BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Marcos Aurélio Santos da Costa, Diana Babini Lapa de Albuquerque Britto, Maria Eduarda da Silva, Jennyfer Martins de Carvalho, Maria Luísa Figueira de Oliveira, José Anderson da Silva Gomes, Fernanda das Chagas Angelo Mendes Tenorio, Sônia Pereira Leite
Since the beginning of the current coronavirus outbreak (COVID-19), there has been great concern over a disease that has spread rapidly in several countries worldwide, with the result of several deaths, including deaths of pregnant women. Therefore, the aim of this study was to conduct a literature review on placental changes in infected pregnant women and/or asymptomatic carriers of COVID-19 during pregnancy, aiming at the possible vertical transmission. A systematic collection was carried out on the effects of that COVID-19 can cause directly and/or indirectly to pregnancy and the placenta in the following databases: Pubmed, Science Direct, Scielo, Lilacs, and Web of Science. For search, the following descriptors were used: placenta, pregnant woman, COVID-19, maternal–fetal. The results indicate transplacental transmission in some cases reviewed in many reports from this study. The presence of the virus was seen in the amniotic fluid, umbilical cord, and peripheral blood. Finally, pathological studies suggest that there are morphological changes related to infection in the placentas. We can conclude that, based on the researched material, there is little evidence of transplacental vertical viral transmission and its respective morphological changes related to viral infection in the placenta.
Summary sentence
There is small evidence of transplacental vertical viral transmission and its respective morphological changes related to viral infection in the placenta.
As in other vertebrates, fish reproduction is tightly controlled by gonadotropin signaling. One of the most perplexing aspects of gonadotropin action on germ cell biology is the restricted expression of gonadotropin receptors in somatic cells of the gonads. Therefore, the identification of factors conveying the action of gonadotropins on germ cells is particularly important for understanding the mechanism of reproduction. Insulin-like growth factors (Igfs) are recognized as key factors in regulating reproduction by triggering a series of physiological processes in vertebrates. Recently, a novel member of Igfs called Igf3 has been identified in teleost. Different from the conventional Igf1 and Igf2 that are ubiquitously expressed in a majority of tissues, Igf3 is solely or highly expressed in the fish gonads. The role of Igf3 in mediating the action of gonadotropin through Igf type 1 receptor on several aspects of oogenesis and spermatogenesis have been demonstrated in several fish species. In this review, we will summarize existing data on Igf3. This new information obtained from Igf3 provides insight into elucidating the molecular mechanism of fish reproduction, and also highlights the importance of Igf system in mediating the action of gonadotropin signaling on animal reproduction.
Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathies, affecting 5–10% of women of reproductive age, and is characterized by the presence of ovarian cysts, oligo, or anovulation, and clinical or biochemical hyperandrogenism. Metabolic abnormalities such as hyperinsulinemia, insulin resistance, cardiovascular complications, dyslipidemia, and obesity are frequently present in PCOS women. Several key pathogenic pathways overlap between these metabolic abnormalities, notably chronic inflammation. The observation that this mechanism was shared led to the hypothesis that a chronic inflammatory state could contribute to the pathogenesis of PCOS. Moreover, while physiological inflammation is an essential feature of reproductive events such as ovulation, menstruation, implantation, and labor at term, the establishment of chronic inflammation may be a pivotal feature of the observed reproductive dysfunctions in PCOS women. Taken together, the present work aims to review the available evidence about inflammatory mediators and related mechanisms in women with PCOS, with an emphasis on reproductive function.
Testicular sperm is increasingly used during in vitro fertilization treatment. Testicular sperm has the ability to fertilize the oocyte after intracytoplasmic sperm injection (ICSI), but they have not undergone maturation during epididymal transport. Testicular sperm differs from ejaculated sperm in terms of chromatin maturity, incidence of DNA damage, and RNA content. It is not fully understood what the biological impact is of using testicular sperm, on fertilization, preimplantation embryo development, and postimplantation development. Our goal was to investigate differences in human preimplantation embryo development after ICSI using testicular sperm (TESE-ICSI) and ejaculated sperm. We used time-lapse embryo culture to study these possible differences. Embryos (n = 639) originating from 208 couples undergoing TESE-ICSI treatment were studied and compared to embryos (n = 866) originating from 243 couples undergoing ICSI treatment with ejaculated sperm. Using statistical analysis with linear mixed models, we observed that pronuclei appeared 0.55 h earlier in TESE-ICSI embryos, after which the pronuclear stage lasted 0.55 h longer. Also, significantly more TESE-ICSI embryos showed direct unequal cleavage from the 1-cell stage to the 3-cell stage. TESE-ICSI embryos proceeded faster through the cleavage divisions to the 5- and the 6-cell stage, but this effect disappeared when we adjusted our model for maternal factors. In conclusion, sperm origin affects embryo development during the first embryonic cell cycle, but not developmental kinetics to the 8-cell stage. Our results provide insight into the biological differences between testicular and ejaculated sperm and their impact during human fertilization.
Summary sentence
Human embryos originating from fertilization with testicular sperm show a prolonged pronuclear stage and more often direct unequal cleavage than embryos originating from ejaculated sperm, while subsequent cleavage divisions are not impacted.
The objective is to investigate the pathophysiological significance of Par3 and integrin β1 with regard to the functionality of the endometrial luminal epithelium (LE). Design: laboratory study; setting: university research laboratory. Analysis involved endometrial aspirates and endometrial adenocarcinoma cells (HEC-1A) and endometrial carcinoma cells (RL95-2). We first examined the expression and localization of Par3 and integrin β1 in HEC-1A cells and RL95-2 cells. Then we knocked down Par3 and integrin β1 in HEC-1A cells and RL95-2 cells, respectively, and found that Par3/integrin β1 affected embryo adhesion by regulating the intercellular tight junctions' (TJs') structure and thus the polarity of the endometrial LE. These findings were also confirmed in the endometrium specimens from human and mice. The main outcome measures were the expression and localization of Par3 and integrin β1 in the endometrial epithelial cell lines and endometrium specimens and the regulations of Par3 and integrin β1 on TJs, polarity, and embryo adhesion. Following the knockdown of Par3 in HEC-1A cells, there was a reduction in the complexity of the TJs and cell polarity, and the adhered blastocysts number was significantly increased. However, the reduction of integrin β1 in RL95-2 cells resulted in effects that directly opposed those following the knockdown of Par3 in HEC-1A cells. Estrogen and progesterone reduced the expression of Par3 and promoted the expression of integrin β1 in HEC-1A cells. Par3/integrin β1 regulates embryo adhesion by regulating intercellular TJs' structure and polarity of endometrial LE under the action of ovarian hormones.
Summary sentence. Par3/integrin β1 regulates embryo adhesion by regulating the intercellular tight junctions' (TJs') structure and polarity of the endometrial luminal epithelium (LE) under the action of ovarian hormones.
Oviduct, uterus, and vagina are derived from Müllerian ducts. But only in the vagina, the epithelium differentiates into stratified layers. Organ-specific secreted factors derived from the stroma of a neonatal mouse induce epithelial differentiation in the female reproductive tracts. However, the effects of the components and mechanical property of extracellular matrix (ECM) on the regulation of gene expression in the mesenchymal cells of neonatal stroma and differentiation of epithelium in the female reproductive tracts have been overlooked. In the present study, we have developed a simple 3D neonatal vaginal model using clonal cell lines to study the effect of ECM's components and stiffness on the epithelial stratification. Transcriptome analysis was performed by DNA-microarray to identify the components of ECM involved in the differentiation of vaginal epithelial stratification. The knockdown experiment of the candidate genes relating to vaginal epithelial stratification was focused on fibromodulin (Fmod), a collagen cross-linking protein. FMOD was essential for the expression of Bmp4, which encodes secreted factors to induce the epithelial stratification of vaginal mesenchymal cells. Furthermore, stiffer ECM as a scaffold for epithelial cells is necessary for vaginal epithelial stratification. Therefore, the components and stiffness of ECM are both crucial for the epithelial stratification in the neonatal vagina.
Summary sentence
Collagen cross-linking protein, FMOD, and stiffness of ECM in the neonatal vaginal stroma were identified with the new 3D developmental vaginal model with clonal cell lines as stimulation factors for the vaginal epithelial stratification.
The oviduct/fallopian tube is a tube-like structure that extends from the uterus to the ovary. It is an essential reproductive organ that provides an environment for internal fertilization and preimplantation development. However, our knowledge of its regional and cellular heterogeneity is still limited. Here, we examined the anatomical complexity of mouse oviducts using modern imaging techniques and fluorescence reporter lines. We found that there are consistent coiling patterns and turning points in the coiled mouse oviduct that serve as reliable landmarks for luminal morphological regionalities. We also found previously unrecognized anatomical structures in the isthmus and uterotubal junction, which likely play roles in reproduction. Furthermore, we demarcated the ampulla–isthmus junction as a distinct region. Taken together, the oviduct mucosal epithelium has highly diverse structures with distinct epithelial cell populations, reflecting its complex functions in reproduction.
Summary sentence: The mouse oviduct mucosal epithelium has highly diverse structures with 7 distinct epithelial cell populations, likely reflecting its complex functions in reproduction.
The zona pellucida (ZP) plays vital roles in reproductive processes including oogenesis, fertilization, and preimplantation development. Both human and rat ZP consist of four glycoproteins, called ZP1, ZP2, ZP3, and ZP4. Our previous research reported a novel Zp1 mutation in cases of human infertility, associated with an abnormal phenotype involving the absence of the ZP. Here, we developed a homologous rat strain to investigate the pathogenic effect. The ovaries of homozygous (Zp1MT/MT) females possessed both growing and fully grown oocytes; the oocytes completely lacked a ZP, but ZP1 was detectable inside the cytoplasm. Only 1–2 eggs were recovered from oviducts of superovulated Zp1MT/MT females, while an average of 21 eggs were recovered from superovulated Zp1WT/WT per female. The eggs of Zp1MT/MT females were not surrounded by a ZP and lost their fertilization capacity in vitro. Zp1MT/MT females mated with wild-type males failed to become pregnant. Studies in 293T cells showed that mutant Zp1 resulted in a truncated ZP1 protein, which might be intracellularly sequestered and interacted with wild-type ZP3 or ZP4. Our results suggest that the Zp1 point mutation led to infertility and loss of the ZP in oocytes in rats.
Summary sentence
Zp1 mutation can lead to congenital deficiencies and ZP loss, which leads to human infertility. The interaction between truncated ZP1 and ZP3 or ZP4 is gained, which affects their normal transport and secretion, suggesting that normal ZP1 is crucial for the structure of the ZP and for fertility.
Reverse cholesterol transport or cholesterol efflux is part of an extensive plasma membrane remodeling process in spermatozoa that is imperative for fertilization. For ram spermatozoa, sheep serum is well known to support in vitro fertilization (IVF), but knowledge of its explicit role is limited. Though, it is postulated to elicit cholesterol efflux owing to the presence of high-density lipoproteins (HDLs) that interact with transmembrane cholesterol transporters, such as adenosinetriphosphate (ATP)-binding cassette transporter A1 (ABCA1) and scavenger receptor class B, type I (SR-BI). In this study, we report that both sheep serum and HDLs were able to elicit cholesterol efflux alone by up to 20–40% (as measured by the boron dipyrromethene (BODIPY)-cholesterol assay). Furthermore, when the antagonists glibenclamide and valspodar were used to inhibit the function of ABCA1 and SR-BI or ABCA1 alone, respectively, cholesterol efflux was only marginally reduced (8–15%). Nevertheless, it is likely that in ram spermatozoa, a specific facilitated pathway of cholesterol efflux is involved in the interaction between cholesterol acceptors and transporters. Interestingly, exposure to HDLs also induced hyperactivated motility, another critical event required for successful fertilization. Taken together, this study details the first report of the dual action of HDLs on ram spermatozoa, providing both an insight into the intricacy of events leading up to fertilization in vivo as well as demonstrating the possible application of HDL supplementation in media for IVF.
Summary sentence
First report of the dual action of high-density lipoproteins on ram spermatozoa in mediating critical fertilization-dependent processes.
Zona pellucida (ZP), which is composed of at most four extracellular glycoproteins (ZP1, ZP2, ZP3, and ZP4) in mammals, shelters the oocytes and is vital in female fertility. Several studies have identified the indispensable roles of ZP1–3 in maintaining normal female fertility. However, the understanding of ZP4 is still very poor because only one study on ZP4-associated infertility performed in rabbits has been reported up to date. Here we investigated the function of mammalian Zp4 by creating a knockout (KO) rat strain (Zp4–/– rat) using CRISPR–Cas9-mediated DNA-editing method. The influence of Zp4 KO on ZP morphology and some pivotal processes of reproduction, including oogenesis, ovulation, fertilization, and pup production, were studied using periodic acid–Schiff's staining, superovulation, in vitro fertilization, and natural mating. The ZP morphology in Zp4–/– rats was normal, and none of these pivotal processes was affected. This study renewed the knowledge of mammalian Zp4 by suggesting that Zp4 was completely dispensable for female fertility.
Summary sentence
Zp4 is completely dispensable for female fertility in rats.
Sperm–oocyte binding initiates an outside-in signaling event in the mouse oocyte that triggers recruitment and activation of the cytosolic protein kinase PTK2B in the cortex underlying the bound sperm. While not involved in gamete fusion, PTK2B activity promotes actin remodeling events important during sperm incorporation. However, the mechanism by which sperm–oocyte binding activates PTK2B is unknown, and the present study examined the possibility that sperm interaction with specific oocyte surface proteins plays an important role in PTK2B activation. Imaging studies revealed that as IZUMO1R and CD9 became concentrated at the sperm binding site, activated (phosphorylated) PTK2B accumulated in the cortex underlying the sperm head and in microvilli partially encircling the sperm head. In order to determine whether IZUMO1R and/or CD9 played a significant role in PTK2B recruitment and activation at the sperm binding site, the ability of oocytes null for Izumo1r or Cd9, to initiate an increase in PTK2B content and activation was tested. The results revealed that IZUMO1R played a minor role in PTK2B activation and had no effect on actin remodeling; however, CD9 played a very significant role in PTK2B activation and subsequent actin remodeling at the sperm binding site. These findings suggest the possibility that interaction of sperm surface proteins with CD9 or CD9-associated oocyte proteins triggers PTK2B activation at the sperm binding site.
Summary sentence
Sperm binding triggers PTK2B activation in the oocyte through a CD9-dependent mechanism.
Mariola Słowińska, Laura Pardyak, Ewa Liszewska, Sylwia Judycka, Joanna Bukowska, Mariola Aleksandra Dietrich, Łukasz Paukszto, Jan Jastrzębski, Krzysztof Kozłowski, Artur Kowalczyk, Jan Jankowski, Barbara Bilińska, Andrzej Ciereszko
Turkey semen contains cysteine-rich secretory proteins (CRISPs) that belong to the dominant seminal plasma proteins. We aimed to isolate and characterize CRISP from turkey seminal plasma and evaluate its possible involvement in yellow semen syndrome (YSS). YSS, which is well characterized, causes reduced fertility and hatchability. The protein was purified using hydrophobic interaction, gel filtration, and reverse phase chromatography. It then was subjected to identification by mass spectrometry, analysis of physicochemical properties, and specific antibody production. The biological function of the isolated protein was tested and included its effects on sperm motility and migration and sperm-egg interactions. Sperm motility was measured with the CASA system using Hobson Sperm Tracker. The reproductive tract of turkey toms was analyzed for gene expression; immunohistochemistry was used for protein localization in the male reproductive tract, spermatozoa, and inner perivitelline layer. The isolated protein was identified as cysteine-rich venom protein-like isoform X2 (CRVP X2; XP_010706464.1) and contained feature motifs of CRISP family proteins. Turkey CRVP X2 was present in both spermatozoa and seminal plasma. The extensive secretion of CRVP X2 by the epithelial cells of the epididymis and ductus deferens suggests its involvement in post-testicular sperm maturation. The internally localized CRVP X2 in the proximal part of the sperm tail might be responsible for stimulation of sperm motility. CRVP X2 on the sperm head might be involved in several events prior to fusion and may also participate in gamete fusion itself. Although the mechanisms by which CRVP X2 mediates fertilization are still unknown, the involvement of complementary sites cannot be excluded. The disturbance of CRVP X2 expression can serve as an etiologic factor of YSS in the turkey. This study expands the understanding of the detailed mechanism of fertilization in birds by clarifying the specific role of CRVP X2.
Summary sentence
Turkey seminal plasma cysteine-rich venom protein containing feature motifs of CRISP family proteins is secreted within the reproductive tract, stimulates sperm motility, and participates in sperm-egg interaction.
Leydig cells play a critical role in male reproductive physiology, and their dysfunction is usually associated with male infertility. Melatonin has an important protective and regulatory role in these cells. However, the lack of suitable animal models impedes us from addressing the impact of endogenous melatonin on these cells. In the current study, by using arylalkylamine N-acetyltransferase (AANAT) overexpression transgenic sheep and AANAT knockout mice, we confirmed the regulatory effects of endogenously occurring melatonin on Leydig cells as well as its beneficial effects on male reproductive performance. The results showed that the endogenously elevated melatonin level was correlated with decreased Leydig cell apoptosis, increased testosterone production, and improved quality of sperm in melatonin-enriched transgenic mammals. Signal transduction analysis indicated that melatonin targeted the mitochondrial apoptotic Bax/Bcl2 pathway and thus suppressed Leydig cell apoptosis. In addition, melatonin upregulated the expression of testosterone synthesis-related genes of Steroidogenic Acute Regulatory Protein (StAR), Steroidogenic factor 1 (SF1), and Transcription factor GATA-4 (Gata4) in Leydig cells. This action was primarily mediated by the melatonin nuclear receptor RAR-related orphan receptor alpha (RORα) since blockade of this receptor suppressed the effect of melatonin on testosterone synthesis. All of these actions of melatonin cause Leydig cells to generate more testosterone, which is necessary for spermatogenesis in mammals. In contrast, AANAT knockout animals have dysfunctional Leydig cells and reduced reproductive performance.
Linah Al-Alem, Muraly Puttabyatappa, Ketan Shrestha, Yohan Choi, Kathy Rosewell, Mats Brännström, James Akin, Misung Jo, Diane M. Duffy, Thomas E. Curry Jr
Neurotensin (NTS) is a tridecapeptide that was first characterized as a neurotransmitter in neuronal cells. The present study examined ovarian NTS expression across the periovulatory period in the human and the rat. Women were recruited into this study and monitored by transvaginal ultrasound. The dominant follicle was surgically excised prior to the luteinizing hormone (LH) surge (preovulatory phase) or women were given 250 µg human chorionic gonadotropin (hCG) and dominant follicles collected 12–18 h after hCG (early ovulatory), 18–34 h (late ovulatory), and 44–70 h (postovulatory). NTS mRNA was massively induced during the early and late ovulatory stage in granulosa cells (GCs) (15 000 fold) and theca cells (700 fold). In the rat, hCG also induced Nts mRNA expression in intact ovaries and isolated GCs. In cultured granulosa-luteal cells (GLCs) from IVF patients, NTS expression was induced 6 h after hCG treatment, whereas in cultured rat GCs, NTS increased 4 h after hCG treatment. Cells treated with hCG signaling pathway inhibitors revealed that NTS expression is partially regulated in the human and rat GC by the epidermal-like growth factor pathway. Human GLC, and rat GCs also showed that Nts was regulated by the protein kinase A (PKA) pathway along with input from the phosphotidylinositol 3- kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. The predominat NTS receptor present in human and rat GCs was SORT1, whereas NTSR1 and NTSR2 expression was very low. Based on NTS actions in other systems, we speculate that NTS may regulate crucial aspects of ovulation such as vascular permeability, inflammation, and cell migration.
Overloaded iron can deposit in the reproductive system and impair ovarian function. But few studies have identified the exact effect of overloaded iron on the endocrine function and fertility capacity in female mice. Here, we established iron-overloaded mouse models by intraperitoneal injection of iron dextran to adult female C57BL/6J mice at 0.1 g/kg (LF group), 0.5 g/kg (MF group), and 1.0 g/kg (HF group) concentrations once a week for eight consecutive weeks. We found that overloaded iron resulted in smaller ovaries, as well as accumulated oxidative damages. The endocrine function and follicle development were also impeded in the MF and HF groups. The 10-month breeding trial indicated that (1) Low concentration of iron (0.1 g/kg) wasn't detrimental to the ovary; (2) Middle concentration of iron (0.5 g/kg) impeded the childbearing process, though it could be recovered following the iron excretion; and (3) High concentration of iron (1.0 g/kg) damaged the fertility, even gave rise to sterility. Yet for those fertile mice, litter number and litter size were smaller and the ovarian reserve of their offspring was impaired. Transcriptome profiling results indicated that overloaded iron could compromise ovarian function by disrupting ovarian steroidogenesis, interfering with ovarian microenvironment, and inhibiting Wnt signaling. Taken together, we have demonstrated the effect that chronic concentration-dependent iron overload exerted on mouse ovarian function, which may act as a preliminary basis for further mechanism and intervention investigations.
Sarah R. Nafziger, Sarah C. Tenley, Adam F. Summers, Mohamed A. Abedal-Majed, Mariah Hart, Jeffrey W. Bergman, Scott G. Kurz, John S. Davis, Jennifer R. Wood, Andrea S. Cupp
We hypothesized the manner that heifers achieve puberty may indicate their future reproductive longevity. Heifers with discontinued or delayed cyclicity during puberty attainment may have irregular reproductive cycles, anovulation, and infertility in their first breeding season contributing to a shorter reproductive lifespan. Therefore, plasma progesterone (P4) was measured from weaning to breeding on 611 heifers born 2012–2017 and four pubertal classifications were identified: (1) Early; P4 ≥ 1 ng/ml < March 12 with continued cyclicity, (2) Typical; P4 ≥ 1 ng/ml ≥ March 12 with continued cyclicity, (3) Start-Stop; P4 ≥ 1 ng/ml but discontinued cyclicity, and (4) Non-Cycling; no P4 ≥ 1 ng/ml. Historical herd records indicated that 25% of heifers achieved puberty prior to March 12th in the 10 years prior to the study. Start-Stop and Non-Cycling yearling heifers were lighter indicating reduced growth and reproductive maturity traits compared with Early/Typical heifers. In addition, Non-Cycling/Start-Stop heifers were less responsive to prostaglandin F2 alpha (PGF2α) to initiate estrous behavior and ovulation to be artificially inseminated. Non-Cycling heifers had fewer reproductive tract score-5 and reduced numbers of calves born in the first 21-days-of-calving during their first breeding season. Within the Start-Stop classification, 50% of heifers reinitiated cyclicity with growth traits and reproductive parameters that were similar to heifers in the Early/Typical classification while those that remained non-cyclic were more similar to heifers in the Non-Cycling group. Thus, heifers with discontinued cyclicity or no cyclicity during puberty attainment had delayed reproductive maturity resulting in subfertility and potentially a shorter reproductive lifespan.
Summary sentence
Puberty attainment of beef heifers as classified by circulating plasma progesterone profiles from weaning to breeding can be used to predict future reproductive fertility and longevity.
In vitro oocyte growth is widely studied as an alternative fertility preservation approach. Several animal models are used to generate extensive information on this complex process regulated by the constant and dynamic interaction between the oocyte and its somatic compartment throughout follicle growth and maturation. A two-dimensional attachment mouse secondary follicle culture system was used to assess the oocyte's capacity to overcome disconnection from its somatic companions at different developmental stages for final competence acquisition. To test this, complete mechanical denudation of oocytes from preantral (PA) and early antral (EA) follicles was performed. Established endpoints were the oocyte's potential to reconnect with somatic cells and the impact of connectivity disruption on mature oocyte quality. This study proves that oocytes from PA and EA cultured mouse follicles can overcome complete denudation, restoring likely functional transzonal projections with no significant differences in meiotic and developmental competence compared with those from intact cultured follicles. These novel findings constitute good premises for developing successful strategies to rescue human oocyte competence in the context of in vitro culture approaches such as nonhuman chorionic gonadotropin triggered in vitro maturation.
Summary sentence
Oocytes from preantral and early antral cultured mouse follicles restore likely functional transzonal projections with no significant differences in meiotic and developmental competence compared to oocytes from intact cultured follicles.
Pouya Dini, Mariano Carossino, Udeni B. R. Balasuriya, Hossam El-Sheikh Ali, Shavahn C. Loux, Alejandro Esteller-Vico, Kirsten E. Scoggin, Alan T. Loynachan, Theodore Kalbfleisch, Ward De Spiegelaere, Peter Daels, Barry A. Ball
RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans.
Summary sentence
Vessel formation is essential for the placenta. We showed that the paternally expressed gene, RTL1 is one of the crucial genes for this process and its altered expression is associated with hydrops conditions.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere