned media did not alter its effect, indicating that the factor was unlikely to be activin. We have shown through a series of culture experiments that mouse follicles secrete factor(s) that can affect the development of other like-sized follicles when cultured from the late preantral to Graafian stages. Furthermore, we have shown that the effect (or production) of such factors is dependent on the FSH environment of the follicles.
Octylphenol (OP) is one of a number of compounds found in the environment that has estrogen-mimicking actions in vivo. Our objective was to determine if maternal exposure to octylphenol during fetal and/or postnatal life would affect the onset of puberty, endocrine status, and subsequent ovarian follicular dynamics of ewe lambs. Lambs were born in March to ewes that received twice weekly s.c. injections of octylphenol (1000 μg/kg/day) from Day 70 of gestation to weaning (n = 6); Day 70 of gestation to birth (n = 3); birth to weaning (n = 5; gestation = 145 days); or corn oil from Day 70 of gestation to weaning (control; n = 5). Blood samples were collected twice weekly to determine progesterone and FSH concentrations from 20 wk of age throughout the first breeding season. Onset of puberty and interestrous intervals were determined from 20 wk of age by twice daily observation for estrus in the presence of a vasectomized ram. During January the ovaries of each lamb were examined using transrectal ultrasonography from the day of estrus for 15 days. Blood samples were collected every 8 h to examine FSH concentrations and every 2 h to detect the preovulatory gonadotropin surge throughout this estrous cycle. The onset of puberty and first progesterone rise was advanced and the FSH preovulatory surge was elevated for longer in the OP-treated lambs compared with the control lambs (P < 0.05). Interestrous intervals, FSH profiles, and ovarian follicular dynamics were not affected (P > 0.05) by exposure to octylphenol. In conclusion, octylphenol exposure advanced the onset of puberty but it did not disrupt FSH concentrations or the dynamics of ovarian follicular growth.
GnRH regulates reproduction via the well-characterized mammalian pituitary GnRH receptor (type I). In addition, two homologous genes for a second form of the GnRH receptor (type II) are present in the human genome, one on chromosome 14 and the second on chromosome 1. The chromosome 14 gene is ubiquitously transcribed at high levels in the antisense orientation but lacks exon 1, required to encode a full-length receptor. In comparison, the chromosome 1 gene contains all three exons. The issue of whether this gene is transcribed in any human tissue(s), and whether these transcripts encode a functional receptor protein, remains unresolved. We have directly addressed this by screening a panel of human RNAs by hybridization and RT-PCR. These analyses showed that, unlike the chromosome 14 gene, chromosome 1 gene expression is limited and of low abundance. Exon 1-containing transcripts were detected by in situ hybridization in mature sperm and in human postmeiotic testicular cells. Further sequence analysis revealed that although all the potential coding segments were present, the human transcripts, like the gene, contain a stop codon within the coding region and a frame-shift relative to other mammalian GnRH receptors. Although this suggests that the human gene may be a transcribed pseudogene, a functional type II GnRH receptor cDNA has recently been cloned from monkeys. Given the well-established role of GnRH in spermatogenesis and reported evidence of type II GnRH receptor immunoreactivity in human tissues, it is possible that the chromosome 1 gene is functional.
Matthew P. Hardy, Chantal M. Sottas, Renshan Ge, Christina R. McKittrick, Kellie L. Tamashiro, Bruce S. McEwen, Syed G. Haider, Christopher M. Markham, Robert J. Blanchard, D. Caroline Blanchard, Randall R. Sakai
Stress in socially subordinate male rats, associated with aggressive attacks by dominant males, was studied in a group-housing context called the visible burrow system (VBS). It has been established that subordinate males have reduced serum testosterone (T) and higher corticosterone (CORT) relative to dominant and singly housed control males. The relationship of the decreased circulating T levels in subordinate males to changes in serum LH concentrations has not been evaluated previously. Since decreases in LH during stress may cause reductions in Leydig cell steroidogenic activity, the present study defined the temporal profiles of serum LH, T, and CORT in dominant and subordinate males on Days 4, 7, and 14 of a 14-day housing period in the VBS. The same parameters were followed in serum samples from single-housed control males. Leydig cells express glucocorticoid receptors and may also be targeted for direct inhibition of steroidogenesis by glucocorticoid. We hypothesize that Leydig cells are protected from inhibition by CORT at basal concentrations through oxidative inactivation of glucocorticoid by 11β-hydroxysteroid dehydrogenase (11βHSD). However, Leydig cell steroidogenesis is inhibited when 11βHSD metabolizing capacity is exceeded. Therefore, 11βHSD enzyme activity levels were measured in Leydig cells of VBS-housed males at the same time points. Significant increases in LH and T relative to control were observed in the dominant animals on Day 4, which were associated with the overt establishment of behavioral dominance as evidenced by victorious agonistic encounters. Serum LH and T were lower in subordinate males on Day 7, but T alone was lower on Day 14, suggesting that lowered LH secretion in subordinates may gradually be reversed by declines in androgen-negative feedback. Serum CORT levels were higher in subordinate males compared to control at all three time points. In contrast, oxidative 11βHSD activity in Leydig cells of dominant males was higher relative to control and unchanged in subordinates. These results suggest the following: 1) failure of Leydig cells of subordinate males to compensate for increased glucocorticoid action during stress, by increasing 11βHSD oxidative activity, potentiates stress-mediated reductions in T secretion; and 2) an inhibition of the reproductive axis in subordinate males at the level of the pituitary.
Insulin-like growth factors (IGF-I and IGF-II) are essential for normal uterine development and have been particularly implicated in fetal and placental growth. A family of six IGF binding proteins enhance or attenuate IGF-stimulated cell proliferation. In this study we have used in situ hybridization to map the distribution of IGFBP-6, one of the lesser known of the IGFBPs, in sections of the uterus collected from cyclic, anestrous, and ovariectomized nonpregnant ewes and from the uterus and placenta of early pregnant (13–55 days) and unilaterally pregnant ewes. In nonpregnant ewes IGFBP-6 mRNA (measured as arbitrary optical density units from autoradiographs) was abundant in the periepithelium and caruncles, with lower levels in the endometrial stroma and myometrium. In most regions IGFBP-6 mRNA showed cyclic variations with concentrations maximal around ovulation and the early luteal phase. In addition, 16 out of 25 ewes expressed IGFBP-6 mRNA in their endometrial glands between estrus and Day 2. Measurements of IGFBP-6 mRNA were high in anestrous ewes (equivalent values to ovulation) but low in ovariectomized ewes (equivalent values to mid to late luteal phase). In pregnant ewes IGFBP-6 mRNA was found in similar regions to those recorded during the cycle. In the periepithelium and caruncular stroma IGFBP-6 mRNA levels were higher during early pregnancy than in the midluteal phase. In the unilateral pregnant ewes there was no difference in IGFBP-6 mRNA measured between pregnant and nonpregnant horns. In conclusion, IGFBP-6 mRNA is differentially regulated during the estrous cycle and pregnancy and may be functionally important in modulating IGF activity in the uterus and placenta by virtue of its strong affinity and ability to regulate IGF-II mediated actions.
Acquisition of sperm fertilizing ability is due, in part, to the reorganization of plasma membrane proteins that occurs during epididymal sperm transit. Using polyclonal antibodies against angiotensin I-converting enzyme (ACE), we showed that this enzyme is immunolocalized mainly on the middle piece of rat and mouse testicular sperm and with less intensity along the initial part of the principal piece of the flagellum. In both species, only some sperm from the caput epididymis were still reactive, whereas no labeling was observed on cauda epididymal sperm. The 105- to 110-kDa germinal ACE was absent from the rat testicular fluid but appeared in the fluid of the anterior epididymis. Thereafter, its molecular weight shifted to 94 kDa in the corpus epididymal fluid and remained at this weight in the caudal region. The 105- to 110-kDa immunoreactive protein was present in testicular rat sperm extract but was completely absent from epididymal sperm extracts. Western blot analysis of testicular and epididymal tissue extracts from the rat and mouse also confirmed that the germinal enzyme was absent from the epididymal sperm cell. Our results demonstrated that the rodent germinal ACE is released from the testicular sperm membrane when sperm enter the epididymis, a process similar to that observed in domestic mammals. This result is discussed in view of the suggested role for this enzyme in sperm fertility.
Ghrelin, the endogenous ligand for the growth hormone-secretagogue receptor, is a recently cloned 28-amino acid peptide, expressed primarily in the stomach and hypothalamus, with the ability to stimulate growth hormone (GH) release and food intake. However, the possibility of additional, as yet unknown biological actions of ghrelin has been suggested. As a continuation of our recent findings on the expression and functional role of ghrelin in rat testis, we report here the pattern of cellular expression of ghrelin peptide in rat testis during postnatal development and after selective Leydig cell elimination, and we assess hormonal regulation of testicular ghrelin expression, at the mRNA and/or protein levels, in different experimental models. Immunohistochemical analyses along postnatal development demonstrated selective location of ghrelin peptide within rat testis in mature fetal- and adult-type Leydig cells. In good agreement, ghrelin protein appeared undetectable in testicular interstitium after selective Leydig cell withdrawal. In terms of hormonal regulation, testicular ghrelin mRNA and protein expression decreased to negligible levels after long-term hypophysectomy, whereas replacement with human chorionic gonadotropin (CG) (as superagonist of LH) partially restored ghrelin mRNA and peptide expression. Furthermore, acute administration of human CG (25 IU) to intact rats resulted in a transient increase in testicular ghrelin mRNA levels, with peak values 4 h after injection, an effect that was not mimicked by FSH (12.5 IU/rat). In contrast, testicular expression of ghrelin mRNA remained unaltered in GH-deficient rats, under hyper- and hypothyroidism conditions, as well as in adrenalectomized animals. In conclusion, our results demonstrate that mature Leydig cells are the source of ghrelin expression in rat testis, the protein being expressed in both fetal- and adult-type Leydig cells. In addition, our data indicate that testicular expression of ghrelin is hormonally regulated and is at least partially dependent on pituitary LH.
Jennifer L. Juengel, Norma L. Hudson, Derek A. Heath, Peter Smith, Karen L. Reader, Steve B. Lawrence, Anne R. O'Connell, Mika P. E. Laitinen, Mark Cranfield, Nigel P. Groome, Olli Ritvos, Kenneth P. McNatty
The aim of this study was to test the hypothesis that both growth differential factor 9 (GDF9) and bone morphogenetic protein (BMP15; also known as GDF9B) are essential for normal ovarian follicular development in mammals with a low ovulation rate phenotype. Sheep (9–10 per group) were immunized with keyhole limpet hemocyanin (KLH; control), a GDF9-specific peptide conjugated to KLH (GDF9 peptide), a BMP15-specific peptide conjugated to KLH (BMP15 peptide), or the mature region of oBMP15 conjugated to KLH (oBMP15 mature protein) for a period of 7 mo and the effects of these treatments on various ovarian parameters such as ovarian follicular development, ovulation rate, and plasma progesterone concentrations evaluated. Also in the present study, we examined, by immunohistochemistry, the cellular localizations of GDF9 and BMP15 proteins in the ovaries of lambs. Both GDF9 and BMP15 proteins were localized specifically within ovarian follicles to the oocyte, thereby establishing for the sheep that the oocyte is the only intraovarian source of these growth factors. Immunization with either GDF9 peptide or BMP15 peptide caused anovulation in 7 of 10 and 9 of 10 ewes, respectively, when assessed at ovarian collection. Most ewes (7 of 10) immunized with oBMP15 mature protein had a least one observable estrus during the experimental period, and ovulation rate at this estrus was higher in these ewes compared with those immunized with KLH alone. In both the KLH-GDF9 peptide- and KLH-BMP15 peptide-treated ewes, histological examination of the ovaries at recovery (i.e., ∼7 mo after the primary immunization) showed that most animals had few, if any, normal follicles beyond the primary (i.e., type 2) stage of development. In addition, abnormalities such as enlarged oocytes surrounded by a single layer of flattened and/or cuboidal granulosa cells or oocyte-free nodules of granulosa cells were often observed, especially in the anovulatory ewes. Passive immunization of ewes, each given 100 ml of a pool of plasma from the GDF9 peptide- or BMP15 peptide-immunized ewes at 4 days before induction of luteal regression also disrupted ovarian function. The ewes given the plasma against the GDF9 peptide formed 1–2 corpora lutea but 3 of 5 animals did not display normal luteal phase patterns of progesterone concentrations. The effect of plasma against the BMP15 peptide was more dramatic, with 4 of 5 animals failing to ovulate and 3 of 5 ewes lacking surface-visible antral follicles at laparoscopy. By contrast, administration of plasma against KLH did not affect ovulation rate or luteal function in any animal. In conclusion, these findings support the hypothesis that, in mammals with a low ovulation rate phenotype, both oocyte-derived GDF9 and BMP15 proteins are essential for normal follicular development, including both the early and later stages of growth.
In vitro-matured germinal vesicle oocytes are an interesting source of cytoplast recipients in both animal and human nuclear transfer (NT) experiments. We investigated two technical aspects that might improve the developmental potential of nuclear transfer mouse embryos constructed from in vitro-matured germinal vesicle oocytes. In a first step, the effect of two maturation media on the embryonic development of NT embryos originating from in vitro-matured oocytes was compared. Supplementation of the oocyte maturation medium with serum and gonadotrophins improved the developmental rate of NT embryos constructed from in vitro-matured oocytes, but it was still inferior to that obtained with in vivo-matured metaphase II (MII) oocytes. Second, we investigated the effect of serial pronuclear transfer from NT zygotes originating from both in vitro- and in vivo-matured oocytes to in vivo-fertilized zygotic cytoplasts. Blastocyst quality was evaluated by counting nuclei from trophectoderm and inner cell mass cells using a differential staining. Sequential pronuclear transfer significantly improved the blastocyst formation rate of NT embryos originating from in vitro-matured oocytes up to the rate obtained with in vivo-matured MII oocytes. We conclude that the developmental potential of NT embryos constructed from in vitro-matured oocytes can be optimized by serial pronuclear transfer to in vivo-produced zygotic cytoplasts.
Ana Maria S. Assreuy, Juan J. Calvete, Nylane M. N. Alencar, Benildo S. Cavada, Duílio R. Rocha-Filho, Sabrina C. Melo, Fernando Q. Cunha, Ronaldo A. Ribeiro
Spermadhesins are a group of (glyco)proteins from seminal fluid involved in various aspects of porcine fertilization. PSP-I/PSP-II, a heterodimer of glycosylated spermadhesins, is the major component of porcine seminal fluid. Its biological function remains, however, enigmatic. Using an in vitro chemotaxis assay, we showed that PSP-I/PSP-II and its isolated subunits induced migration of purified neutrophils. A possible proinflammatory activity of PSP-I/PSP-II induced upon injection of the spermadhesin heterodimer and its isolated subunits into the peritoneal cavity of rats was investigated. Lavage of peritoneal cavities, thioglycolate treatment, and mast cell depletion were done before spermadhesin administration, and neutrophil migration was evaluated 4 h after injections. Pharmacological modulation was also investigated. Resident cell depletion by lavage reduced the neutrophil migration induced by PSP-I/PSP-II and the PSP-II subunit but had no effect on that induced by isolated PSP-I. Both an increase of macrophage population by thioglycolate treatment and mast cell depletion potentiated the neutrophil migration induced by PSP-I/PSP-II and by PSP-II. The glucocorticoid dexamethasone but not indomethacin (cyclooxygenase inhibitor), MK886 (leukotriene inhibitor), and BN50739 (platelet activation factor [PAF] antagonist) inhibited neutrophil migration induced by PSP-I/PSP-II. Coincubation with mannose-6-phosphate (a PSP-II-specific ligand) inhibited neutrophil recruitment induced by PSP-II but did not alter the PSP-I activity. As a whole, the data suggested that enhancement of the neutrophil migration-inducing activity of PSP-I/PSP-II and PSP-II involved an indirect mechanism, i.e., via activation of resident cells, probably macrophages. On the other hand, PSP-I appeared to act directly on neutrophils. We hypothesize that the neutrophil migration-inducing effect displayed by PSP-II might be due to interaction of its lectin domain with cellular receptors and that neutrophil recruitment induced by PSP-I may involve protein-protein interactions.
Estrogen induces a rapid increase in microvascular permeability in the rodent uterus, leading to stromal edema and a marked increase in uterine wet weight. This edema is believed to create an environment optimal for the growth and remodeling of the endometrium in preparation for implantation and pregnancy. Increased endometrial microvascular permeability also occurs in conjunction with implantation. Estrogen-induced uterine edema is immediately preceded by an increase in the expression of vascular endothelial growth factor (VEGF), a potent stimulator of microvascular permeability. The objective of this study was to determine to what degree immunoneutralization of VEGF would interfere with a) estradiol-induced uterine edema and b) pregnancy. In the first set of experiments, immature female rats were injected with either VEGF antiserum or normal rabbit serum (NRS) prior to 17β-estradiol treatment. Rats treated with estradiol alone showed a 57% increase in uterine wet weight at 6 h compared with controls. Injection of 200 or 300 μl of VEGF antiserum reduced the response to only 20% and 10% above controls, respectively. In the second set of experiments, young adult female mice were treated with 100 μl of either VEGF antiserum or NRS at 1200 h on the fourth day after mating. NRS-treated mice had normal pregnancies. VEGF antiserum, however, completely blocked pregnancy. When VEGF antiserum-treated females were examined on Day 5 for the presence of implantation sites, none were found. These results show that a) VEGF is the major mediator of estrogen-induced increase in uterine vascular permeability and b) VEGF-induced edema is absolutely essential for implantation to take place.
This study was conducted to determine the osmotic properties of bull spermatozoa, including the effects of osmotic stress and cryoprotectant agent (CPA) addition and removal, on sperm motility. Semen from beef bulls was collected by electroejaculation and extended 1:3 in TL-Hepes containing 100 μg/ml pyruvate and 6 mg/ml BSA. In solutions of 150–1200 mOsmolal (mOsm), bull spermatozoa behaved as linear osmometers (r2 = 0.97) with an osmotically inactive cell volume of 61%. The isosmotic cell volume was 23.5 μm3. Motility was determined after exposure to anisosmotic solutions ranging from 35 to 2400 mOsm and after return to isosmotic conditions. Retention of at least 90% of isosmotic motility could be maintained only between 270–360 mOsm. Bull spermatozoa were calculated to retain 90% of their isosmotic motility at 92–103% of their isosmotic cell volume. Motility following a one-step addition and removal of 1 M glycerol, dimethyl sulfoxide, and ethylene glycol was reduced by 31%, 90%, and 6%, respectively, compared with CPA addition only. These data indicate that, during bull spermatozoa cryopreservation, osmotically driven cell volume excursions must be limited by exposure to a very narrow range that may be facilitated by the use of ethylene glycol as a CPA.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is expressed in the female reproductive tract during early pregnancy and can promote the growth and development of preimplantation embryos in several species. We have demonstrated with in vitro experiments that the incidence of blastulation in human embryos is increased approximately twofold when GM-CSF is present in the culture medium. In the present study, we investigated the mechanisms underlying the embryotrophic actions of GM-CSF. Using reverse transcription-polymerase chain reaction and immunocytochemistry, expression of mRNA and protein of the GM-CSF-receptor alpha subunit (GM-Rα) was detected in embryos from the first-cleavage through blastocyst stages of development, but the GM-CSF-receptor beta common subunit (βc) could not be detected at any stage. When neutralizing antibodies reactive with GM-Rα were added to embryo culture experiments, the development-promoting effect of GM-CSF was ablated. In contrast, GM-CSF activity in embryos was not inhibited either by antibodies to βc or by E21R, a synthetic GM-CSF analogue that acts to antagonize βc-mediated GM-CSF signaling. Unexpectedly, E21R was found to mimic native GM-CSF in promoting blastulation. When embryos were assessed for apoptosis and cell number by confocal microscopy after TUNEL and propidium iodine staining, it was found that blastocysts cultured in GM-CSF contained 50% fewer apoptotic nuclei and 30% more viable inner cell mass cells. Together, these data indicate that GM-CSF regulates cell viability in human embryos and that this potentially occurs through a novel receptor mechanism that is independent of βc.
The male-enhanced antigen-1 gene (Mea1) was originally isolated from a murine testicular cDNA library using anti-H-Y antigen antisera and was assigned to chromosome 17. On analysis of its structure and expression, we found that the Mea1 genomic sequence is flanked by two other genes: Ppp2r5d present in its 3′-terminus in a tail-to-tail orientation and a novel gene called Peas in its 5′-terminus in a head-to-head orientation. The coding sequences of the two genes embedded in the Mea1 sequence are located on the opposite DNA strands of Mea1. Cap-site analysis of Mea1 revealed that it is transcribed from at least seven sites. Most splice variants of Mea1 were abundantly expressed in the testis; the d-type was weakly expressed in the other tissues. AP-2-binding motifs were detected in the transcription-initiation sites. In situ hybridization and immunohistochemical studies revealed Mea1 expression in pachytene spermatocytes. This expression was most prominent in spermatids and residual bodies. The Mea1 protein was also localized in the cytoplasm of elongated spermatids and residual bodies. Localization of the Mea1 suggests that it may function in the very late stages of spermiogenesis. The possibility that Mea1 is one of the serologically detectable male antigens is discussed.
Thomas K. Monsees, Sonja Blöcher, Frank Heidorn, Anett Winkler, Wolf-Eberhard Siems, Werner Müller-Esterl, Jaleh Hayatpour, Werner Miska, Wolf-Bernhard Schill
To investigate the possible role of the local tissue kallikrein-kinin system in spermatogenesis, we analyzed gene expression and cellular distribution of the bradykinin subtype-2 receptor (B2 receptor) in the rat testis. Reverse transcription-polymerase chain reaction revealed B2 receptor expression in testis and primary cultures of Sertoli cells and peritubular cells isolated from immature and mature rats. In situ hybridization of the B2-receptor mRNA showed intense labeling of cells on the base of the seminiferous tubule, whereas the autoradiographic signals gradually decreased toward the lumen. Immune histochemistry using testicular sections of pubertal and adult rats showed specific staining for the B2-receptor protein in cells of the adluminal compartment of the seminiferous tubules, especially on pachytene spermatocytes and spermatids. This immunostaining varied with the stages of the seminiferous cycle. The receptor protein was also observed on peritubular cells of pubertal rats. In conclusion, we demonstrated a stage-specific expression of the bradykinin B2 receptor in different cells of the seminiferous tubules of the rat testis. The results point to a possible function of the tissue kallikrein-kinin system in the local regulation of spermatogenesis.
We used immunoneutralization of endogenous estradiol to investigate deficiencies in the estradiol-feedback regulation of LH secretion as a primary cause of follicular cysts in cattle. Twenty-one cows in the prostaglandin (PG) F2α-induced follicular phase were assigned to receive either 100 ml of estradiol antiserum produced in a castrated male goat (n = 11, immunized group) or the same amount of castrated male goat serum (n = 10, control group). The time of injection of the sera was designated as 0 h and Day 0. Five cows in each group were assigned to subgroups in which we determined the effects of estradiol immunization on LH secretion and follicular growth during the periovulatory period. The remaining six estradiol-immunized cows were subjected to long-term analyses of follicular growth and hormonal profiles, including evaluation of pulsatile secretion of LH. The remaining five control cows were used to determine pulsatile secretion of LH on Day 0 (follicular phase) and Day 14 (midluteal phase). The control cows exhibited a preovulatory LH surge within 48 h after injection of the control serum, followed by ovulation of the dominant follicle that had developed during the PGF2α-induced follicular phase. In contrast, the LH surge was not detected after treatment with estradiol antiserum. None of the 11 estradiol-immunized cows had ovulation of the dominant follicle, which had emerged before estradiol immunization and enlarged to more than 20 mm in diameter by Day 10. Long-term observation of the six immunized cows revealed that five had multiple follicular waves, with maximum follicular sizes of 20–45 mm at 10- to 30-day intervals for more than 50 days. The sixth cow experienced twin ovulations of the initial persistent follicles on Day 18. The LH pulse frequency in the five immunized cows that showed the long-term turnover of cystic follicles ranged from 0.81 ± 0.13 to 0.97 ± 0.09 pulses/h during the experiment, significantly (P < 0.05) higher than that in the midluteal phase of the control cows (0.23 ± 0.07). The mean LH concentration in the immunized cows was also generally higher than that in the luteal phase of the control cows. However, the LH pulse and mean concentration of LH after immunization were similar to those in the follicular phase of the control cows. Plasma concentrations of total inhibin increased (P < 0.01) concomitant with the emergence of cystic follicles and remained high during the growth of cystic follicles, whereas FSH concentrations were inversely correlated with total inhibin concentrations. In conclusion, neutralization of endogenous estradiol resulted in suppression of the preovulatory LH surge but a normal range of basal LH secretion, and this circumstance led to an anovulatory situation similar to that observed with naturally occurring follicular cysts. These findings provide evidence that lack of LH surge because of dysfunction in the positive-feedback regulation of LH secretion by estradiol can be the initial factor inducing formation of follicular cysts.
The interaction between angiogenic factors and related receptors is closely associated with follicular angiogenesis. The present study was performed to determine the relationships between the capillary network and mRNA expression of several angiogenic factors and related receptors during porcine follicular development. Ovaries in gilts were collected 72 h after eCG (1250 IU) treatment for histological observation. Granulosa cells and thecal tissues in small (diameter, <4 mm), medium (diameter, 4–5 mm), or large (diameter, >5 mm) individual follicles were collected for detection of mRNA expression of vascular endothelial growth factor (VEGF) 120, VEGF 164, basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) in granulosa cells and fms-like tyrosine kinase (Flt-1), fetal liver kinase (Flk-1) or the murine homologue of kinase domain region (KDR), bFGF receptor (bFGF-R), and EGF receptor (EGF-R) in thecal tissue by semiquantitative reverse transcription-polymerase chain reaction. The eCG treatment resulted in the emergence of healthy preovulatory follicles (diameter, >6.0 mm) that possessed more capillaries in the thecal cell layer and a significant increase in the percentage of atretic follicles of 1.0–2.9 mm in diameter. The number of capillaries in the thecal cell layer increased significantly in healthy follicles larger than 3 mm in diameter in the eCG group compared with those in controls. The expression of VEGF 120, VEGF 164, and bFGF mRNAs increased in granulosa cells of medium and large follicles from ovaries of prepubertal gilts after eCG treatment. The Flt-1, Flk-1/KDR, and bFGF-R mRNA expression increased in theca cells of medium and large follicles after eCG treatment. The expression of EGF mRNA increased in granulosa cells of small, medium, and large follicles from ovaries after eCG treatment, but the mRNA expression of EGF-R in thecal tissue did not change. These data indicate that preovulatory follicles possessed a larger capillary network and expressed more mRNAs of angiogenic factors in granulosa cells and related receptors in thecal tissue. We concluded that VEGF 120, VEGF 164, bFGF, and EGF may be greatly involved in the angiogenic process of follicular development in prepubertal gilts with eCG treatment.
A previous study showed that with hypertonic sucrose treatment, a projection is formed in mouse metaphase II (MII) oocytes in proximity to the spindle and chromosomes, where a polarized cortical domain is located. However, little is known about the mechanisms involved in this process. Here, we designed a series of experiments to test the hypothesis that hypertonicity is the induction factor for the formation of projections in mouse MII oocytes. Our hypothesis was supported by the following evidence: 1) different concentrations of sucrose affected the formation and shape of projections, whereas serum or basic media had little effect; 2) other hypertonic sugar solutions could also induce projection formation; and 3) projections could also be induced by hypertonic NaCl solution. We then tested the hypothesis that the cytoskeleton was involved in the formation of hypertonicity-induced projections. This was investigated by culturing MII- and germinal vesicle-stage mouse oocytes in the presence or absence of cytoskeletal inhibitors, including cytochalasin B (disruption of actin filaments), nocodazole (disruption of microtubules), and taxol (polymerization of tubulin molecules). We found that none of the cytoskeletal inhibitors alone could prevent hypertonicity-induced projection formation, whereas the combination of cytochalasin B with nocodazole or with taxol blocked the formation of these projections in most matured oocytes. When immature oocytes were incubated in cytochalasin B, but not in nocodazole or taxol, the formation of an actin-rich domain and the peripheral positioning of the spindle were blocked during maturation; hence, no projections were formed, even after hypertonic sucrose treatment. Based on these observations, we propose that three components are necessary for projection formation: 1) a polarized cortical patch (e.g., an actin-rich domain), 2) rigid submembrane structures (e.g., a spindle and/or chromosomes), and 3) solid connections between the above. Any disturbance of one of these factors will affect the hypertonicity-induced projection formation. Hypertonicity-induced projection in mouse oocytes thus provides an experimental model for studies regarding cell polarity and the interaction between membrane and submembrane components.
Molecular variants of GnRH were characterized by reverse-phase, high-performance liquid chromatography from brain extracts of fish in three different orders: Synbranchiformes (swamp eel [Synbranchus marmoratus]), Cyprinidontiformes (platyfish [Xiphophorus maculatus] and green swordtail [X. helleri]), and Atheriniformes (Patagonia pejerrey [Odontesthes hatchery]). Also, pituitary gland extracts from the pejerrey O. bonariensis (Atheriniformes) were characterized. Eluted fractions were tested in radioimmunoassays with antisera specific to GnRH, including both antisera that detected only one form of GnRH and those that detected several forms. The results show that brain extracts obtained from all species contained the same three molecular forms of GnRH, which were immunologically and chromatographically undistinguishable from chicken GnRH-II, pejerrey GnRH (pjGnRH), and salmon GnRH. This study supports the hypothesis that expression of these three forms is common in different fish orders and that pjGnRH is the main regulator of pituitary function in these fish.
Differential display-reverse transcriptase-polymerase chain reaction was used to examine Sertoli cell gene expression. As a result, two new members of the mouse cystatin multigene family were isolated and named cystatin SC (cystatin-related gene expressed in Sertoli cells) and cystatin TE-1 (cystatin-related gene highly expressed in testis and epididymis). The full-length cDNA sequence of cystatin SC contains an open reading frame that encodes a putative signal peptide of 20 amino acids and a mature protein of 110 amino acids, whereas that of cystatin TE-1 encodes a 128 amino acid protein with a predicted signal peptide of 21 amino acids. Both of the deduced amino acid sequences contain four highly conserved cysteine residues in precise alignment with other cystatin family members. The derived cystatin SC and TE-1 amino acid sequences lack some of the specific, highly conserved motifs believed to be necessary for cysteine proteinase inhibition activity. Northern blot analysis revealed that cystatin SC mRNA was detected only in the testis, whereas the cystatin TE-1 gene was highly expressed in testis and epididymis with very low expression in ovary and prostate. In situ hybridization showed that cystatin SC mRNA was localized mainly to Sertoli cells with an obvious stage-dependent expression, and that cystatin TE-1 mRNA was predominantly expressed in Sertoli cells without apparent stage-dependent expression. Cystatin TE-1 mRNA, as displayed by in situ hybridization, was expressed only in the epithelial cells of the proximal caput region of the epididymis. The unusual amino acid sequence and highly restricted expression suggests that cystatins SC and TE-1 play a very specialized role in the testis and epididymis.
The aim of the present study is to investigate whether vascular protective effects of steroid hormones in aged female rats are mediated through calcitonin gene-related peptide (CGRP), a known potent vasodilator. This rat model reflects the postmenopausal state in humans. We examined whether blood pressure lowering effects of CGRP are enhanced in aged female rats when steroid hormone treatments are administered. We observed that 1) continuous infusion of CGRP lowered blood pressures in rats treated with estradiol-17β and progesterone (P < 0.05), 2) acute hypotensive effects of CGRP were significantly (P < 0.05) greater in the presence of steroid hormones than in vehicle-treated groups, 3) blood pressure decreases in response to CGRP are lower in aged female rats than they are in young adult ovariectomized rats, and 4) age-related differences in the hypotensive effects of CGRP were nullified when animals were treated with steroid hormones. These data suggest that female sex steroid hormones may modulate arterial blood pressure by regulating the CGRP effector system in female rats regardless of age.
Previous studies have shown that two indazole compounds, lonidamine [1-(2,4-dichlorobenzyl)-indazole-3-carboxylic acid] and its analogue AF2785 [(1-(2,4-dichlorobenzyl)-indazol-3-acrylic acid], suppress fertility in male rats. We also found that these compounds inhibit the cystic fibrosis transmembrane conductance regulator chloride (CFTR-Cl−) current in epididymal epithelial cells. To further investigate how lonidamine and AF2785 inhibit the current, we used a spectral analysis protocol to study whole-cell CFTR current variance. Application of lonidamine or AF2785 to the extracellular membrane of rat epididymal epithelial cells introduced a new component to the whole-cell current variance. Spectral analysis of this variance suggested a block at a rate of 3.68 μmol−1/sec−1 and an off rate of 69.01 sec−1 for lonidamine, and an on rate of 3.27 μmol−1/sec−1 and an off rate of 108 sec−1 for AF2785. Single CFTR-Cl− channel activity using excised inside-out membrane patches from rat epididymal epithelial cells revealed that addition of lonidamine to the intracellular solution caused a flickery block (a reduction in channel-open time) at lower concentration (10 μM) without any effect on open channel probability or single-channel current amplitude. At higher concentrations (50 and 100 μM), lonidamine showed a flickery block and a decrease in open-channel probability. The flickery block by lonidamine was both voltage-dependent and concentration-dependent. These results suggest that lonidamine and AF2785, which are open-channel blockers of CFTR at low concentrations, also affect CFTR gating at high concentrations. We conclude that these indazole compounds provide new pharmacological tools for the investigation of CFTR. By virtue of their interference with reproductive processes, these drugs have the potential for being developed into novel male contraceptives.
The secretory cells lining the lumen of the mammalian oviduct synthesize and secrete high molecular weight glycoprotein (OGP). Molecular cDNA cloning of most of the mammalian OGP has been accomplished. The nucleotide and deduced amino acid sequences show a remarkable homology across species and also to chitinase protein. Even though OGP has been shown to interact with gametes and the early embryo, the protein's direct function has not yet been established. A prerequisite for such studies is the availability of well-characterized protein in bulk. We used recombinant DNA technology to obtain OGP (rOGP). An authentic partial cDNA clone encoding bonnet monkey (Macaca radiata) OGP (accession number AF132 215) was recloned into expression vector pET20b. Overexpression of the protein could be demonstrated after induction with isopropylthio-β-galactopyranoside. Recombinant protein was purified by gel filtration of Escherichia coli lysate through Sephadex G75. The protein migrated with a molecular weight of ∼14 kDa on SDS-PAGE. The molecular weight as assessed by matrix-assisted laser adsorption time-of-flight was 14 439 daltons. With Western blot procedures the protein could be immunostained with antibodies to human OGP, baboon OGP, and antipeptide antibodies generated against a well-conserved region of mammalian OGP. The monospecificity of rabbit antibodies generated against rOGP was established by its ability to immunostain human OGP (100–110 kDa) isolated from hydrosalpinx by Western blot analysis, and the antibody immunostained epithelial cells that secrete OGP in human fallopian tubes. OGP binding sites on the head and tail region of monkey sperm could be demonstrated by using antibody against rOGP.
In rabbit embryos, zygotic transcripts are required for the development of the embryo only from the 8- to 16-cell stage onward, more than 44 h after fertilization (i.e., zygotic gene activation; ZGA). In order to characterize the first zygotic transcripts expressed in this species we used a suppression subtractive hybridization approach to isolate RNA that was present after the major transcriptional activation (morula stage), but absent at the 1-cell stage as maternal transcripts. One hundred fourteen differentially expressed inserts were selected and sequenced. A statistical analysis of expression patterns throughout the preimplantation period of development shows that genes transcribed from ZGA onward follow different patterns of expression. Considering their early post-ZGA behavior, we describe at least two main patterns: a gradual increase from ZGA onward, and a sharp increase in expression at ZGA followed by a marked decrease at the morula stage. Our data show that both ZGA and some early post-ZGA events are involved in the establishment of specific patterns of embryonic gene expression.
Estrogen regulates the growth and differentiation of the uterus via binding to estrogen receptors (ERs), members of the nuclear receptor family of transcription factors. Two forms of ER exist: ERα and ERβ. The former is a well-characterized mediator of estrogen-induced transcription, but the function of the latter is unclear. Recent in vitro studies suggest that both splicing forms of ERβ expressed in rat tissues, β1 and β2, may function as inhibitors of ERα transcriptional activity. To gain insight into the role of ERβ in estrogen action, we examined the effects of estrogen and relaxin, a ligand-independent activator of ERs, on the expression of ERβ1 and ERβ2 mRNA in the uterus in vivo. Eighteen-day-old female rats were ovariectomized and, after recovery, treated with 17β-estradiol, relaxin, or vehicle. Quantitative reverse transcription-polymerase chain reaction analyses of uterine RNA from estrogen-treated animals revealed marked decreases in the steady-state levels of the mRNAs for both ERβ1 and ERβ2 at 3, 6, and 24 h after treatment. Relaxin induced a similar effect. Neither hormone had any significant effect on ERα mRNA levels. To determine if endogenous estrogen exerts this effect, we examined the expression of ERβs in the uterus during the estrous cycle. Levels of both isoforms were highest at diestrus (low estrogen), were significantly lower at early proestrus (rising estrogen), reached a nadir during late proestrus (peak estrogen), and rebounded at estrus (declining estrogen). These data suggest that down-regulation of ERβ expression may be required for estrogen to exert its full trophic effects on the uterus.
Mesonephric cell migration and seminiferous cord formation are critical processes in embryonic testis development at the time of male sex determination. Extracellular growth factors shown to influence seminiferous cord formation such as neurotropin-3 utilize in part the phosphotidylinositol 3-kinase (PI3K) signal transduction pathway. The current study investigates the hypothesis that the PI3K pathway is critical in seminiferous cord formation and testis development. The role of the PI3K signaling pathway in testicular cord formation was examined using an Embryonic Day 13 organ culture system and a PI3K-specific inhibitor LY294002. The actions of a mitogen-activated protein (MAP) kinase-specific inhibitor PD98059 was also examined. The PI3K inhibitor blocked cord formation or reduced the number of cords in a concentration-dependent manner. The actions of LY294002 were found to have a developmental stage specificity in that cord inhibition was observed in organs from embryos with 16–17 tail somites, while organs from embryos with 19 or more tail somites had no block in cord formation and only a small reduction in cord number. In contrast, the MAP kinase inhibitor PD98059 did not block cord formation and only caused a slight reduction in cord number. Neither PI3K or MAP kinase inhibitor altered apoptotic cell number, suggesting apoptosis was not the reason for the inhibition of cord formation. Embryonic testis cell migration assays showed that the PI3K inhibitor LY294002 blocked mesonephros cell migration into the testis, while the MAP kinase inhibitor had no effect. Observations suggest the interference of cell migration is the cause for the inhibition of cord formation. Western blot analysis confirmed that LY294002 and PD98509 inhibited phosphorylation of Akt and ERK1/ERK2, respectively. Combined observations demonstrate that the PI3K signaling pathway is involved in embryonic testis cord formation and mesonephros cell migration.
Serine/threonine phosphatase PP1γ2 is a testis-specific protein phosphatase isoform in spermatozoa. This enzyme appears to play a key role in motility initiation and stimulation. Catalytic activity of PP1γ2 is higher in immotile compared with motile spermatozoa. Inhibition of PP1γ2 activity causes both motility initiation and motility stimulation. Protein phosphatases, in general, are regulated by their binding proteins. The objective of this article is to understand the mechanisms by which PP1γ2 is regulated, first by identifying its regulatory proteins. We had previously shown that a portion of bovine sperm PP1γ2 is present in the cytosolic fraction of sperm sonicates. We purified PP1γ2 from soluble bovine sperm extracts by immunoaffinity chromatography. Gel electrophoresis of the purified enzyme showed that it was complexed to a protein 43 Mr × 10−3 in size. Microsequencing revealed that this protein is a mammalian homologue of sds22, which is a yeast PP1 binding protein. Phosphatase activity measurements showed that PP1γ2 complexed to sds22 is catalytically inactive. The complex cannot be activated by limited proteolysis. The complex is unable to bind to microcystin sepharose. This suggests that sds22 may block the microcystin binding site in PP1γ2. A proportion of PP1γ2 in sperm extracts, which is presumably not complexed to sds22, is catalytically active. Fluorescence immunocytochemistry was used to determine the intrasperm localization of PP1γ2 and sds22. Both proteins are present in the tail. They are also present in distinct locations in the head. Our data suggest that PP1γ2 binding to sds22 inhibits its catalytic activity. Mechanisms regulating sds22 binding to PP1γ2 are likely to be important in understanding the biochemical basis underlying development and regulation of sperm function.
The present study determined the ovarian cellular localization of the mRNA for the tissue inhibitors of metalloproteinases (TIMPs) during pseudopregnancy in the rat. Pseudopregnancy was induced by eCG/hCG stimulation. At Day 1 of pseudopregnancy, intense reaction product for TIMP-1 mRNA was observed surrounding the developing corpus luteum (CL), with less intense expression present in granulosa-lutein cells. With continued luteal development, the TIMP-1 mRNA encircling the CL was lost, although low levels of expression were found within the CL. For TIMP-2 mRNA, intense reaction product was observed surrounding the developing CL but, unlike TIMP-1, was present in granulosa-lutein cells, with high levels near the center of the CL. The localization pattern of TIMP-2 mRNA was unchanged through the latter stages of pseudopregnancy. TIMP-3 mRNA expression was strikingly different from the other TIMPs. At Day 1 of pseudopregnancy, intense reaction product for TIMP-3 mRNA was observed in granulosa-lutein cells of certain developing CL, whereas adjacent follicles did not express TIMP-3 mRNA. With continued luteal development, there was a homogenous, intense localization of TIMP-3 mRNA throughout the CL, which was unchanged during pseudopregnancy. To understand the induction of TIMP-3 mRNA in the developing CL, a series of experiments was performed to compare markers of follicular maturity with the presence of TIMP-3 mRNA. TIMP-3 mRNA appears to be switched on in granulosa cells of follicles destined to ovulate. The distinct pattern of expression of the three TIMPs suggests that each inhibitor may regulate either the site and extent of proteolytic action or specific matrix metalloproteinases at different periods of the luteal life span.
The objective of this study was to determine the presence of autocrine/paracrine regulation of matrix metalloproteinase-9 (MMP-9) expression mediated by proinflammatory cytokines in human fetal membranes. Fetal membranes obtained from women who underwent cesarean delivery before labor were manually separated into amnion and chorion layers and maintained in culture. These explants were stimulated with tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and either lipopolysaccharide (LPS) alone or LPS with anti-TNFα or anti-IL-1β-neutralizing antibodies. Levels of proMMP-9 in culture media were evaluated by zymography. Enzyme-linked immunosorbant assay was performed to measure the quantity of IL-1β, TNFα, and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) after LPS stimulation. ProMMP-9 activity was upregulated after stimulation of the amnion by LPS, TNFα, and IL-1β. The increased activity of proMMP-9 resulting from LPS stimulation in the amnion was blocked by the addition of TNFα neutralizing antibody but not with anti-IL-1β. No significant effect of LPS, TNFα, or IL-1β on proMMP-9 expression was observed in the chorion; however, the chorion produced both cytokines when stimulated with LPS. In contrast, TIMP-1 levels remained unchanged in all cultures incubated in the presence of LPS. Therefore, these data indicate that proMMP-9 is produced by the amnion but not the chorion in response to LPS. Because anti-TNFα-neutralizing antibody inhibits proMMP-9 activity in the amnion, TNFα appears to upregulate proMMP-9 production by the amnion in an autocrine fashion. Meanwhile, TNFα and IL-1β produced by the chorion may upregulate amnionic proMMP-9 production in a paracrine manner.
The current pandemic of sexually transmitted human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) has created an urgent need for a new type of microbicide, one that is both a spermicide and a virucide. In a systematic effort to identify a non-detergent-type antiviral spermicide, we have rationally designed and synthesized a series of cyclohexenyl thiourea (CHET) nonnucleoside inhibitors (NNIs) of HIV-1 reverse transcriptase (RT) with sperm-immobilizing activity (SIA). To gain further insight into the structural requirements for the optimal activity of these dual-function NNIs, we compared the effects of thiazolyl, benzothiazolyl, and pyridyl ring substitutions and functionalization with electron-donating and electron-withdrawing groups as well as the importance of thiourea and urea moieties of 15 heterocyclic ring-substituted NNIs. RT activity and p24 antigen production in HIV-infected peripheral blood mononuclear cells were used as markers of viral replication. Computer-assisted sperm analysis was used for evaluating SIA of CHET compounds. The rabbit model was used for evaluation of in vivo mucosal toxicity and contraceptive activity of the lead NNIs. Three CHET-NNIs with a bromo, chloro, or methyl substitution at the 5 position of the pyridyl ring exhibited potent anti-HIV activity at nanomolar concentrations (IC50 = 3–5 nM) and SIA at micromolar concentrations (EC50 = 45–96 μM). The dual-function CHET-NNIs were potent inhibitors of drug-resistant HIV-1 strains with genotypic and phenotypic NNI resistance. Upon substitution of the sulfur atom of the thiourea moiety with an oxygen atom, the most striking difference noted was a 38-fold reduction in time required for 50% sperm immobilization (T1/2). A quantitative structure-activity relationship (QSAR) analysis was used in deriving regression equations between 20 physicochemical properties and SIA of NNIs. QSAR analysis showed that the T1/2 values positively correlated with values for molecular refractivity (r = 0.88), hydrophobicity (r = 0.72), atomic polarizability (r = 0.70), and principal moment of inertia (r = 0.63) of spermicidal NNIs. A stepwise multiple regression model to describe the relationship of T1/2 values with these four regressors provided excellent predictability (r = 0.93). Exposure of semen to thiourea/urea NNIs either alone or in combination at the time of artificial insemination led to marked or complete inhibition of pregnancy in rabbits as assessed by the number of embryo implants versus corpora lutea on Day 8 of pregnancy. Repeated intravaginal application of a gel-microemulsion with and without 0.5%, 1%, and 2% CHET-NNI or its urea analog either alone or in combination did not induce mucosal toxicity. We hypothesize that the gain of spermicidal function by CHET-NNIs is due to their metabolic oxidation to urea analogs by sperm. Three reaction pathways are discussed. The extremely rapid SIA of the urea analog as well as the broad-spectrum anti-HIV activity of spermicidal CHET-NNIs together with their lack of mucosal toxicity and the marked ability to reduce in vivo fertility is particularly useful for the clinical development of a dual-function spermicidal microbicide. The cyclohexenyl pyridyl NNIs, especially N-[2-(1-cyclohexenyl)ethyl] N′-[2-(5-bromopyridyl)]-thiourea in combination with the urea analog, show unique clinical potential as anti-HIV spermicides aimed at curbing the sexual transmission of multidrug-resistant HIV-1 while providing effective fertility control for women.
Guanylyl cyclase C (GC-C) is a membrane-associated form of guanylyl cyclase and serves as the receptor for the heat-stable enterotoxin (ST) peptide and endogenous ligands guanylin, uroguanylin, and lymphoguanylin. The major site of expression of GC-C is the intestinal epithelial cell, although GC-C is also expressed in extraintestinal tissue such as the kidney, airway epithelium, perinatal liver, stomach, brain, and adrenal glands. Binding of ligands to GC-C leads to accumulation of intracellular cGMP, the activation of protein kinases G and A, and phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that regulates salt and water secretion. We examined the expression of GC-C and its ligands in various tissues of the reproductive tract of the rat. Using reverse transcriptase and the polymerase chain reaction, we demonstrated the presence of GC-C, uroguanylin, and guanylin mRNA in both male and female reproductive organs. Western blot analysis using a monoclonal antibody to GC-C revealed the presence of differentially glycosylated forms of GC-C in the caput and cauda epididymis. Exogenous addition of uroguanylin to minced epididymal tissue resulted in cGMP accumulation, suggesting an autocrine or endocrine activation of GC-C in this tissue. Immunohistochemical analyses demonstrated expression of GC-C in the tubular epithelial cells of both the caput epididymis and cauda epididymis. Our results suggest that the GC-C signaling pathway could converge on CFTR in the epididymis and perhaps control fluid and ion balance for optimal sperm maturation and storage in this tissue.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F2α and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH progesterone, or LH antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.
The purpose of this study was to evaluate the role of inhibin A in follicular development and apoptosis-related mechanisms in preantral and early antral follicles from prepubertal diethylstilbestrol (DES)-treated rats. Granulosa cells isolated from the ovaries of 23- to 25-day-old rats were cultured in serum-free medium containing FSH (20 ng/ml), transforming growth factor β (5 ng/ml), and estradiol (50 ng/ml) in the presence or absence of different concentrations of recombinant human inhibin A. 3H-Thymidine incorporation was decreased in the presence of Inh, but no significant changes were observed in progesterone and estradiol levels in culture medium. An increase in low molecular weight DNA fragmentation indicative of apoptosis and an increase in the levels of Bax protein with no changes in Bcl-2 protein levels were evident in early antral follicles incubated for 24 h with Inh. For each animal, Inh (0.5 μg/ovary) was injected intrabursally in one ovary, and the contralateral ovary served as a control. Ovarian histology revealed an inhibitory effect of Inh treatment on the follicular development induced by DES. At 24 h after Inh injection, the number of preantral follicles was increased compared with controls, whereas the number of early antral follicles was decreased. In addition, in vivo Inh treatment caused an increase in the percentage of apoptotic cells in preantral and early antral follicles. These results suggest that inhibin produced by the dominant follicle may act as a paracrine factor inhibiting the growth of neighboring follicles, thus participating in the mechanism of follicular selection.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere