BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The Hudson Bay Lowlands (HBL) constitute a globally significant carbon pool; the paleoecological record provides an opportunity to investigate long-term drivers of change in carbon accumulation and related changes in vegetation. We present a Holocene record from the Victor Fen site (VM-3-3) in Ontario's HBL to reconstruct vegetation history, quantify rates of carbon accumulation, and determine the role of paleoclimatic drivers. Pollen analysis indicates initiation of peat accumulation over a mineral substrate, accompanied by relatively rapid rates of carbon accumulation, following emergence from the Tyrrell Sea ∼6900 yrs BP. The earliest vegetation assemblage consisted of a tidal marsh, quickly succeeding to a Typha marsh, then a poor fen dominated by Sphagnum and Cyperaceae by 6400 yrs BP. Rapid rates of isostatic uplift at the time likely contributed to these changes. Once established, this fen community persisted without major vegetation change until the most recent century, when the abundance of shrub and Cyperaceae pollen increased, suggesting increasingly minerotrophic conditions. Average rate of long-term carbon accumulation (LORCA) for the whole record (mean = 22.8 g C m-2 yr-1) is similar to other northern peatlands, and higher than the Holocene average for an adjacent bog. Increased precipitation after ∼2400 yrs BP may have contributed to the higher LORCA reconstructed for the late Holocene, but the increased precipitation did not coincide with any apparent changes in vegetation as inferred from pollen assemblages.
Peatlands surrounding Hudson and James Bays form the second largest peatland complex in the world and contain major stores of soil carbon (C). This study utilized a transect of eight ombrotrophic peat cores from remote regions of central and northern Ontario to quantify the magnitude and rate of C accumulation since peatland initiation and for the past 2000 calendar years before present (2 ka). These new data were supplemented by 17 millennially resolved chronologies from a literature review covering the Boreal Shield, Hudson Plains, and Taiga Shield bordering Hudson and James Bays. Peatlands initiated in central and northern Ontario by 7.8 ka following deglaciation and isostatic emergence of northern areas to above sea level. Total C accumulated since inception averaged 109.7 ± (std. dev.) 36.2 kg C m-2. Approximately 40% of total soil C has accumulated since 2 ka at an average apparent rate of 20.2 ± 6.9 g C m-2 yr-1. The 2 ka depths correlate significantly and positively with modern gridded climate estimates for mean annual precipitation, mean annual air temperature, growing degree-days > 0 °C, and photosynthetically active radiation integrated over days > 0 °C. There are significantly shallower depths in permafrost peatlands. Vertical peat accumulation was likely constrained by temperature, growing season length, and photosynthetically active radiation over the last 2 ka in the Hudson Bay Lowlands and surrounding regions.
Macrofossil analysis of the peat and topographic surveys of two palsa fields (Fields 3 and 4) within a permafrost peatland located in subarctic Québec was conducted to trace the factors that contributed to their differential development. The two palsa fields are visibly different in terms of their geomorphology, ecology, and hydrology. According to our results, the evolution of the two fields was largely synchronous in terms of the respective trophic conditions. Moreover, the climate certainly played a significant role in the evolution of this ecosystem. For example, the cooling of the Neoglacial period would have favored the ombrotrophication of both sites, whereas the Little Ice Age conditions would have contributed to palsa formation. Despite the synchronous changes within the two fields, significant differences were also noted. These include the rate of peat accumulation, the number of species found in the peat monoliths, and the presence or absence of forest cover during the ombrotrophic phase. The topography of the underlying substrate would also have influenced the hydrological conditions. For example, a light slope toward the northwest engendered a faster trophic impoverishment in Field 4. In addition, streaming water in Field 3 favored the preservation of wet and rich conditions that triggered the following changes: more diverse vegetation, the significant accumulation of peat, and the formation of higher palsas.
This study presents a paleoenvironmental and paleoclimatic reconstruction of western subarctic Québec based on the watershed geomorphology of Lake Kaapumticumac (including terraces, stratigraphy, and peatlands) as well as lake sediments, with reference to stratigraphy, grain size, and organic matter content. The integration of data from diverse sources provides valuable information about the regression of the Tyrrell Sea, lake isolation, and lake level fluctuations. Marine processes dominated prior to ca. 6960 cal yr BP, while the marine-lacustrine transition lasted about 500 years (ca. 6960–6400 cal yr BP). In comparison to other study sites in the Whapmagoostui-Kuujjuarapik area, the earlier isolation of Lake Kaapumticumac is consistent with its higher elevation and its greater distance from Hudson Bay. After 6400 cal yr BP, lake evolution was primarily influenced by the climate. Two major climatic periods were recorded: first, the Hypsithermal (ca. 6400–3500 cal yr BP), during which warm conditions caused partial terrestrialization of Lake Kaapumticumac; and second, the post-Hypsithermal or Neoglacial (ca. 3500 cal yr BP to ca. 200 cal yr BP), which triggered the rise in lake levels and caused levees to form in several places around the lake.
The objective of this paper is to examine the thermodynamic and dynamic forcing of sea ice within the Hudson Bay System, including Hudson Bay, Hudson Strait, and Foxe Basin. Changes in fall and spring sea ice extents (SIEs) are examined in relation to seasonal surface air temperatures (SATs) and winds, as are changes in freeze-up dates and breakup dates. The proportional leverage of the fall (lag1) and spring SATs and winds on ice is statistically examined per basin. Results show SATs have increased significantly since the mid-1990s and that increases in the fall are higher than the spring period. Fall SATs are highly related to fall SIEs (R2 = 0.79–0.82). For every 1 °C increase in SAT, SIE decreases by 14% (% of basin area) within the Hudson Bay System; a 1 °C increase delays freezeup by 0.7 to 0.9 weeks on average. Spring SIEs and breakup dates are shown to be highly correlated with fall (lag1) and spring SATs, and with U and V component winds. Proportionately, spring and fall SATs combined play a dominant role (70–80%) in SIE, and the remaining leverage is attributed to dynamic forcing (winds). The relative leverage of fall (lag1) SATs and surface winds are shown to be significant and vary by basin. The open water season has on average increased by 3.1 (±0.6) weeks in Hudson Bay, 4.9 (±0.8) weeks in Hudson Strait, and 3.5 (±0.9) weeks in Foxe Basin.
The Hudson Bay Lowlands (HBL) is the largest peatland complex in North America. More than 75% of the HBL occurs in Ontario, where the provincial government mandates that ecosystem carbon storage and sequestration be considered in land-use planning. Accomplishing this task requires identifying carbon indicators and assessing their responses to changing ecosystem processes, such as succession, permafrost thaw, and evapotranspiration (ET). Therefore, we synthesized information on peat carbon indicators and ecosystem process from the literature. Findings indicate that the long-term carbon accumulation, carbon dioxide (CO2) sequestration, peat depth, and peatland age were similar (p > 0.10) between dry and wet peatland features. Furthermore, CO2 sequestration displayed the highest variability and ponds were net CO2 emitters. Recent carbon accumulation, CH4 emission, and ET were highest (p < 0.01) in wet features, with CH4 emission displaying wide variation. Increased active layer thickness (105 ± 92 cm per 100 years) in permafrost was the most variable ecosystem process analyzed in this study, while variation in permafrost loss (53 ± 23% per 100 years) was similar to that of carbon accumulation and ET rates. Processes creating wet and pond conditions may increase landscape-scale CO2 and CH4 emissions to the atmosphere, weakening peatland carbon sinks. Dry conditions may reduce CH4 emissions but potentially increase peatland susceptibility to fire. Knowledge of these changes should be useful for climate change vulnerability and adaptation assessments for large landscapes. However, better understanding of variability in CO2 sequestration, CH4 emission, and permafrost dynamics is required to design such assessments for small landscapes.
Two ombrotrophic bogs in Canada's Hudson Bay Lowlands (HBL), an area storing an estimated 33 Gt of soil carbon, are contrasted with the Mer Bleue temperate ombrotrophic bog approximately 1000 km to the southeast to assess the net carbon dioxide (CO2) exchange between these ecosystems and the atmosphere. Peatlands in the HBL region may be impacted by not only climate change but also resource extraction practices that may cause drying of surrounding areas. Two years of eddy covariance CO2 flux measurements show the two HBL bogs to be annual sinks for CO2. Given random error and gap-filling uncertainties of 6 to 13 g C m-2 yr-1, the annual budgets of 45 to 55 g C m-2 yr-1 for the HBL bogs did not differ significantly from the temperate bog's budget of 55 g C m-2 yr-1 (in the first year) despite differences in climate and vegetation composition and abundance. The temperate bog did have significantly greater net uptake of CO2 (78 g C m-2 yr-1) in the second study year. Component fluxes of photosynthesis and respiration were much smaller at the HBL bogs and speculated to be a result of less vascular vegetation. Less growing season CO2 uptake at the HBL bogs was offset by less winter loss when compared to the temperate bog. The influence of mid-summer drying and lowered water tables was similar among all three bogs. Decreasing mid-summer net ecosystem productivity (NEP) appeared to be a result of reduced photosynthetic uptake rather than increased respiration. In the short-term, drying of the HBL peatlands might result in a decrease of their C sink strength.
The climatological conditions for the presence of palsas in the Hudson Bay Lowlands (HBL) in Ontario, Canada, are examined using data from four climate stations: Big Trout Lake, Lansdowne House, Peawanuck, and Fort Severn. These stations sandwich the existing region where palsas occur. The criteria for the formation and occurrence of palsas that were taken from the literature on Fennoscandian and neighboring Québec palsas were applied to the HBL. Thermal thresholds set at -2 °C and 0 °C mean annual air temperature, and number of days below -10 °C per year were met for the two more northerly locations; the two southerly locations were on the edge of the thresholds. Climate projections from two models under two emission scenarios for the 2020s, 2050s, and 2080s indicated that by the 2080s all four locations would fail the -2 °C threshold for palsa formation but at three locations the 0 °C threshold for palsa presence was met for some projection scenarios. Over the next century, it is likely that the climate conditions will continue to be capable of supporting existing palsas; however, by the end of the century the threshold criteria for new palsa formation will not be met for most of the HBL.
We provide the first assessment of regional water chemistry and plankton (phytoplankton and crustacean zooplankton) for a suite of lakes near the Sutton River region of the north-central Hudson Bay Lowlands (HBL). We use ordination analyses to examine the spatial variation in water chemistry and plankton across lakes, and to explore the factors that may explain this variation. Based on data collected during summer from 2009 to 2011, we found that in addition to geology, water chemistry was strongly influenced by a lake's proximity to salt water and the degree of permafrost development within its catchment. Phytoplankton composition varied across lakes based on differences in water depth and nutrient concentrations, with non-filamentous cyanobacteria and chlorophytes more common in shallow lakes, and deeper lakes dominated by planktonic diatoms or filamentous cyanophytes. Crustacean zooplankton community composition and richness in the HBL lakes was similar to communities found in Ontario lakes in more temperate regions within the Precambrian Shield. These baseline data provide a foundation upon which future surveys in this climatically sensitive region may be compared.
A multi-proxy paleolimnological survey was performed on 13 lakes in the Hudson Bay Lowlands (HBL) of northern Ontario in order to provide a regional analysis of recent environmental changes in this poorly studied sub-Arctic region. In contrast to the amplified warming experienced by most of the circumpolar Arctic since the mid-19th century, the climate of the Hudson Bay (HB) region has remained relatively cool and stable for hundreds of years. However, since approximately the 1990s, the HBL has experienced rapid and large increases in air temperature and declines in sea ice. Diatom, cladoceran, and chironomid remains preserved in the recent (surface) and pre-1850 sediments of 13 lakes were used to examine whether this new climate regime has resulted in species assemblage changes across multiple trophic levels. Our results indicate clear limnological responses to warming among the freshwater biota of HBL lakes; however, the magnitude of this change varied among both biological indicators and sites. As expected, diatoms exhibited the greatest degree of change, closely followed by chironomids, with relatively little change observed among cladoceran assemblages. Planktonic diatoms were more common in modern assemblages, often including plankters that were previously not recorded in the bottom sediments, and in fact all indicator groups recorded a change in benthic/littoral taxa in the recent sediments indicative of warming-induced increases in habitat availability due to decreased lake ice cover.
Northern regions are expected to experience large environmental change over the next few decades. The response of biota will depend on changes in the local environment, regional processes that influence lake connectivity, and species interactions. In 2008, we surveyed 92 lakes and ponds across Wapusk National Park, located on the southwestern shore of Hudson Bay. At each site we assessed water chemistry and zooplankton community composition. In an effort to understand how the aquatic ecosystems will respond to future environmental change, we determined local characteristics (e.g., water chemistry), regional spatial factors (e.g., dispersal), and biotic interactions (e.g., species associations) influencing community composition. Important environmental variables included lake area, pH, ionic composition, total phosphorus, and chlorophyll a; however, spatial variables explained more variation than environmental variables, suggesting that dispersal is an important driver of zooplankton composition in this region. Additionally, species exhibited negative co-occurrence patterns, suggesting biotic interactions are important in structuring the zooplankton communities. As environmental conditions change and the distribution of habitat (i.e., coastal fen, interior peatland, and spruce forest) shifts, evidence that the park's zooplankton community is spatially structured coupled with our suspicion that zooplankton are likely to experience high dispersal levels in Wapusk leads us to suggest zooplankton may indeed be able to track changing environmental conditions within the park, although it remains unclear how species interactions will modify this expectation.
Climate warming is anticipated to affect high-latitude regions, including abundant ponds of the Hudson Bay Lowlands (HBL). However, it remains unclear if associated increased frequency of nutrient pulses will be rapidly consumed by aquatic biota and sediment or lead to a rise in pond-water nutrient concentrations. Here, we performed a nutrient-amendment experiment to examine short-term (≤72 h) nutrient uptake and identify the consumers of the added nutrients (planktonic vs. benthic communities). Microcosms (1 L) with and without sediment were experimentally amended with inorganic nitrogen (nitrate, ammonium) with and without phosphate. Amended nitrate and ammonium concentrations remained high in microcosms without sediments, and phytoplankton biomass did not change relative to the un-amended control. However, phosphate concentration declined significantly in microcosms without sediment, resulting in significant increase of phytoplankton biomass after 72 h. In the presence of sediment, amended nutrients were rapidly removed from the water, stimulating benthic algal biomass when phosphate was co-amended with ammonium or nitrate. Phytoplankton biomass was significantly elevated in microcosms with sediment compared to those without sediment, regardless of whether nutrients were amended or not, indicating that sediment and associated benthic biofilm stimulate phytoplankton growth, likely via supply of nutrients to the overlying water column. A key outcome of the experiment is that pulsed nutrients were taken up rapidly and primarily by the benthic community. Findings suggest that shallow ponds in the HBL are capable of rapidly consuming pulsed nutrient supplies, as may occur due to hydroclimatic events, climate warming and other disturbances.
The past ∼40 years have seen a geometric increase (5–7% per year) in the size of the lesser snow goose (LSG; Chen caerulescens caerulescens) population and marked spatial expansion of the area they inhabit within the coastal fen ecotype of Wapusk National Park (Hudson Bay Lowlands, northern Canada), raising concerns and uncertainty about the environmental effects of their activities (grubbing of vegetation, soil disturbance, deposition of feces) on the abundant shallow tundra ponds. In this study, we use conventional limnological measurements as well as water and carbon (C) isotope tracers to explore similarities and differences in seasonal patterns of hydrological, limnological, and biogeochemical conditions of 15 shallow coastal fen ponds that currently have minimal (if any) disturbance from the LSG population with one pond (WAP 20) that is subject to substantial LSG activity. Carbon isotope measurements reveal that C cycling at WAP 20 (LSG-disturbed site) is markedly different compared to the other ponds, whereas only small differences were observed in hydrological conditions and concentrations of major nutrients and chlorophyll a of pond water. A mid-summer decrease in C isotope composition of dissolved inorganic carbon (DIC) occurred at WAP 20, likely as a consequence of high pond-water pH and intense C demand by aquatic productivity. These conditions appear to have promoted “chemically enhanced CO2 invasion,” which causes strong kinetic C isotope fractionation. High C demand at WAP 20 is also suggested by mid-summer 13C enrichment in particulate organic matter. In contrast, the ponds with little to no LSG activity exhibited expected seasonal C isotope behavior (i.e., 13C enrichment of DIC) under conditions of increasing productivity when C is in relatively low demand. Small differences in nutrient concentrations may be due to rapid uptake by the benthic mat at WAP 20. Data from the low disturbance ponds also provide baseline information for future studies assessing potential effects of LSG.
Due to shallow depth and high surface area—to—volume ratio, ponds of the Hudson Bay Lowlands are vulnerable to climatic and hydrological changes, but relations between hydrological processes and limnological conditions remain unknown. Here, we measured water balance and limnological variables (water chemistry, suspended sediments, chlorophyll-a) at 20 ponds near Churchill (Manitoba) three times during the ice-free season of 2010 to explore relations among hydrological connectivity, basin morphometry, and waterchemistry variations. Using principal components analysis, we identified that the ponds followed one of four distinctive “seasonal water chemistry trajectories” (SWCT1–4). Most of the ponds that lacked apparent hydrologic connectivity displayed SWCT1, characterized by rising alkalinity and ionic content between early June and late July due to evaporative concentration. In contrast, most ponds with apparent hydrological connectivity displayed SWCT2 or SWCT3, characterized by marked changes in suspended sediment and total nitrogen concentrations due to inflow that transferred allochthonous materials from the catchment. Ponds in SWCT2 likely possessed temporary hydrological connections during periods of relatively high water supply and exhibited marked decline of suspended sediment and total nitrogen content when hydrological connection was lost. Most ponds in SWCT3 maintained active hydrological connections during all or most of the ice-free season and possessed relatively high suspended sediment and total nitrogen concentrations throughout the season. Ponds in SWCT4 possessed relatively stable water chemistry due to greater water depth and local features that reduced wind-induced sediment resuspension. We conclude that hydrological connectivity and basin morphometry exert important influence on seasonal pond water-chemistry dynamics.
Climate and land-use changes are going to leave an indelible mark on the hydrology and globally significant peatlands of the Hudson Bay Lowlands (HBL), Canada. With forecasts for warmer and drier conditions over the next century, the relative contribution of water from surface and subsurface sources affecting both water quantity and quality will undoubtedly shift. Unfortunately, no empirical data exist for any streams or rivers of the HBL on the relative contributions of surface water and groundwater to streamflow, making assessment of future change difficult. Here we report the first data on sources of water to streams and rivers across a range of catchment sizes in the James Bay Lowland (JBL) ecoregion of the HBL. Solute chemistry was determined for a range of potential end members, end members were identified, and a chemical mixing model approach was used to determine the relative end-member contributions to streamflow across a range of catchment sizes (∼30–2000 km2). The relative contributions of bedrock-derived groundwater to streamflow increased with catchment area from <20 to >40% under dry conditions, and were ∼50% lower under wet conditions across all catchments. Runoff contributions from peatlands were relatively constant over space and time (53–67%), but the fraction of streamflow composed of rain and snowmelt varied dramatically between wet and dry periods, and among catchments. Given the importance of peatland-derived surface waters, future changes in precipitation and temperature could have significant implications for streamflow in the JBL, particularly during summer base-flow conditions. Moreover, the definition of reference catchments for baseline/impact monitoring must be carefully considered, given the potential for variation in hydrochemistry across physiographically similar catchments.
Although widely distributed throughout Arctic and subarctic regions, thermokarst ponds and lakes remain relatively unexplored regarding geomorphological changes in their catchments and their internal properties in relation to climate change over the past decades. This study synthesizes recent landscape evolution and modern sedimentology of limnologically diverse thermokarst ponds near southeastern Hudson Bay, Canada. Spatio-temporal analysis of permafrost mounds, thermokarst ponds, and vegetation surface areas over the past five decades revealed that the recent climate-induced decrease of permafrost-affected areas was not primarily compensated by thermokarst pond development, but rather by a remarkable increase in vegetation cover. These changes appeared to be modulated by topographical and hydrological gradients at the study site, which are associated with east-ward increasing thickness of postglacial marine deposits. At a more contemporary timescale, physico-chemical measurements made on sedimenting materials (sediment traps) and freshly deposited lacustrine sediments of selected thermokarst ponds revealed striking differences both among ponds and between the oxic epilimnion and the oxygen-depleted hypolimnion. These findings underscore the major influence of local landscape properties and oxycline development on pond sedimentology and geochemistry, such as the transport of detritic particles and the concentration of redox-sensitive elements.
There is concern over the fate of surface water bodies at high latitudes as a consequence of rising global temperatures. The goal of this study is to characterize climatic change that has occurred in the northern Hudson Bay Lowlands (HBL), Canada, from 1943 to 2009, to determine if this has resulted in a change to pond surface areas and to predict if changes may continue in the future. Climate change and changes to pond volume and size over the past ∼60 years were examined using a combination of field methods/instrumental records (1943–2009), modeling (1953–2009; 1961–2100), and remote sensing/imagery analyses (1947–2008). Results demonstrate that temperatures are warming and breakup dates are earlier, but this has not significantly increased the duration of the open-water period or pond evaporation rates, which can be highly variable from year to year. Annual precipitation, primarily summer rainfall, has increased, lessening the summer moisture deficit and leading to wetter conditions. The observed changes of a smaller summer moisture deficit are predicted to continue in future, although there is less certainty with predictions of future precipitation than there is with predictions of air temperature. Thus, ponds are likely not at risk for drying and instead may be at risk for expansion. Despite the increases in summer rainfall, imagery analysis of 100 ponds shows that pond surface areas have fluctuated over the study period but have not increased in size.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere