BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Birds within the orders Charadriiformes (shorebirds, gulls) and Anseriformes (waterfowl) are reservoir hosts for avian influenza (AI) viruses, but their role in the transmission dynamics of AI viruses is unclear. To date, waterfowl have been the predominant focal species for most surveillance and epidemiological studies, yet gulls, in particular, have been shown to harbor reassortant AI viruses of both North American and Eurasian lineages and are underrepresented in North American surveillance efforts. To address this gap in surveillance, 1346 ring-billed gulls (Larus delawarensis) were sampled during spring and fall migrations and at three breeding sites in 2017 across Minnesota. Results indicate noticeable age-cohort dynamics in AI virus prevalence within ring-billed gulls in Minnesota. Immunologically naïve juveniles represented the cohort with the highest prevalence rate (57.8%). Regardless of age, more gulls had AI virus detected in oropharyngeal (OP) than in cloacal (CL) swabs. The high AI virus prevalence within ring-billed gulls, particularly in immunologically naïve birds, warrants further targeted surveillance efforts of ring-billed gulls and other closely related species.
Long-term comprehensive studies of avian influenza virus subtypes in ducks not only contribute to understanding variations and patterns of subtype diversity, but also can be important in defining seasonal and temporal risks associated with transmission of potentially highly pathogenic H5 and H7 subtypes to domestic poultry. We analyzed influenza A virus (IAV) surveillance data from dabbling ducks collected at an important migratory stopover site in northwestern Minnesota from 2007–2016 and identified prevalence and subtype diversity throughout this period. In total, 13,228 cloacal and oropharyngeal swabs from waterfowl were tested over the 10-year period; the majority of these waterfowl were mallards sampled from late August through late September (n = 9133). From these, 1768 IAVs were isolated (19.4% mean annual prevalence, ranging from 11.0% in 2007 to 32.8% in 2011), and both hemagglutinin (HA) and neuraminidase were identified for 1588. Although subtype diversity and prevalence varied by year, H3 and H4 HA subtypes predominated in all years, accounting for 65.7% of the observed HA subtype diversity. The mechanisms driving this consistent pattern of subtype diversity and predominance are not understood but may include factors at the host, population, and virus level.
Wild birds often harbor infectious microorganisms. Some of these infectious microorganisms may present a risk to domestic animals and humans through spillover events. Detections of certain microorganisms have been shown to increase host susceptibility to infections by other microorganisms, leading to coinfections and altered host-to-host transmission patterns. However, little is known about the frequency of coinfections and its impact on wild bird populations. In order to verify whether avian influenza virus (AIV) natural infection in wild waterbirds was related to the excretion of other microorganisms, 73 AIV-positive samples (feces and cloacal swabs) were coupled with 73 AIV-negative samples of the same sampling characteristics and tested by real-time PCR specific for the following microorganisms: West Nile virus, avian avulavirus 1, Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis, Mycobacterium avium subspecies, Mycobacterium tuberculosis complex, and Mycobacterium spp. Concurrent detections were found in 47.9% (35/73) of the AIV-positive samples and in 23.3% (17/73) of the AIV-negative samples (P = 0.003). Mycobacterium spp. and Salmonella spp. were found to be significantly more prevalent among the AIV-positive samples than among the AIV-negative samples (42.9% vs. 22.8%; P = 0.024 and 15.2% vs. 0.0%; P = 0.0015, respectively). Prevalence of concurrent detections differed significantly among sampling years (P = 0.001), host families (P = 0.002), host species (P = 0.003), AIV subtypes (P = 0.003), and type of sample (P = 0.009). Multiple concurrent detections (more than one of the tested microorganisms excluding AIV) were found in 9.6% (7/73) of all the AIV-positive samples, accounting for 20% (7/35) of the concurrent detection cases. In contrast, in AIV-negative samples we never detected more than one of the selected microorganisms. These results show that AIV detection was associated with the detection of the monitored microorganisms. Further studies of a larger field sample set or under experimental conditions are necessary to infer causality in these trends.
The hemagglutination inhibition (HI) assay is commonly used to assess the humoral immune response against influenza A viruses (IAV). However, the microneutralization (MN) assay has been reported to have higher sensitivity when testing sera from humans and other species. Our objective was to determine the agreement between MN and HI assays and compare the proportion of positive samples detected by both methods in sera of mallards primary infected with the A/mallard/MN/Sg-000169/ 2007 (H3N8) virus and subsequently inoculated with homosubtypic or heterosubtypic IAV. Overall, we found poor to fair agreement (prevalence-adjusted bias-adjusted kappa [PABAK], 0.03–0.35) between MN and HI assays in serum samples collected 2 weeks after H3N8 inoculation; the observed agreement increased to moderate or substantial in samples collected 4 to 5 weeks postinoculation (WPI) (PABAK, 0.52–0.75). The MN assay detected a higher proportion of positive samples compared with HI assays in serum samples collected 2 WPI (P = 0.01). This difference was not observed in samples collected 4 WPI. Also, a boosting effect in MN and HI titers was observed when birds were subsequently inoculated with IAV within the same H3 clade. This effect was not observed when birds were challenged with viruses that belong to a different HA clade.
In summary, the agreement between assays varies depending on the postinfection sample collection time point and the similarity between the antigens used for the assays. Additionally, subsequent exposure of ducks to homosubtypic or heterosubtypic strains might affect the observed agreement.
The Mississippi Flyway is of utmost importance in monitoring influenza A viral diversity in the natural reservoir, as it is used by approximately 40% of North American migratory waterfowl. In 2008, influenza A virus (IAV) surveillance was initiated in eight states within the flyway during annual southern migration, to gain better insight into the natural history of influenza A viruses in the natural reservoir. More than 45,000 samples have been collected and tested, resulting in hundreds of diverse influenza A viral isolates, but seasonal sampling may not be the best strategy to gain insight into the natural history of IAV. To investigate the progress of this sampling strategy toward understanding the ecology of IAV in wild waterfowl, data from mallard ducks (Anas platyrhynchos) sampled nearly year-round in Ohio were examined. Overall, 3,645 samples were collected from mallards in Ohio from 2008 to 2016, with IAV being recovered from 13.6% of all samples collected. However, when data from each month are examined individually, it becomes apparent that the aggregated summary may be providing a misleading view of IAV in Ohio mallards. For instance, in August the frequency of viral recovery is 29.8%, with isolates representing at least 47 hemagglutinin/ neuraminidase (HA/NA) combinations. In November, during the height of southern migration, IAV isolation drops to 6.2%, with only 25 HA/NA combinations being represented. Our biased sampling towards convenience and high IAV recovery has created gaps in the data set, which prohibit a full understanding of the IAV ecology in this waterfowl population.
C. Abolnik, R. Pieterse, B. M. Peyrot, P. Choma, T. P. Phiri, K. Ebersohn, C. J. van Heerden, A. A. Vorster, G. van der Zel, P. J. Geertsma, A. T. Laleye, K. Govindasamy, D. L. Rauff
The report of a mass die-off of white-winged terns (Chlidonias leucopterus) along the shores of Lake Victoria in Uganda in January 2017 was a warning that highly pathogenic avian influenza (HPAI) H5N8 clade 2.3.4.4 had entered the avian populations of the African Rift Valley. In early June 2017, Zimbabwe reported an outbreak of the virus in commercial breeder chickens near Harare, and on June 19, 2017, the first case of HPAI H5N8 was confirmed in a broiler breeder operation near Villiers, Mpumalanga Province, South Africa, representing the first ever notifiable influenza in gallinaceous poultry in South Africa. Forty viruses were isolated from wild birds, backyard hobby fowl, zoo collections, commercial chickens, and commercial ostriches over the course of the outbreak and full genomes were sequenced and compared to determine the epidemiologic events in the introduction and spread of clade 2.3.4.4 H5N8 across the country. We found that multiple virus variants were involved in the primary outbreaks in the north-central regions of South Africa, but that a single variant affected the southernmost regions of the continent. By November 2017 only two of the nine provinces in South Africa remained unaffected, and the layer chicken industry in Western Cape Province was all but decimated. Two distinct variants, suggesting independent introductions, were responsible for the first two index cases and were not directly related to the virus involved in the Zimbabwe outbreak. The role of wild birds in the incursion and spread was demonstrated by shared recent common ancestors with H5N8 viruses from West Africa and earlier South African aquatic bird low pathogenicity avian influenza viruses. Improved wild bird surveillance will play a more critical role in the future as an early warning system.
Outbreaks involving avian influenza viruses are often devastating to the poultry industry economically and otherwise. Disease surveillance is critically important because it facilitates timely detection and generates confidence that infected birds are not moved during business continuity intended to mitigate associated economic losses. The possibility of using an abnormal increase in daily mortality to levels that exceed predetermined thresholds as a trigger to initiate further diagnostic investigations for highly pathogenic avian influenza (HPAI) virus infection in the flock is explored. The range of optimal mortality thresholds varies by bird species, trigger type, and mortality thresholds, and these should be considered when assessing sector-specific triggers. The study uses purposefully collected data and data from the literature to determine optimal mortality triggers for HPAI detection in commercial upland game bird flocks. Three trigger types were assessed for the ability to detect rapidly both HPAI (on the basis of disease-induced and normal mortality data) and false alarm rate (on the basis of normal mortality data); namely, 1) exceeding a set absolute threshold on one day, 2) exceeding a set absolute threshold on two consecutive days, or 3) exceeding a multiple of a seven-day moving average. The likelihood of disease detection using some of these triggers together with premovement real-time reverse transcription PCR (rRT-PCR) testing was examined. Results indicate that the performance of the two consecutive days trigger had the best metrics (i.e., rapid detection with few false alarms) in the trade-off analysis. The collected normal mortality data was zero on 66% of all days recorded, with an overall mean of 0.6 dead birds per day. In the surveillance scenario analyses, combining the default protocol that relied only on active surveillance (i.e., premovement testing of oropharyngeal swab samples from dead birds by rRT-PCR) together with either of the mortality-based triggers improved detection rates on all days postexposure before scheduled movement. For exposures occurring within 8 days of movement, the protocol that combined the default with single-day triggers had slightly more detections than that with two consecutive days triggers. However, all assessed protocol combinations were able to detect all infections that occurred more than 10 days before scheduled movement. These findings can inform risk-based decisions pertaining to continuity of business in the commercial upland game bird industry.
Wild birds in the order Anseriformes are important reservoirs for influenza A viruses (IAVs); however, IAV prevalence and subtype diversity may vary by season, even at the same location. To better understand the ecology of IAV during waterfowl migration through the Gulf Coast of the United States (Louisiana and Texas), surveillance of blue-winged (Spatula discors) and American green-winged (Anas carolinensis) teal was conducted. The surveillance was done annually during the spring (live capture; 2012–17) and fall (hunter harvested; 2007–17) at times inferred to coincide with northward and southward movements, respectively, for these waterfowl species. During spring migration, 266 low pathogenicity (LP) IAV positive samples were recovered from 7547 paired cloacal–oropharyngeal (COP) samples (prevalence, 3.5%; annual range, 1.3%–8.4%). During fall migration, 650 LP IAV-positive samples were recovered from 9493 COP samples (prevalence, 6.8%; annual range, 0.4%–23.5%). Overall, 34 and 20 different IAV subtypes were recovered during fall and spring sampling, respectively. Consistent with previous results for fall migrating ducks, H3 and H4 hemagglutinin (HA) subtypes were most common; however, H4 subtype viruses predominated every year. This is in contrast to the predominance of LP H7 and H10 HA subtype viruses during spring. The N6 and N8 neuraminidase subtypes, which were usually associated with H4, were most common during fall; the N6 subtype was not recovered in the spring. These consistent seasonal trends in IAV subtype detection in teal are currently not understood and highlight the need for further research regarding potential drivers of spatiotemporal patterns of infection, such as population immunity.
Marek J. Slomka, Anita Puranik, Sahar Mahmood, Saumya S. Thomas, Amanda H. Seekings, Alexander M. P. Byrne, Alejandro Núñez, Carlo Bianco, Benjamin C. Mollett, Samantha Watson, Ian H. Brown, Sharon M. Brookes
Widespread H5N8 highly pathogenic avian influenza virus (HPAIV; clade 2.3.4.4b) infections occurred in wild birds and poultry across Europe during winter 2016–17. Four different doses of H5N8 HPAIV (A/wigeon/Wales/052833/2016 [wg-Wal-16]) were used to infect 23 Pekin ducks divided into four separate pens, with three contact turkeys introduced for cohousing per pen at 1 day postinfection (dpi). All doses resulted in successful duck infection, with four sporadic mortalities recorded among the 23 (17%) infected ducks, which appeared unrelated to the dose. The ducks transmitted wg-Wal-16 efficiently to the contact turkeys; all 12 (100%) turkeys died. Systemic viral dissemination was detected in multiple organs in two duck mortalities, with limited viral dissemination in another duck, which died after resolution of shedding. Systemic viral tropism was observed in two of the turkeys. The study demonstrated the utility of Pekin ducks as surrogates of infected waterfowl to model the wild bird/gallinaceous poultry interface for introduction of H5N8 HPAIV into terrestrial poultry, where contact turkeys served as a susceptible host. Detection of H5N8-specific antibody up to 58 dpi assured the value of serologic surveillance in farmed ducks by hemagglutination inhibition and anti-nucleoprotein ELISAs.
Scott M. Reid, Alejandro Núñez, Amanda H. Seekings, Saumya S. Thomas, Marek J. Slomka, Sahar Mahmood, Jane R. Clark, Jill Banks, Sharon M. Brookes, Ian H. Brown
Low pathogenicity (LP) avian influenza viruses (AIVs) have a natural reservoir in wild birds. These cause few (if any) overt clinical signs, but include H5 and H7 LPAIVs, which are notifiable in poultry. In the European Union, notifiable avian disease (NAD) demands laboratory confirmation with prompt statutory interventions to prevent dissemination of infection to multiple farms. Crucially, for H5 and H7 LPAIVs, movement restrictions and culling limit the further risk of mutation to the corresponding highly pathogenic (HP) H5 and H7 AIVs in gallinaceous poultry. An H7N7 LPAIV outbreak occurred during February 2015 at a broiler breeder chicken premise in England. Full genome sequencing suggested an avian origin closely related to contemporary European H7 LPAIV wild bird strains with no correlates for human adaptation. However, a high similarity of PB2, PB1, and NA genes with H10N7 viruses from European seals during 2014 was observed. An H5N1 LPAIV outbreak during January 2016 affecting broiler breeder chickens in Scotland resulted in rapid within-farm spread. An interesting feature from this case was that although viral tropism occurred in heart and kidney endothelial cells, suggesting HPAIV infection, the H5N1 virus had the molecular cleavage site signature of an LPAIV belonging to an indigenous European H5 lineage. There was no genetic evidence for human adaptation or antiviral drug resistance. The source of the infection was also likely to be via indirect contact with wild birds mediated via fomite spread from the nearby environment. Both LPAIV outbreaks were preceded by local flooding events that attracted wild waterfowl to the premises. Prompt detection of both outbreaks highlighted the value of the “testing to exclude” scheme launched in the United Kingdom for commercial gallinaceous poultry in 2014 as an early warning surveillance mechanism for NAD.
Tímea Tatár-Kis, Ádám Dán, Balázs Felföldi, Ádám Bálint, Zsuzsanna Rónai, Gwenaelle Dauphin, Zoltán Pénzes, John El-Attrache, Yannick Gardin, Vilmos Palya
The most recent pandemic clade of highly pathogenic avian influenza (HPAI) H5, clade 2.3.4.4, spread widely, with the involvement of wild birds, most importantly wild waterfowl, carrying the virus (even asymptomatically) from Asia to North America, Europe, and Africa. Domestic waterfowl being in regular contact with wild birds played a significant role in the H5Nx epizootics. Therefore, protection of domestic waterfowl from H5Nx avian influenza infection would likely cut the transmission chain of these viruses and greatly enhance efforts to control and prevent disease outbreak in other poultry and animal species, as well as infection of humans. The expectation for such a vaccine is not only to provide clinical protection, but also to control challenge virus transmission efficiently and ensure that the ability to differentiate infected from vaccinated animals is retained. A water-in-oil emulsion virus-like particle vaccine, containing homologous hemagglutinin antigen to the current European H5N8 field strains, has been developed to meet these requirements. The vaccine was tested in commercial Pekin and mule ducks by vaccinating them either once, at 3 wk of age, or twice (at 1 day and at 3 wk of age). Challenge was performed at 6 wk of age with a Hungarian HPAIV H5N8 isolate (2.3.4.4 Group B). Efficacy of vaccination was evaluated on the basis of clinical signs, amount of virus shedding, and transmission. Vaccination resulted in complete clinical protection and prevention of challenge virus transmission from the directly challenged vaccinated ducks to the vaccinated contact animals.
Zoltán Pénzes, Alíz Czeglédi, Zoltán Nagy, Anna Kollár, Ádám Tóth, Ferenc Misák, Katalin Rendes, Marianna Ivók, Réka Gyimesi, George Lovrecz, Irina Tretyakova, John El-Attrache, Vilmos Palya, Peter Pushko
From October 2016 to July 2017, 47 countries have been affected by highly pathogenic avian influenza (HPAI) viruses of the H5N8 clade 2.3.4.4 subtype, including European and African, and it has been the most severe HPAI outbreak ever in Europe. The development of effective influenza vaccines is required to combine preventive and control measures in order to avoid similar avian influenza epidemics taking place. Here we describe a novel prototype recombinant virus-like particle (VLP) vaccine based on a clade 2.3.4.4 H5 HA derived from a French duck HPAI H5N8 isolate of the 2016–2017 epidemics. Prototype vaccines with different antigen content were formulated and the immunogenicity was examined in specific-pathogen-free chickens and in ducks. Serum samples were collected at 3 and 4 weeks postvaccination, and development of the immune response was evaluated by hemagglutination inhibition test and ELISA. The VLP vaccines induced a dose-dependent and high level of antibody response in both chickens and ducks. The results of HPAI H5N8 challenge experiments in ducks are reported separately.
Joe James, Marek J. Slomka, Scott M. Reid, Saumya S. Thomas, Sahar Mahmood, Alexander M. P. Byrne, Jayne Cooper, Christine Russell, Benjamin C. Mollett, Eric Agyeman-Dua, Steve Essen, Ian H. Brown, Sharon M. Brookes
Previously published NA subtype-specific real-time reverse-transcriptase PCRs (RRT-PCRs) were further validated for the detection of five avian influenza virus (AIV) NA subtypes, namely N5, N6, N7, N8, and N9. Testing of 30 AIV isolates of all nine NA subtypes informed the assay assessments, with the N5 and N9 RRT-PCRs retained as the original published assays while the N7 and N8 assays were modified in the primer–probe sequences to optimize detection of current threats. The preferred N6 RRT-PCR was either the original or the modified variant, depending on the specific H5N6 lineage. Clinical specimen (n = 137) testing revealed the ability of selected N5, N6, and N8 RRT-PCRs to sensitively detect clade 2.3.4.4b highly pathogenic AIV (HPAIV) infections due to H5N5, H5N6, and H5N8 subtypes, respectively, all originating from European poultry and wild bird cases during 2016–2018. Similar testing (n = 32 clinical specimens) also showed the ability of N7 and N9 RRT-PCRs to sensitively detect European H7N7 HPAIV and China-origin H7N9 low pathogenicity AIV infections, respectively.
In late 2016, a highly pathogenic avian influenza (HPAI) virus subtype H5N8 clade 2.3.4.4 was reported in Egypt in migratory birds; subsequently, the virus spread to backyard and commercial poultry in several Egyptian governorates, causing severe economic losses to the poultry industry. Here, a recombinant subunit commercial H5 vaccine prepared from the clade 2.3.2 H5 segment on baculovirus was evaluated in Pekin ducks (Anasplatyrhynchos domesticus) and Muscovy ducks (Cairina moschata) in Biosafety Level 3 isolators by using two vaccination regimes: either a single dose on day 10 and a challenge on day 31 or a double dose on days 10 and 28 and a challenge on day 49. The protection parameters were evaluated after experimental infection with the Egyptian HPAI H5N8 isolate clade 2.3.4.4b (A/common-coot/Egypt/CA285/2016) based on mortality rate, clinical signs, gross lesions, seroconversion, virus shedding, and histopathologic changes. In the single-dose vaccination regime, the mortality rate in Muscovy and Pekin ducks was 10% and 0% vs. 40% and 0% in nonvaccinated challenged ducks, respectively. In the double-dose vaccination regime, the mortality rates in Muscovy and Pekin ducks were 0% and 0% vs. 60% and 40% in nonvaccinated challenged ducks, respectively. Muscovy ducks developed more severe clinical signs and gross lesions than Pekin ducks. In addition, tracheal viral shedding in challenged Muscovy ducks, in the single-dose vaccination regime, was 50%, 22%, and 0% at 3, 5, and 7 days postchallenge (DPC), respectively, and was 0% in all Pekin ducks vs. 100% in all challenged nonvaccinated Muscovy and Pekin ducks at 3, 5, and 7 DPC. The viral shedding in challenged Muscovy and Pekin ducks, in the double-dose vaccination regime, was 0% at 3, 5, and 7 DPC vs. 100% in nonvaccinated challenged Muscovy and Pekin ducks, respectively. The results of this study indicate that the H5 baculovirus–based vaccine can be used in ducks with better vaccination regime based on double-dose vaccination at 10 and 28 days of age. In addition, they highlight the need to evaluate the efficacy of currently used commercial vaccines against challenge with the newly emerged HPAI H5N8 clade 2.3.4.4 in the field in Egypt to ensure proper control strategy in ducks.
Waterfowl are the natural hosts of avian influenza virus (AIV), and through migration spread the virus worldwide. Most AIVs carried by wild waterfowl are low pathogenic strains; however, Goose/Guangdong/1996 lineage clade 2.3.4.4 H5 highly pathogenic (HP) AIV now appears to be endemic in wild birds in much of the Eastern Hemisphere. Most research efforts studying AIV pathogenicity in waterfowl thus far have been directed toward dabbling ducks. In order to better understand the role of diving ducks in AIV ecology, we previously characterized the pathogenesis of clade 2.3.4.4 H5 HPAIV in lesser scaup (Aythya affinis). In an effort to further elucidate AIV infection in diving ducks, the relative susceptibility and pathogenesis of two North American lineage H7 HPAIV isolates from the most recent outbreaks in the United States was investigated. Lesser scaup were inoculated with either A/turkey/IN/1403-1/2016 H7N8 or A/chicken/TN/17-007147-2/2017 H7N9 HPAIV by the intranasal route. The approximate 50% bird infectious dose (BID50) of the H7N8 isolate was determined to be 103 50% egg infectious doses (EID50), and the BID50 of the H7N9 isolate was determined to be <102 EID50, indicating some variation in adaptation between the two isolates. No mortality or clinical disease was observed in either group except for elevated body temperatures at 2 and 4 days postinoculation (DPI). Virus shedding was detected up to 14 DPI from both groups, and there was a trend for shedding to have a longer duration and at higher titer levels from the cloacal route. These results demonstrate that lesser scaup are susceptible to both H7 lineages of HPAIV, and similar to dabbling duck species, they shed virus for long periods relative to gallinaceous birds and don't present with clinical disease.
There have been three waves of highly pathogenic avian influenza (HPAI) outbreaks in commercial, backyard poultry, and wild birds in Ukraine. The first (2005–2006) and second (2008) waves were caused by H5N1 HPAI virus, with 45 outbreaks among commercial poultry (chickens) and backyard fowl (chickens, ducks, and geese) in four regions of Ukraine (AR Crimea, Kherson, Odesa, and Sumy Oblast). H5N1 HPAI viruses were isolated from dead wild birds: cormorants (Phalacrocorax carbo) and great crested grebes (Podiceps cristatus) in 2006 and 2008. The third HPAI wave consisted of nine outbreaks of H5N8 HPAI in wild and domestic birds, beginning in November 2016 in the central and south regions (Kherson, Odesa, Chernivtsi, Ternopil, and Mykolaiv Oblast). H5N8 HPAI virus was detected in dead mute swans (Cygnus olor), peacocks (Pavo cristatus) (in zoo), ruddy shelducks (Tadorna ferruginea), white-fronted geese (Anser albifrons), and from environmental samples in 2016 and 2017. Wide wild bird surveillance for avian influenza (AI) virus was conducted from 2006 to 2016 in Ukraine regions suspected of being intercontinental (north–south and east–west) flyways. A total of 21 511 samples were collected from 105 species of wild birds representing 27 families and 11 orders. Ninety-five avian influenza (AI) viruses were isolated (including one H5N2 LPAI virus in 2010) from wild birds with a total of 26 antigenic hemagglutinin (HA) and neuraminidase (NA) combinations. Fifteen of 16 known avian HA subtypes were isolated. Two H5N8 HPAI viruses (2016–2017) and two H5N2 LPAI viruses (2016) were isolated from wild birds and environmental samples (fresh bird feces) during surveillance before the outbreak in poultry in 2016–2017. The Ukrainian H5N1, H5N8 HPAI, and H5N2 LPAI viruses belong to different H5 phylogenetic groups. Our results demonstrate the great diversity of AI viruses in wild birds in Ukraine, as well as the importance of this region for studying the ecology of avian influenza.
In winter 2016–2017, highly pathogenic avian influenza (HPAI) H5N8 virus spread in France, causing an unprecedented epizootic. During the epidemic, southwest France, where most outbreaks were reported, experienced severe weather, with three consecutive storms (Leiv, Kurt, and Marcel) from 3 to 5 February 2017. Although little information is available, one hypothesis is that the spread of HPAI-H5N8 from an infected poultry holding could have been passively facilitated by prevailing wind during the risk period. The aim of this study was therefore to assess the contribution of the wind-borne route to the spatial distribution of HPAI H5N8 outbreaks during the risk period at the beginning of February 2017. The PERLE model, an atmospheric dispersion model (ADM) developed by Météo-France, the French meteorological agency, was used to generate the predicted area at risk of infection from a suspected point source. Model outputs show that the spatial pattern of dust-particle deposition was directed east–southeast in accordance with wind direction. This contrasted with the spatial distribution of HPAI H5N8 outbreaks, which spread westward. These observations suggest that the wind-borne route alone was insufficient to explain the spatial distribution of outbreaks over large distances in southwest France at the beginning of February 2017. Finally, this study illustrates the relevance of close collaboration between governmental authorities, veterinary research institutes, and meteorological agencies involving interdisciplinary research for successful outbreak investigations.
Premovement active surveillance for low pathogenicity avian influenza (LPAI) may be a useful risk management tool for producers during high-risk periods, such as during an LPAI outbreak, or in areas where there is a recognized high risk for LPAI spread. The effectiveness of three active-surveillance protocols in mitigating LPAI spread risk related to the movement of spent broiler breeders to processing was evaluated in this study. Each protocol differed in the amount of real-time reverse transcription polymerase chain reaction (RRT-PCR) and serology testing conducted. The protocols were evaluated with the use of disease transmission and active surveillance simulation models parametrized specifically for broiler breeders to estimate the probability of detecting a current or past infection and the mean proportion of infectious birds at the time of sampling in houses where the infection remains undetected at the time of movement after exposure to the virus. The two values were estimated considering flock infection for 1–28 days prior to the day of scheduled movement. A distribution for the adequate contact rate, a parameter that controls the rate of within-house spread in the disease transmission model, was estimated for this study by a novel forward simulation approach with the use of serology data from three LPAI-infected broiler breeder flocks in the United States. The estimated distribution suggests that the lower contact-rate estimates from previously published studies were not a good fit for the serology results observed in these U.S. flocks, though considerable uncertainty remains in the parameter estimate. The results for the probability of detection and mean proportion of infectious, undetected birds suggest that RRT-PCR testing is most beneficial during the early stages of infection postexposure, and serology testing is most beneficial during the later stages of infection, results that are expected to hold for flocks outside the United States as well. Thus, protocols that combine RRT-PCR and serology testing can offer a more balanced approach with good performance over the disease course in a flock.
The objective of the study was to identify the areas at increased risk of highly pathogenic avian influenza (HPAI) occurrence in commercial poultry in Poland. To identify the risk factors related to the occurrence of HPAI outbreaks, the opinions of Polish experts were combined with literature-driven knowledge. The relative impact of each risk factor was determined using a multicriteria decision analysis approach. The applied model suggests that the greatest risk of HPAI occurrence is concentrated in several counties in the eastern, western, and central parts of the country. The most influential risk actors responsible for HPAI occurrence in Poland included waterfowl density and proximity to waterbodies. The model had a high predictive value (area under the curve = 0.78). The developed spatial risk assessment of HPAI occurrence provides a valuable source of information for risk managers and can contribute to early detection of potential outbreaks of HPAI in poultry.
In March 2017, two commercial broiler breeder operations were confirmed with H7N9 highly pathogenic avian influenza (HPAI), and an additional six commercial broiler breeder operations were found positive with an H7N9 low pathogenicity avian influenza virus (LPAIV) or an H7 LPAIV (N type not identified). To better understand conditions leading up to testing positive for AI, egg production and mortality data for the 6 mo before the outbreak were obtained from five case farms (two HPAIV-infected farms and three LPAIV-infected farms) and two control farms. Both HPAI farms experienced a sudden spike in mortality immediately before testing positive. Two LPAI farms experienced drops in egg production along with slight increases in mortality that occurred after a negative serologic test and before a positive PCR test. The third LPAI farm also had a notable drop in egg production with a coinciding increase in mortality before testing positive for AIV (last negative test date not available). Additionally, both HPAI farms and two LPAI farms reported mild respiratory illnesses in the weeks prior to testing positive for AI. Control farms did not experience similar drops in production or increase in mortality. Clinical signs on LPAI farms were mild and easily confused with background health patterns, suggesting the need for improved sensitivity to identify LPAI quickly. Applying a trigger of a 2% drop in egg production along with a mortality of 8 per 10 000 hens in individual barns showed that all case farms would be identified and uninfected farms would be falsely triggered on 1% of days monitored.
Poultry production is one of the fastest growing sectors of the livestock industry, growing at a rate of around 5% per year (2015–16) to meet the global demands and food security, as shown by European Union Open Data Portal. One of the major challenges for the sustainable growth of this sector comes from the plethora of diseases, including viral diseases, which have devastating effects on productivity. With a significant growth in poultry production in Asia, South America, and Africa, most of the disease challenges are in these regions. Because of the global nature of these diseases, it is of vital importance to work collaboratively to generate effective mitigation opportunities via innovative strategies. In the spirit of this international collaboration, the second International Conference of the Global Alliance for Research on Avian Diseases (GARAD) was held from January 17 to January 19, 2018, in Hanoi, Vietnam. The conference, attended by over 150 delegates from academia, poultry breeding/farming, and the pharmaceutic industry, discussed the major challenges and research advances related to the control of poultry diseases. The topics reviewed included the continuous threat from avian influenza and its antigenic shifts/drifts, the risks of disease transmission within and from live bird markets, the challenges from antigenic diversity of other avian viruses, innovative approaches for poultry vaccine development, and the potential opportunities to introduce genetic resistance to infectious agents through novel gene editing techniques. In separate interactive sessions, delegates actively debated the challenges, priorities, and opportunities for academia in driving avian disease research, the importance of developing improved disease measures by industry, and the contribution by the farming sector in the low- and middle-income countries.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere