Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Genomic testing has the potential to transform outcomes for women with infertility conditions, such as premature ovarian insufficiency (POI), with growing calls for widespread diagnostic use. The current research literature, however, often uses poor variant curation leading to inflated diagnostic claims and fails to address the complexities of genomic testing for this condition. Without careful execution of the transition from research to the clinic, there is danger of inaccurate diagnoses and poor appreciation of broader implications of testing. This Forum outlines the benefits of genomic testing for POI and raises often overlooked concerns.
Summary Sentence
Genomic testing has the potential to improve outcomes for women with infertility; however, thorough counseling, rigorous variant curation, and realistic expectations are required for optimal outcomes.
The formation of spermatozoa starts with a germ-line stem cell creating a pool of progenitor cells or undifferentiated spermatogonia. There is a requirement for these progenitor cells to be stimulated by retinoic acid (RA) to enter differentiation and ultimately form spermatocytes, undergo meiosis, form spermatids, and ultimately spermatozoa. After the stimulation by RA, which occurs at sites in the seminiferous tubules, it takes ∼35 days to complete this complex process. As a result, the adult testis contains germ cells in all possible states of differentiation, and the isolation of individual cell types or study of functional aspects of the cycle of the seminiferous epithelium is very difficult. We describe the use of WIN 18 446—an inhibitor of RA synthesis followed by injection of RA as a mechanism for the synchronization of spermatogenesis to one to three stages of the cycle of the seminiferous epithelium. The result is that only one to four germ cell types are prevalent during the first wave of spermatogenesis. In the adult only a predictable few stages of the cycle are present throughout the entire testis enriching the targeted cells or stages of the cycle.
Summary Sentence
Details of methods for synchronizing the germ cell development in the mouse testes.
Human endometrial and decidual stromal cells are the same cells in different environments (nonpregnancy and pregnancy, respectively). Although some authors consider decidual stromal cells to arise solely from the differentiation of endometrial stromal cells, this is a debatable issue given that decidualization processes do not end with the formation of the decidua, as shown by the presence of stromal cells from both the endometrium and decidua in both undifferentiated (nondecidualized) and decidualized states. Furthermore, recent functional and transcriptomic results have shown that there are differences in the decidualization process of endometrial and decidual stromal cells, with the latter having a greater decidualization capacity than the former. These differences suggest that in the terminology and study of their characteristics, endometrial and decidual stromal cells should be clearly distinguished, as should their undifferentiated or decidualized status. There is, however, considerable confusion in the designation and identification of uterine stromal cells. This confusion may impede a judicious understanding of the functional processes in normal and pathological situations. In this article, we analyze the different terms used in the literature for different types of uterine stromal cells, and propose that a combination of differentiation status (undifferentiated, decidualized) and localization (endometrium, decidua) criteria should be used to arrive at a set of accurate, unambiguous terms. The cell identity of uterine stromal cells is also a debatable issue: phenotypic, functional, and transcriptomic studies in recent decades have related these cells to different established cells. We discuss the relevance of these associations in normal and pathological situations.
Summary Sentence
Decidual stromal cells show a greater capacity for decidualization than endometrial stromal cells, so studies of these stromal cells should clearly distinguish between these two cell types.
Graphical Abstract
Decidualization from precursor endometrial stromal cells (preEnSCs) to decidualized endometrial stromal cells (dEnSCs) in the endometrium, and from precursor decidual stromal cells (preDSCs) to decidualized decidual stromal cells (dDSCs) in the decidua. Figure created in BioRender.com
Oogenesis and folliculogenesis are considered as complex and species-specific cellular differentiation processes, which depend on the in vivo ovarian follicular environment and endocrine cues. Considerable efforts have been devoted to driving the differentiation of female primordial germ cells toward mature oocytes outside of the body. The recent experimental attempts have laid stress on offering a suitable microenvironment to assist the in vitro folliculogenesis and oogenesis. Despite developing a variety of bioengineering techniques and generating functional mature gametes through in vitro oogenesis in earlier studies, we still lack knowledge of appropriate microenvironment conditions for building biomimetic culture systems for female fertility preservation. Therefore, this review paper can provide a source for a large body of scientists developing cutting-edge in vitro culture systems for female germ cells or setting up the next generation of reproductive medicine as feasible options for female infertility treatment. The focal point of this review outlines advanced bioengineering technologies such as 3D biofabricated hydrogels/scaffolds and microfluidic systems utilized with female germlines for fertility preservation through in vitro folliculogenesis and oogenesis.
Graphical Abstract
Schematic representation of species-specific differences in folliculogenesis between rodents and humans (A) plus estimates of the number of ovarian follicles in various species (B). The current and specific future applications of advanced technologies in female fertility preservation and in vitro folliculogenesis, utilizing 3D organ culture techniques, hydrogels, scaffolds, microfluidic systems, and bioprinters are illustrated and compared with the conventional culture systems (A and C). Some items created with BioRender.com
Summary Sentence
Utilizing cutting-edge bioengineered culture microenvironments, it is possible to achieve successful in vitro folliculogenesis and oogenesis for therapeutic purposes.
Enzymes of the ten-eleven translocation family are considered to play an important role in the regulation of DNA methylation patterns by converting 5-methylcytosine to 5-hydroxymethylcytosine. Known as a maternal transcript enriched in mature oocytes, ten-eleven translocation-3 (TET3) has been suggested to initiate DNA demethylation of the paternal genome in zygotes. Previous studies in mouse cells indicate that the N-terminal CXXC domain of TET3 is important in catalyzing the oxidation of 5-methylcytosine through its potential DNA binding ability; however, it is not clear whether the DNA binding capacity of CXXC domain is required for the 5-hydroxymethylcytosine conversion in mammalian embryos. Here, we identified TET3 isoforms in porcine oocytes and investigated the role of the oocyte specific TET3 isoform (pTET3L) in controlling postfertilization demethylation in porcine embryos. The pTET3L possessed sequences representing a known DNA binding domain, the CXXC, and injection of the TET3 CXXC fused with GFP into mature porcine oocytes resulted in exclusive localization of the GFP-CXXC in the pronuclei. The CXXC overexpression reduced the 5-methylcytosine level in zygotes and enhanced the DNA demethylation of the NANOG promoter in 2-cell stage embryos. Furthermore, there was an increase in the transcript abundance of NANOG and ESRRB in blastocysts developed from GFP-CXXC injected oocytes. Targeted knockdown of pTET3L resulted in the downregulation of pluripotency genes in subsequently developed blastocysts. The findings indicate that the CXXC domain of TET3 serves as a critical component for the postfertilization demethylation of porcine embryos and coordinates proper expression of pluripotency related genes in blastocysts.
Summary Sentence
TET3 isoform containing CXXC domain is the predominant isoform in porcine oocytes and orchestrates postfertilization demethylation and proper expression of pluripotency genes in porcine embryos.
DNA methylation plays a significant role in transducing external environmental signals to a cellular response in reptiles; however, whether the methylation patterns are conserved across species remains unclear. Here, we examined the genome-wide DNA methylation differentiation between male and female hatchling gonads of the temperature-dependent sex determination (TSD) Mauremys mutica (M. mutica) using methylation-dependent restriction-site associated DNA sequencing (MethylRAD-seq) to test differentially methylated genes underlying sexual development. Several categories, including heat-shock genes (HSP90A, HSP30C), histone- (KDM8) and ubiquitin-related genes (TRIM39), kinases (WNK3), and gonad differentiation or gonadal-development-related genes (HSD17B8, HSD17B12), were identified as candidates for future study. Additionally, we identified several regulatory pathways potentially mediating TSD thermosensitivity such as the GnRH signaling pathway and calcium signaling pathway. These findings provide evidence that sexually dimorphic DNA methylation may be associated with sex determination or sex differentiation in TSD M. mutica.
Summary Sentence
Affected by temperature, several genes (heat-shock genes, histone- and ubiquitin-related genes, kinase-related genes), and pathways (GnRH signaling pathway and calcium signaling pathway) of TSD (M. mutica) may change the methylation level of the regulatory regions, which revealed that sexually dimorphic DNA methylation could act as a key mediator regulating thermosensitive signals into a molecular trigger to determine sexual fate.
KEYWORDS: zona pellucida, zona pellucida removal, ICM/TE differentiation, acid Tyrode's solution, pre-implantation development, post-implantation development
The zona pellucida plays a crucial role in the process of fertilization to early embryonic development, including cellular arrangement and communication between blastomeres. However, little is known regarding the role of the zona pellucida in pre- and post-implantation embryonic development associated with gene expression. We investigated the effect of zona pellucida removal on pre- and post-implantation development of mouse embryos. After zona pellucida removal of two-cell stage embryos was performed by acid Tyrode's solution, which is commonly used for zona pellucida treatment, compaction occurred earlier in zona pellucida-free than zona pellucida-intact embryos. In addition, the expression of differentiation-related genes in the inner cell mass and trophectoderm was significantly altered in zona pellucida-free blastocyst compared with zona pellucida-intact embryos. After embryo transfer, the rate of implantation and live fetuses was lower in zona pellucida-free embryos than in control embryos, whereas the fetal weight at E17.5 was not different. However, placental weight significantly increased in zona pellucida-free embryos. RNA-sequencing analysis of the placenta showed that a total of 473 differentially expressed genes significantly influenced the biological process. The present study suggests that zona pellucida removal by acid Tyrode's solution at the two-cell stage not only disturbs the expression pattern of inner cell mass-/trophectoderm-related genes but affects the post-implantation development of mouse embryos. Overall, this study provides deeper insight into the role of the zona pellucida during early embryonic development and the viability of post-implantation development.
Summary Sentence
Zona pellucida removal by acid Tyrode's solution affects the inner cell mass/trophectoderm differentiation; a lower fetal rate, higher placental weight, and a total of 473 differentially expressed genes during post-implantation development in mice.
In a previous study, we reported that porcine sperm cysteine-rich secretory protein 2 (CRISP2) is localized in the post-acrosomal sheath-perinuclear theca (PT) as reduction-sensitive oligomers. In the current study, the decondensation and removal of CRISP2 was investigated during in vitro sperm capacitation, after both the induction of the acrosome reaction and in vitro fertilization. Confocal immunofluorescent imaging revealed that additional CRISP2 fluorescence appeared on the apical ridge and on the equatorial segment (EqS) of the sperm head following capacitation, likely due to cholesterol removal. After an ionophore A23187-induced acrosome reaction, CRISP2 immunofluorescence disappeared from the apical ridge and the EqS area partly not only owing to the removal of the acrosomal shroud vesicles, but to its presence in a subdomain of EqS. The fate of sperm head CRISP2 was further examined post-fertilization. In vitro matured porcine oocytes were co-incubated with boar sperm cells for 6–8 h and the zygotes were processed for CRISP2 immunofluorescent staining. Notably, decondensation of CRISP2, and thus of the sperm PT, occurred while the sperm nucleus was still fully condensed. CRISP2 was no longer detectable in fertilized oocytes in which sperm nuclear decondensation and paternal pronucleus formation were apparent. This rapid dispersal of CRISP2 in the PT is likely regulated by redox reactions for which its cysteine-rich domain is sensitive. Reduction of disulfide bridges within CRISP2 oligomers may be instrumental for PT dispersal and elimination.
Summary Sentence
Dispersal of the pig sperm's perinuclear the ca and complete degradation of its CRISP2 protein content was observed within 5 hours post-fertilization.
Oocytes from many invertebrate and vertebrate species exhibit unique endoplasmic reticulum (ER) specializations (cortical ER clusters), which are thought to be essential for egg activation. In examination of cortical ER clusters, we observed that they were tethered to previously unreported fenestrae within the cortical actin layer. Furthermore, studies demonstrated that sperm preferentially bind to the plasma membrane overlying the fenestrae, establishing close proximity to underlying ER clusters. Moreover, following sperm–oocyte fusion, cortical ER clusters undergo a previously unrecognized global change in volume and shape that persists through sperm incorporation, before dispersing at the pronuclear stage. These changes did not occur in oocytes from females mated with Izumo1 –/– males. In addition to these global changes, highly localized ER modifications were noted at the sperm binding site as cortical ER clusters surround the sperm head during incorporation, then form a diffuse cloud surrounding the decondensing sperm nucleus. This study provides the first evidence that cortical ER clusters interact with the fertilizing sperm, indirectly through a previous unknown lattice work of actin fenestrae, and then directly during sperm incorporation. These observations raise the possibility that oocyte ER cluster–sperm interactions provide a competitive advantage to the oocyte, which may not occur during assisted reproductive technologies such as intracytoplasmic sperm injection.
Summary Statement
Fertilization is followed by global changes in cortical endoplasmic reticulum cluster structure as well as localized changes at the sperm binding site.
Junctional adhesion molecule 3 (JAM3) is involved in epithelial cell junction, cell polarity, and motility. The molecular mechanisms underlying the role of JAM3 in placental dysfunction remain unclear. We hypothesized that JAM3 expression regulates trophoblast fusion, differentiation, proliferation, and apoptosis. Our results revealed that JAM3 was expressed in the cytotrophoblasts and syncytiotrophoblasts of first-trimester and term placental villi. JAM3 expression in cell–cell junctions decreased with the formation of syncytiotrophoblasts. Using trophoblasts as an in vitro model, we observed that forskolin and JAM3 knockdown significantly reduced JAM3 expression and increased syncytium formation. JAM3 knockdown additionally inhibited trophoblast proliferation and increased the number of trophoblasts in the sub-G1 and G2/M phases, indicating cell-cycle disturbance and apoptosis. Cell-cycle arrest was associated with the engagement of checkpoint kinase 2-cell division cycle 25C-cyclin-dependent kinase 1/cyclin B1 signaling. Increased expression of BIM, NOXA, XAF1, cytochrome c, and cleaved caspase-3 further indicated trophoblast apoptosis. Overexpression of JAM3 or recombinant JAM3 protein enhanced trophoblast adhesion and migration, which were inhibited by JAM3 knockdown. JAM3 knockdown induced reactive oxygen species and syncytin 2 expression in trophoblasts. Furthermore, H2O2-induced oxidative stress reduced JAM3 expression in trophoblasts and cell culture supernatants. H2O2 simultaneously induced trophoblast apoptosis. JAM3 expression was significantly decreased in the plasmas and placentas of patients with early-onset severe preeclampsia. Thus, our results show that JAM3 may not only be a structural component of trophoblast cell junctions but also regulates trophoblast fusion, differentiation, proliferation, apoptosis, and motility. Dysregulated trophoblast JAM3 expression is crucial in preeclampsia development.
The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared with MAO-control (3/10 vs. 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared with conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.
Summary Sentence
Inhibition of SHMT2 mRNA translation reduces proliferation and migration of ovine trophectoderm cells and increases embryonic mortality in sheep suggesting that one-carbon metabolism is critical for conceptus development.
The equine chorioallantois (CA) undergoes complex physical and biochemical changes during labor. However, the molecular mechanisms controlling these changes are still unclear. Therefore, the current study aimed to characterize the transcriptome of equine CA during spontaneous labor and compare it with that of normal preterm CA. Placental samples were collected postpartum from mares with normal term labor (TL group, n = 4) and from preterm not in labor mares (330 days GA; PTNL group, n = 4). Our study identified 4137 differentially expressed genes (1820 upregulated and 2317 downregulated) in CA during TL as compared with PTNL. TL was associated with the upregulation of several proinflammatory mediators (MHC-I, MHC-II, NLRP3, CXCL8, and MIF). Also, TL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, MMP3, and MMP9) with subsequent extracellular matrix degradation and apoptosis, as reflected by upregulation of several apoptosis-related genes (ATF3, ATF4, FAS, FOS, and BIRC3). In addition, TL was associated with downregulation of 21 transcripts coding for collagens. The upregulation of proteases, along with the downregulation of collagens, is believed to be implicated in separation and rupture of the CA during TL. Additionally, TL was associated with downregulation of transcripts coding for proteins essential for progestin synthesis (SRD5A1 and AKR1C1) and angiogenesis (VEGFA and RTL1), as well as upregulation of prostaglandin synthesis-related genes (PTGS2 and PTGES), which could reflect the physiological switch in placental endocrinology and function during TL. In conclusion, our findings revealed the equine CA gene expression signature in spontaneous labor at term, which improves our understanding of the molecular mechanisms triggering labor.
Summary Sentence
Transcriptomic analysis of equine chorioallantois has identified the key regulators and pathways underlying placental separation and weakening during the spontaneous term labor.
The purpose of this study was to investigate lipid metabolism in the placenta of gestational diabetes mellitus individuals and to evaluate its effect on the fetus. We examined the expression of lipogenesis- and lipolysis-related proteins in the in vitro and in vivo gestational diabetes mellitus placenta models. The levels of sterol regulatory element binding protein-1c were increased, and fat accumulated more during early hyperglycemia, indicating that lipogenesis was stimulated. When hyperglycemia was further extended, lipolysis was activated due to the phosphorylation of hormone-sensitive lipase and expression of adipose triglyceride lipase. In the animal model of gestational diabetes mellitus and in the placenta of gestational diabetes mellitus patients during the extended stage of gestational diabetes mellitus, the expression of sterol regulatory element binding protein-1c decreased and the deposition of fat increased. Similar to the results obtained in the in vitro study, lipolysis was enhanced in the animal and human placenta of extended gestational diabetes mellitus. These results suggest that fat synthesis may be stimulated by lipogenesis in the placenta when the blood glucose level is high. Subsequently, the accumulated fat can be degraded by lipolysis and more fat and its metabolites can be delivered to the fetus when the gestational diabetes mellitus condition is extended at the late stage of gestation. Imbalanced fat metabolism in the placenta and fetus of gestational diabetes mellitus patients can cause metabolic complications in the fetus, including fetal macrosomia, obesity, and type 2 diabetes mellitus.
Summary Sentence
In this study, we suggest that lipogenesis and lipolysis are stimulated in the circumstance of gestational diabetes mellitus.
Ovarian tissue cryopreservation by vitrification is an effective technique, but there are still many unresolved issues related to the procedure. The aim of this study was to investigate the optimal culture time of postwarmed ovarian tissues and their viability before ovarian tissue transplantation. The bovine ovarian tissues were used to evaluate the effect of postwarming culture periods (0, 0.25, 0.5, 1, 2, 5, and 24 h) in the levels of residual cryoprotectant, LDH release, ROS generation, gene and protein abundance, and follicle viability and its mitochondrial membrane potential. Residual cryoprotectant concentration decreased significantly after 1 h of culture. The warmed ovarian tissues that underwent between 0 and 2 h of culture time showed similar LDH and ROS levels compared with fresh nonfrozen tissues. The anti-Mullerian hormone transcript abundance did not differ in any of the groups. No increase in the relative transcript abundance and protein level of Caspase 3 and Cleaved-Caspase 3, respectively, in the first 2 h of culture after warming. On the other hand, an increased protein level of double stranded DNA breaks (gamma-H2AX) was observed in postwarmed tissues disregarding the length of culture time, and a temporary reduction in pan-AKT was detected in postwarming tissues between 0 and 0.25 h of culture time. Prolonged culture time lowered the percentage of viable follicles in warmed tissues, but it did not seem to affect the follicular mitochondrial membrane potential. In conclusion, 1–2 h of culture time would be optimal for vitrified-warmed tissues before transplantation.
Summary Sentence
For ovarian tissue cryopreservation by vitrification, the recommended culture time following warming is between 1 and 2 h before ovarian tissue transplantation.
Spermatogenesis is sustained by homeostatic balance between the self-renewal and differentiation of spermatogonial stem cells, which is dependent on the strict regulation of transcription factor and chromatin modulator gene expression. Chromodomain helicase DNA-binding protein 4 is highly expressed in spermatogonial stem cells but roles in mouse spermatogenesis are not fully understood. Here, we report that the germ-cell-specific deletion of chromodomain helicase DNA-binding protein 4 resulted in complete infertility in male mice, with rapid loss of spermatogonial stem cells and excessive germ cell apoptosis. Chromodomain helicase DNA-binding protein 4-knockdown in cultured spermatogonial stem cells also promoted the expression of apoptosis-related genes and thereby activated the tumor necrosis factor signaling pathway. Mechanistically, chromodomain helicase DNA-binding protein 4 occupies the genomic regulatory region of key apoptosis-related genes, including Jun and Nfkb1. Together, our findings reveal the determinant role of chromodomain helicase DNA-binding protein 4 in spermatogonial stem cells survival in vivo, which will offer insight into the pathogenesis of male sterility and potential novel therapeutic targets.
Summary Sentence
After chromodomain helicase DNA-binding protein 4 knockout, excessive apoptosis of germ cells and male infertility were caused by upregulated expression of apoptosis genes which were accompanied by abnormal activation of TNF signaling pathway.
TAR DNA binding protein of 43 kD (TDP-43) is an evolutionarily conserved, ubiquitously expressed transcription factor and RNA-binding protein with major human health relevance. TDP-43 is present in Sertoli and germ cells of the testis and is aberrantly expressed in the sperm of infertile men. Sertoli cells play a key role in spermatogenesis by offering physical and nutritional support to male germ cells. The current study investigated the requirement of TDP-43 in Sertoli cells. Conditional knockout (cKO) of TDP-43 in mouse Sertoli cells caused failure of spermatogenesis and male subfertility. The cKO mice showed decreased testis weight, and low sperm count. Testis showed loss of germ cell layers, presence of vacuoles, and sloughing of round spermatids, suggesting loss of contact with Sertoli cells. Using a biotin tracer, we found that the blood-testis barrier (BTB) was disrupted as early as postnatal day 24 and worsened in adult cKO mice. We noted aberrant expression of the junction proteins connexin-43 (gap junction) and N-cadherin (ectoplasmic specialization). Oil Red O staining showed a decrease in lipid droplets (phagocytic function) in tubule cross-sections, Sertoli cells cytoplasm, and in the lumen of seminiferous tubules of cKO mice. Finally, qRT-PCR showed upregulation of genes involved in the formation and/or maintenance of Sertoli cell junctions as well as in the phagocytic pathway. Sertoli cells require TDP-43 for germ cell attachment, formation and maintenance of BTB, and phagocytic function, thus indicating an essential role for TDP-43 in the maintenance of spermatogenesis.
Summary Sentence
Sertoli cells require the DNA/RNA binding protein TDP-43 to support spermatogenesis. In the absence of TDP-43, Sertoli cells failed to maintain germ cell attachment and the blood-testis barrier was compromised.
It is controversial whether exposure to isoflavones exerts male reproductive toxicity. The aim of this study was to investigate whether isoflavone exposure during adulthood could have deleterious impacts on male reproductive health by the cross-sectional study, animal experiments, and in vitro tests. In the cross-sectional study, we observed that urinary isoflavones were not significantly associated with semen quality including sperm concentrations, sperm count, progressive motility, and total motility, respectively. However, negative associations were found between plasma testosterone and urinary Σisoflavones, genistein, glycitein, and dihydrodaidzein. In the animal experiments, serum and intratesticular testosterone levels were decreased in mice exposed to several dosages of genistein. Genistein administration caused upregulation of estrogen receptor alpha and downregulation of cytochrome P45017A1 protein levels in testes of mice. In vitro tests showed that genistein caused a concentration-dependent inhibition of testosterone production by TM3 Leydig cells. Elevated protein expression of estrogen receptor alpha and decreased messenger RNA/protein level of cytochrome P45017A1 were also observed in genistein-treated cells. Protein level of cytochrome P45017A1 and testosterone concentration were significantly restored in the estrogen receptor alpha small interferring RNA-transfected cells, compared to cells that treated with genistein alone. The results demonstrate that exposure to isoflavones during adulthood may be associated with alterations of reproductive hormones. Particularly, genistein, which inhibits testosterone biosynthesis through upregulation of estrogen receptor alpha in Leydig cells of mice, might induce the disruption of testosterone production in human. The present study provides novel perspective into potential targets for male reproductive compromise induced by isoflavone exposure.
Summary Sentence
Isoflavone exposure during adulthood is remarkably associated with reproductive hormone perturbation in males, which may be mediated through the estrogen receptor alpha/cytochrome P45017A1 pathway.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere