BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The microbiome has been shown, or implicated to be involved, in multiple facets of human health and disease, including not only gastrointestinal health but also metabolism, immunity, and neurology. Although the predominant focus of microbiome research has been on the gut, other microbial communities such as the vaginal or cervical microbiome are likely involved in physiological homeostasis. Emerging studies also aim to understand the role of different microbial niches, such as the endometrial or placental microbial communities, on the physiology and pathophysiology of reproduction, including their impact on reproductive success and the etiology of adverse pregnancy outcomes (APOs). The study of the microbiome during pregnancy, specifically how changes in maternal microbial communities can lead to dysfunction and disease, can advance the understanding of reproductive health and the etiology of APOs. In this review, we will discuss the current state of non-human primate (NHP) reproductive microbiome research, highlight the progress with NHP models of reproduction, and the diagnostic potential of microbial alterations in a clinical setting to promote pregnancy health. NHP reproductive biology studies have the potential to expand the knowledge and understanding of female reproductive tract microbial communities and host–microbe or microbe–microbe interactions associated with reproductive health through sequencing and analysis. Furthermore, in this review, we aim to demonstrate that macaques are uniquely suited as high-fidelity models of human female reproductive pathology.
Summary Sentence
We propose that through investigation of changes in female reproductive tract microbial niches during natural and experimental disease states in NHPs, there is potential to develop diagnostic methods for biomarkers of microbial dysfunction associated with known reproductive pathologies.
Maternal use of antidepressants has increased throughout the last decades; selective serotonin reuptake inhibitors (SSRI) are the most prescribed antidepressants. Despite the widespread use of SSRI by women during reproductive age and pregnant women, an increasing amount of research warns of possible detrimental effects of maternal use of SSRI during pregnancy including low birthweight/small for gestational age and preterm birth. In this review, we revisited the impact of maternal use of SSRI during pregnancy, its impact on serotonin homeostasis in the maternal and fetal circulation and the placenta, and its impact on pregnancy outcomes—particularly intrauterine growth restriction and preterm birth. Maternal use of SSRI increases maternal and fetal serotonin. The increase in maternal circulating serotonin and serotonin signaling likely promotes vasoconstriction of the uterine and placental vascular beds decreasing blood perfusion to the uterus and consequently to the placenta and fetus with potential impact on placental function and fetal development. Several adverse pregnancy outcomes are similar between women, sheep, and rodents (decreased placental size, decreased birthweight, shorter gestation length/preterm birth, neonatal morbidity, and mortality) highlighting the importance of animal studies to assess the impacts of SSRI. Herein, we address the complex interactions between maternal SSRI use during gestation, circulating serotonin, and the regulation of blood perfusion to the uterus and fetoplacental unit, fetal growth, and pregnancy complications.
Summary Sentence
Although SSRI are commonly used by pregnant women, they are associated with detrimental effects on fetal development and pregnancy outcomes likely through increasing maternal circulating serotonin leading to reduced placental vascular perfusion.
The etiology and pathogenesis of miscarriage, which is the most common pregnancy complication, have not been fully elucidated. There is a constant search for new screening biomarkers that would allow for the early diagnosis of disorders associated with pregnancy pathology. The profiling of microRNA expression is a promising research area, which can help establish the predictive factors for pregnancy diseases. Molecules of microRNAs are involved in several processes crucial for the development and functioning of the body. These processes include cell division and differentiation, programmed cell death, blood vessel formation or tumorigenesis, and the response to oxidative stress. The microRNAs affect the number of individual proteins in the body due to their ability to regulate gene expression at the post-transcriptional level, ensuring the normal course of many cellular processes. Based on the scientific facts available, this paper presents a compendium on the role of microRNA molecules in the miscarriage process. The expression of potential microRNA molecules as early minimally invasive diagnostic biomarkers may be evaluated as early as the first weeks of pregnancy and may constitute a monitoring factor in the individual clinical care of women in early pregnancy, especially after the first miscarriage. To summarize, the described scientific data set a new direction of research in the development of preventive care and prognostic monitoring of the course of pregnancy.
Summary Sentence:
The expression of potential miRNA molecules as early minimally invasive diagnostic biomarkers may be evaluated in the first weeks of pregnancy and may constitute a monitoring factor in the individual clinical care of women in early pregnancy.
Advanced maternal age is associated with adverse pregnancy and offspring outcomes, including neurodevelopmental disorders. While age-related oocyte and embryonic abnormalities may underlie this association, the aged maternal uterine environment also plays an important role in offspring development and survival. The aim of this study was to evaluate the contribution of maternal age-related embryonic and uterine factors on pregnancy and offspring behavior, by using a model of reciprocal embryo transfer between old and young female mice. Pregnancies were obtained by transferring embryos collected from either old (9–14 months) or young (3–4 months) C57BL/6J female mice to either young or old recipients. The results showed that embryos from old and young donors have comparable developmental potential when transferred to young recipients, whereas no pregnancies were obtained by transferring embryos of young females to old recipients. Moreover, the offspring conceived by aged females displayed altered ultrasonic vocalization and learning skills compared to the progeny of young females, even though they were both prenatally and postnatally fostered by young recipients. These results indicate that maternal factors mostly determine the occurrence of age-related pregnancy complications, whereas the long-term effects of maternal aging on the offspring's behavior could be already established at pre-implantation stages and depend on embryonic factors.
Summary Sentence
Embryos conceived by old females develop normally when surgically transferred to young recipients. Offspring conceived by old females display altered behaviors, even though they were prenatally and postnatally fostered by young females.
Aerobic exercises could improve the sperm motility of obese individuals. However, the underlying mechanism has not been fully elucidated, especially the possible involvement of the epididymis in which sperm acquire their fertilizing capacity. This study aims to investigate the benefit effect of aerobic exercises on the epididymal luminal milieu of obese rats. Sprague–Dawley male rats were fed on a normal or high-fat diet (HFD) for 10 weeks and then subjected to aerobic exercises for 12 weeks. We verified that TRPA1 was located in the epididymal epithelium. Notably, aerobic exercises reversed the downregulated TRPA1 in the epididymis of HFD-induced obese rats, thus improving sperm fertilizing capacity and Cl- concentration in epididymal milieu. Ussing chamber experiments showed that cinnamaldehyd (CIN), agonist of TRPA1, stimulated an increase of the short-circuit current (ISC) in rat cauda epididymal epithelium, which was subsequently abolished by removing the ambient Cl- and HCO3-. In vivo data revealed that aerobic exercises increased the CIN-stimulated Cl- secretion rate of epididymal epithelium in obese rats. Pharmacological experiments revealed that blocking cystic fibrosis transmembrane regulator (CFTR) and Ca2+-activated Cl- channel (CaCC) suppressed the CIN-stimulated anion secretion. Moreover, CIN application in rat cauda epididymal epithelial cells elevated intracellular Ca2+ level, and thus activate CACC. Interfering with the PGHS2-PGE2-EP2/EP4-cAMP pathway suppressed CFTR-mediated anion secretion. This study demonstrates that TRPA1 activation can stimulate anion secretion via CFTR and CaCC, which potentially forming an appropriate microenvironment essential for sperm maturation, and aerobic exercises can reverse the downregulation of TRPA1 in the epididymal epithelium of obese rats.
Endocrine disrupting chemicals are present in the environment and/or in consumer products. These agents have the capacity to mimic and/or antagonize endogenous hormones and thus perturb the endocrine axis. The male reproductive tract expresses steroid hormone (androgen and estrogen) receptors at high levels and is a major target for endocrine disrupting chemicals. In this study, Long–Evans male rats were exposed to dichlorodiphenyldichloroethylene, a metabolite of dichlorodiphenyltrichloroethane and a chemical present in the environment, in drinking water at 0.1 and 10 µg/L for 4 weeks. At the end of exposure, we measured steroid hormone secretion and analyzed steroidogenic proteins, including 17β-hydroxysteroid dehydrogenase, 3β-hydroxysteroid dehydrogenase, steroidogenic acute regulatory protein, aromatase, and the LH receptor. We also analyzed Leydig cell apoptosis (poly-(ADP-ribose) polymerase) and caspase-3 in the testes. Testicular testosterone (T) and 17β-estradiol (E2) were both affected by exposure to dichlorodiphenyldichloroethylene by displaying altered steroidogenic enzyme expression. Dichlorodiphenyldichloroethylene exposure also increased the expression of enzymes mediating the pathway for programmed cell death, including caspase 3, pro-caspase 3, PARP, and cleaved PARP. Altogether, the present results demonstrate that dichlorodiphenyldichloroethylene directly and/or indirectly can target specific proteins involved in steroid hormone production in the male gonad and suggest that exposure to environmentally relevant dichlorodiphenyldichloroethylene levels has implications for male reproductive development and function.
Summary Sentence
Exposure to environmentally relevant DDE levels has implications for male reproductive development and activity due to disruption of testicular T and E2 secretion.
Oocyte maturation and subsequent ovulation during the reproductive lifespan ensure long-term reproduction in mammalian females. This is achieved by tight regulation for the maintenance and growth of primordial follicles. However, the underlying mechanisms remain unsolved. We herein report that posttranscriptional gene regulation mediated by an RNA helicase, DEAD-box helicase 6 (DDX6), and phosphoinositide-3-kinase (PI3K)-AKT signaling exhibits an antagonistic interaction in mouse primordial follicles. DDX6 forms P-body-like cytoplasmic foci in oocytes, which colocalize to a P-body component, DCP1A. Interestingly, the P-body-like granules predominantly assemble in primordial follicles, but disperse once follicle growth is initiated, suggesting that they play a role in the maintenance of primordial follicles. Oocyte-specific knockout of Ddx6 using Gdf9-iCre revealed that Ddx6-deficient oocytes are defective in foci assembly and are abnormally enlarged, resulting in premature depletion of primordial follicles. These results indicate that DDX6 is required to maintain primordial follicles. The abnormal oocyte enlargement is because of enhanced PI3K-AKT signaling, a pivotal signaling pathway in the growth of primordial follicles. Conversely, the forced activation of PI3K-AKT signaling by knocking out Pten disassembles P-body-like granules in primordial follicles. These data suggest that DDX6 and PI3K-AKT signaling mutually antagonize the assembly of P-body-like granules and the growth of primordial follicles. We propose this mutual antagonism as an oocyte-intrinsic mechanism controlling the maintenance and growth of primordial follicles, ensuring the longevity of female reproduction.
Summary Sentence
DEAD-box helicase 6, an RNA helicase crucial for P-body assembly, is required to maintain primordial follicles via the attenuation of phosphoinositide-3-kinase (PI3K)-AKT signaling, whereas PI3K-AKT signaling disassembles P-body-like granules in primordial follicles.
The aim of this study was to determine the impact of glycyrrhizin, an inhibitor of high mobility group box 1, on glucose metabolic disorders and ovarian dysfunction in mice with polycystic ovary syndrome. We generated a polycystic ovary syndrome mouse model by using dehydroepiandrosterone plus high-fat diet. Glycyrrhizin (100 mg/kg) was intraperitoneally injected into the polycystic ovary syndrome mice and the effects on body weight, glucose tolerance, insulin sensitivity, estrous cycle, hormone profiles, ovarian pathology, glucolipid metabolism, and some molecular mechanisms were investigated. Increased number of cystic follicles, hormonal disorders, impaired glucose tolerance, and decreased insulin sensitivity in the polycystic ovary syndrome mice were reverted by glycyrrhizin. The increased high mobility group box 1 levels in the serum and ovarian tissues of the polycystic ovary syndrome mice were also reduced by glycyrrhizin. Furthermore, increased expressions of toll-like receptor 9, myeloid differentiation factor 88, and nuclear factor kappa B as well as reduced expressions of insulin receptor, phosphorylated protein kinase B, and glucose transporter type 4 were restored by glycyrrhizin in the polycystic ovary syndrome mice. Glycyrrhizin could suppress the polycystic ovary syndrome-induced upregulation of high mobility group box 1, several inflammatory marker genes, and the toll-like receptor 9/myeloid differentiation factor 88/nuclear factor kappa B pathways, while inhibiting the insulin receptor/phosphorylated protein kinase B/glucose transporter type 4 pathways. Hence, glycyrrhizin is a promising therapeutic agent against polycystic ovary syndrome.
Summary Sentence
Glycyrrhizin could improve inflammation, glucose metabolic disorders, and ovarian dysfunction in polycystic ovary syndrome mice by inhibiting the expression of high mobility group box 1.
The zona pellucida (ZP) is an extracellular matrix that surrounds all vertebrate eggs, and it is involved in fertilization and species-specific recognition. Numerous in-depth studies of the ZP proteins of mammals, birds, amphibians, and fishes have been conducted, but systematic investigation of the ZP family genes and their role during fertilization in reptiles has not been reported to date. In this study, we identified six turtle ZP (Tu-ZP) gene subfamilies (Tu-ZP1, Tu-ZP2, Tu-ZP3, Tu-ZP4, Tu-ZPD, and Tu-ZPAX) based on whole genome sequence data from Mauremys reevesii. We found that Tu-ZP4 had large segmental duplication and was distributed on three chromosomes, and we also detected gene duplication in the other Tu-ZP genes. To evaluate the role of Tu-ZP proteins in sperm–egg binding, we assessed the expression pattern of these Tu-ZP proteins and their ability to induce the spermatozoa acrosome reaction in M. reevesii. In conclusion, this is the first report of the existence of gene duplication of Tu-ZP genes and that Tu-ZP2, Tu-ZP3, and Tu-ZPD can induce acrosome exocytosis of spermatogenesis in the reptile.
The placenta requires high levels of adenosine triphosphate to maintain a metabolically active state throughout gestation. The creatine–creatine kinase–phosphocreatine system is known to buffer adenosine triphosphate levels; however, the role(s) creatine–creatine kinase–phosphocreatine system plays in uterine and placental metabolism throughout gestation is poorly understood. In this study, Suffolk ewes were ovariohysterectomized on Days 30, 50, 70, 90, 110 and 125 of gestation (n = 3–5 ewes/per day, except n = 2 on Day 50) and uterine and placental tissues subjected to analyses to measure metabolites, mRNAs, and proteins related to the creatine–creatine kinase–phosphocreatine system. Day of gestation affected concentrations and total amounts of guanidinoacetate and creatine in maternal plasma, amniotic fluid and allantoic fluid (P < 0.05). Expression of mRNAs for arginine:glycine amidinotransferase, guanidinoacetate methyltransferase, creatine kinase B, and solute carrier 16A12 in endometria and for arginine:glycine amidinotransferase and creatine kinase B in placentomes changed significantly across days of gestation (P < 0.05). The arginine:glycine amidinotransferase protein was more abundant in uterine luminal epithelium on Days 90 and 125 compared to Days 30 and 50 (P < 0.01). The chorionic epithelium of placentomes expressed guanidinoacetate methyltransferase and solute carrier 6A13 throughout gestation. Creatine transporter (solute carrier 6A8) was expressed by the uterine luminal epithelium and trophectoderm of placentomes throughout gestation. Creatine kinase (creatine kinase B and CKMT1) proteins were localized primarily to the uterine luminal epithelium and to the placental chorionic epithelium of placentomes throughout gestation. Collectively, these results demonstrate cell-specific and temporal regulation of components of the creatine–creatine kinase–phosphocreatine system that likely influence energy homeostasis for fetal–placental development.
Summary Sentence
Creatine is abundant in maternal plasma and fetal fluids, and enzymes required for metabolism of creatine are expressed in uteri and placentomes throughout gestation in sheep, indicating a role for creatine metabolism in fetal–-placental development.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere