BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrost and snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fish Creek drainage basin is composed of three watersheds that represent a gradient of the ACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevation model, and river gauging and climate records to better understand ACP watershed structure and processes. We show that connected lakes accounted for 19 to 26% of drainage density among watersheds and most all channels initiate from lake basins in the form of beaded streams. Of the > 2500 lakes in these watersheds, 33% have perennial streamflow connectivity, and these represent 66% of total lake area extent. Deeper lakes with over-wintering habitat were more abundant in the watershed with eolian sand deposits, while the watershed with marine silt deposits contained a greater extent of beaded streams and shallow thermokarst lakes that provide essential summer feeding habitat. Comparison of flow regimes among watersheds showed that higher lake extent and lower drained lake-basin extent corresponded with lower snowmelt and higher baseflow runoff. Variation in baseflow runoff among watersheds was most pronounced during drought conditions in 2007 with corresponding reduction in snowmelt peak flows the following year. Comparison with other Arctic watersheds indicates that lake area extent corresponds to slower recession of both snowmelt and baseflow runoff. These analyses help refine our understanding of how Arctic watersheds are structured and function hydrologically, emphasizing the important role of lake basins and suggesting how future lake change may impact hydrologic processes.
Variability of midday net ecosystem CO2 exchange (NEE) and respiration was measured using a transect of closed system chambers spanning transitions from channel fen, permafrost plateau, and ombrotrophic flat bog land cover types during the spring melt season (26 April—6 June 2008). The primary objective was to compare fluxes from different land cover types and topographic variability within zones adjacent to and including rapid permafrost thaw. During this period, the bog was the greatest net source of CO2 to the atmosphere, followed by plateau, and fen. NEE was slightly positive (indicating CO2 loss to the atmosphere) during the snowmelt period (average = 0.009 ± 0.004 mg CO2 m-2 s-1), and increased to 0.025 ± 0.012 mg CO2 m-2 s—1, on average, possibly due to soil thaw and increased microbial activity within two days of completely snow-free conditions. Near surface soil temperature and depth to the water table were the most significant controls of soil and ground cover CO2 fluxes within chambers at all sites (p < 0.05). Analysis of historical aerial photographs and satellite imagery of the area from 1947 to 2008 indicates that plateaus are converting more rapidly into bogs than fen, where 73% of plateau areas (since 1970) that thawed had become bogs (as opposed to 27% conversion into fen). Future research requires establishment of a full ecosystem or land cover greenhouse gas and soil nutrient exchange/transfer program, including CO2 and water fluxes as well as dissolved organic and inorganic C, and CH4 losses from the soil. These results contribute to a better understanding of northern soil and ground-cover carbon exchanges as greater areas of permafrost plateaus collapse and form bogs.
To better understand the basic characteristics of the land surface energy budget, nearly 7 years of continuous measurements at the Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS/CAS) (28.21°N, 86.56°E, 4276 m a.s.l.) have been analyzed systematically. Seasonal and annual variations of micrometeorological measurements and land surface energy balance were analyzed. The general nature of the diurnal variation of the surface winds on the north of Mt. Everest is represented by a maximum in the afternoon and a constant wind speed in the early morning, which is controlled not only by the significant glacier wind but also by the local mountain-valley circulation and upper-level wind. Surface albedo decreases with increasing soil moisture content, showing the typical exponential relation between surface albedo and soil moisture. The data set disclosed that the high soil moisture in summer is coordinated with low albedo. The ratio between sensible heat and net radiation (H/Rn) can be as high as 0.49 when the soil is dry. The ratio (H/Rn) decreases to 0.14 with the increasing of soil moisture. On the contrary, the ratio between latent heat flux and net radiation (LE/Rn) is increased when soil moisture is rising. The highest ratio (LE/ Rn) can be as high as 0.5 when soil moisture changes between 15% and 20%. After defining the effects of different soil moisture level on partitioning of surface available energy into sensible and latent heat fluxes, we can qualify how much the sensible heating is decreasing and the latent heating is increasing in this region under current plateau environment changes of warming and moistening.
We use butterfly data from an arid subtropical elevation gradient to test temperate-zone hypotheses regarding altitude effects on diversity and phenology. Specifically, species richness is predicted to peak at mid-altitude on arid-zone mountains with opposite temperature and precipitation gradients, and phenological windows of activity are expected to be more synchronized, shorter, and later with altitude.
A transect on the Pacific slope of the Andes in northern Chile (23°S, 2400–5000 m a.s.l.) was observed fortnightly between October 2008 and June 2009. The 13 species observed showed high altitudinal and temporal turnover, dividing the transect into three entomofaunal zones that follow well-documented altitudinal vegetation belts. Species richness peaked at mid-altitude in the Puna shrub belt, the zone with highest plant productivity and diversity, supporting McCain's water-temperature hypothesis. Community-level predictions about phenology were not met: instead, the flight period began earlier at high altitude, presumably due to earlier water availability, and neither synchronization nor duration of flight periods varied consistently with altitude. At the species level, relationships between butterfly phenology and altitude were variable, suggesting no direct effect of altitude but rather complex effects of changing environmental conditions that vary according to individual species' ecological requirements, host plant use, and lifecycle.
Each year, over 1000 climbers attempt an ascent of Mt. McKinley via the West Buttress, located on the 77-km-long Kahiltna Glacier in Denali National Park and Preserve, Alaska. Climbers generate over two metric tons of human waste annually, the majority of which is disposed of in crevasses. To assess potential health impacts of this management practice, we conducted field studies and a laboratory experiment to document the persistence of fecal bacteria in a variety of glacial microclimates. Low concentrations of fecal bacteria found in water samples collected over two melt seasons from the Kahiltna River support the argument that bacteria can survive in a glacial environment for an extended period of time. We documented Kahiltna Glacier surface velocities and used a simple flow model to predict the time and place that human waste will emerge in the ablation zone. Based on surface velocities we predict that waste buried in major camps will emerge at the glacier surface in as little as 71 years after traveling 28 km downstream. Our results show fecal microorganisms are persistent in a glacial environment, these pathogens pose a minor threat to human health, and buried human waste can be expected to emerge at the glacier surface within decades.
Cold season respiration may significantly affect arctic terrestrial ecosystem annual net carbon balances. Here, the influences of vegetation type, experimentally deepened snow, and interannual climatic variation on total cold season CO2 efflux were investigated in a Canadian low arctic site containing dry heath, tall birch understory, birch hummock, and wet sedge ecosystems.
Total efflux ranged from 34 to 126 g CO2-C m-2 among the vegetation types, with the tall birch understory respiring at least twice that of the birch hummock and four times that of either the dry heath or wet sedge. This variation did not correlate with soil temperature differences alone, but instead was attributed to ecosystem-specific interactions between snow depth, vegetation canopy cover, soil temperature, and moisture, as well as differences in plant biomass and litter production. Respiration from the birch hummock site was twice as high in 2006/2007 (the year of relatively warm fall and late winter soil temperature phases) as compared to 2004/2005, and was enhanced by the snow fence treatment only in the latter year. Together, these data demonstrate that cold season CO2 release differs substantially among tundra vegetation types, and strongly suggest that these effluxes can significantly offset growing season carbon gains, resulting in annual net carbon losses in some years.
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
Relationships were determined between methane (CH4) production and in situ conditions within the permafrost active layer during a single melt season at Stordalen, Sweden, with a specific emphasis on temperature sensitivity of methanogenesis. In situ temperature, moisture, pH, dissolved organic carbon, and CH4 concentration data were measured at three contrasting active layer sites (sedge mire, Sphagnum mire, and ombrotrophic bog), and laboratory incubations of active layer material were subsequently employed to determine the sensitivity of CH4 production to temperature. Q10 values, describing the CH4 production response of peat to a temperature change of 10 °C, ranged from 1.9 to 3.5 and 2.4 to 5.8 for the sedge and Sphagnum mire sites, respectively. A wider review of the literature on Q10 responses of methanogenesis in northern peatlands shows similar features to the temperature response of CH4 production in the active layer at Stordalen. In general, Q10 values are not significantly different in Arctic permafrost wetlands than non-Arctic northern wetlands; however, Sphagnum sites display Q10 responses (mean Q10 = 8) that are notably greater than that of wetter minerotrophic-sedge environments (mean Q10 = 4.3). This finding has implications for the parameterization of Q10 factors in numerical carbon cycling models, and suggests that the use of spatially variable Q10 values could be a useful approach for more accurate modeling of CH4 fluxes from northern wetlands under different climatic change scenarios.
Due to observed interactions between Svalbard reindeer (Rangifer tarandus platyrhynchus) and polar bears (Ursus maritimus) during field work on Edgeøya, Svalbard, we measured response distances for reindeer from a stalking polar bear and improvised five approaches from a person disguised as a polar bear for comparison with human encounters. The alert, flight initiation and escape distances were 1.6, 2.5 and 2.3 times longer, respectively, when Svalbard reindeer were encountered by a person disguised as a polar bear compared to a person in dark hiking gear. Population increase of polar bears on Svalbard and decrease in sea-ice cover in the Arctic region during summer probably results in more frequent interactions with reindeer on the archipelago. Similar reindeer response behavior from encounters with a polar bear and persons disguised as polar bears indicate a predator-prey relationship between the two species on Edgeøya.
Sulfate and nitrate records from 5 ice cores spread across Svalbard were compared and revealed strong temporal similarities with previously published global estimates of SO2and NOx anthropogenic emissions during the 20th century. A significant departure from the early century sulfate and nitrate levels was evident at all drilling sites starting from the mid-1940s. A steady increase was observed in both sulfate and nitrate profiles at most sites until the late 1960s, when the annual concentrations started to increase at a higher rate. This peak activity lasted for about a decade, and was observed to decrease steadily from the early 1980s on, when sulfate levels declined significantly and when nitrate levels finally reached sulfate levels for the first time in 20th century. The timing of these trends in Svalbard with global SO2 and NOx concentration profiles was best appraised when considering composite concentration profiles of all Svalbard ice cores for sulfate and nitrate, respectively. Composite profiles were also found to provide a convenient mean for distinguishing between the most important world source regions. Based on correlation analysis, the major pollutant sources appeared to be Western Europe and North America for both sulfate and nitrate, followed by Central Europe and former U.S.S.R. in generally similar proportions.
Bryophytes and lichens are ubiquitous in subarctic ecosystems, but their roles in controlling energy fluxes are rarely studied at the species level despite large, recent observed shifts in subarctic vegetation. We quantified the surface and subsurface temperatures and spectral reflectance of common moss and lichen species at field sites in Alaska and Sweden. We also used MODIS observations to determine if the removal of Cladonia spp. by reindeer overgrazing impacts land surface albedo and temperature. Radiometric surface temperature of a feather moss (Pleurozium schreberi) exceeded 50 °C on occasion when dry, up to 20 °C higher than co-located Sphagnum fuscum or C. rangiferina. Spectral reflectance of S. fuscum was on average higher than Polytrichum piliferum across the 350–1400 nm range, with substantial within-species variability. MODIS albedo was significantly higher on the Norwegian (relatively undisturbed) side versus the Finnish (disturbed) side of a border reindeer fence by an average of 1% during periods without snow cover. MODIS nighttime land surface temperatures were often significantly higher on the Norwegian side of the fence by an average of 0.7 °C despite higher albedo, likely due to poor conductance of heat to the subsurface as observed in C. rangiferina in the field. Changes to bryophyte and lichen community composition alter the surface energy balance, and future work must determine how to best incorporate these effects into Earth system models.
Mountain forests are recognized as an effective biological protection measure against snow avalanches. To investigate how forests decelerate snow avalanches, we analyzed two data sets from the European Alps. The first data set contained 43 small to medium avalanches which released in forests and either stopped in forested terrain within 50 to 400 m or ran through forests and stopped in unforested terrain with a maximum runout distance of 700 m. The second data set consisted of 44 medium to large avalanches (360 to 1800 m in runout distance) which all stopped within forests, but started above treeline. Statistical dependencies between predictor variables on forest conditions, terrain features and avalanche characteristics (60 in total), and the response variable avalanche runout distance were investigated. Clear differences between avalanches that released in forests and avalanches that released above forests were observed. Forest structural parameters, in particular the starting zone stem density of trees with small diameters (1–15 cm), had a significant effect on runout distances of small to medium avalanches, which released in evergreen coniferous and mixed forests (rs = -0.3; p = 0.015). Beyond a threshold of 200 m this effect was negligible for runout distances of avalanches which were still in motion. In contrast, forest structure did not affect runout distances of medium to large avalanches, which started above treeline, but forests in general were still able to slow avalanche speeds and limit avalanche runout. Furthermore, runout distance was significantly affected by avalanche size characteristics for medium to large avalanches, while avalanche size was less important in determining the runout distance of small avalanches, which released in forest openings. These results emphasize that it is important to treat these two cases differently in protection forest as well as natural hazard management.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere