BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Dichlorodiphenyltrichloroethane (DDT) is still used in Africa for the indoor control of malaria and it may represent a potential hazard for wildlife. The littoral sediments of two alkaline-saline lakes, Natron (Tanzania) and Bogoria (Kenya), in the Eastern Rift Valley, supporting large populations of lesser flamingos (Phoeniconaias minor), were analysed for DDT residues. Physical—chemical analyses (temperature, conductivity, pH and dissolved oxygen) were also performed on the water of the two lakes and in the tributaries of Lake Natron, to evaluate the influence of the environmental variables on pollutant occurrence. At Lake Natron, around 1 km from the sediment collection sites, tree leaves of Acacia tortilis were also collected. The main metabolite found in all sediment samples was pp'DDE, whilst equal concentrations of pp'DDT and pp'DDE were measured in acacia leaves. The levels of DDTs measured in the sediments were within 5.9–30.9 ng g_1 d.w., reaching the maximum value in a tributary of Lake Natron. On the whole, the contamination of Lake Natron and Lake Bogoria basins seems to be quite moderate. Nevertheless, the pp'DDE/pp'DDT ratio equals 1 in the Acacia tortilis leaves, which makes one suppose that the input of the parent compound was rather recent and could have been from aerial transport or dust from relatively close-by old pesticides storage sites.
The relationship of forests in water quantity and quality has been debated during the past years. At the same time, focus on climate change has increased interest in ecosystem restoration as a means for adaptation. Climate change might become one of the key drivers pushing integrated approaches for natural resources management into practice. The National Adaptation Programme of Action (NAPA) is an initiative agreed under the UN Framework Convention on Climate Change. An analysis was done to find out how widely ecosystem restoration and integrated approaches have been incorporated into NAPA priority adaptation projects. The data show that that the NAPAs can be seen as potentially important channel for operationalizing various integrated concepts. Key challenge is to implement the NAPA projects. The amount needed to implement the NAPA projects aiming at ecosystem restoration using integrated approaches presents only 0.7% of the money pledged in Copenhagen for climate change adaptation.
Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.
Here, we show for one of the Dutch Rhine River branches that large-scale riverine ecosystem rehabilitation and related vegetation succession may lead to up to 0.6 m higher river flood levels, because of increased hydraulic roughness. We hydraulically modeled future succession stages of embanked floodplain vegetation, following from present ecosystem rehabilitation plans for the 124-km-long river IJssel, and found flood levels exceeding the safety levels (related to dike heights). Our models take into account river engineering measures that are presently carried out, aimed at enhancing the river discharge capacity in order to meet required safety standards. Our study shows that there is a pressing need for integrated hydraulicecological evaluation of river engineering measures and ecosystem rehabilitation plans in the Rhine embanked floodplains. An important conclusion also is that hydraulic evaluation of planned vegetation goals only is inadequate, because flow resistance of preceding succession stages may be higher.
Tarja Pitkänen, Päivi Karinen, Ilkka T. Miettinen, Heidi Lettojärvi, Annika Heikkilä, Reetta Maunula, Vesa Aula, Henry Kuronen, Asko Vepsäläinen, Liina-Lotta Nousiainen, Sinikka Pelkonen, Helvi Heinonen-Tanski
The raw water quality and associations between the factors considered as threats to water safety were studied in 20 groundwater supplies in central Finland in 2002–2004. Faecal contaminations indicated by the appearance of Escherichia coli or intestinal enterococci were present in five small community water supplies, all these managed by local water cooperatives. Elevated concentrations of nutrients in raw water were linked with the presence of faecal bacteria. The presence of on-site technical hazards to water safety, such as inadequate well construction and maintenance enabling surface water to enter into the well and the insufficient depth of protective soil layers above the groundwater table, showed the vulnerability of the quality of groundwater used for drinking purposes. To minimize the risk of waterborne illnesses, the vulnerable water supplies need to be identified and appropriate prevention measures such as disinfection should be applied.
The study on medium size river Sutla in Croatia indicated considerable water contamination at specific sites during the baseflow period, probably associated to low flow-rate (0.73–68.8 m3 s-1), and consequently low dilution capacity of this river. Various aspects of contamination were observed: increased conductivity to 1,000 µS cm-1, decreased dissolved oxygen level to 50%, 4–5°C increased water temperature, increased concentrations of several dissolved trace elements (e.g., maximal values of Li: 45.4 µg 1-1; Rb: 10.4 µg 1-1; Mo: 20.1 µg 1-1; Cd: 0.31 µg 1-1; Sn: 30.2 µg 1-1; Sb: 11.8 µg 1-1; Pb: 1.18 µg 1-1; Ti: 1.03 µg 1-1; Mn: 261.1 µg 1-1; and Fe: 80.5 µg 1-1) and macro elements (e.g., maximal values of Na: 107.5 mg 1-1; and K: 17.3 mg 1-1), as well as moderate or even critical fecal (E. coli: 4,888 MPN/100 ml; total coliforms: 45,307 MPN/100ml; enterococci: 1,303 MPN/100 ml) and organic pollution (heterotrophic bacteria: 94,000 cfu/ml). Although metal concentrations still have not exceeded the limits considered as hazardous for aquatic life or eventually for human health, the observed prominent increases of both metal concentrations and bacterial counts in the river water should be considered as a warning and incentive to protect the small and medium size rivers from the future deterioration, as recommended by EU Water Framework Directive.
Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view.
Previous research showed a regional Cu enrichment of 6 mg kg-1 in the top soil of the Ypres war zone (Belgium), caused by corrosion of WWI shell fragments. Further research was required since in addition to Cu, also As, Pb, and Zn were used during the manufacturing of ammunition. Therefore, an additional data collection was conducted in which the initial Cu data set was tripled to 731 data points and extended to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) which permitted (1) to evaluate the environmental impact of the heavy metals at a regional scale and (2) to assess their regional spatial occurrence by performing an optimized geostatistical modeling. The results showed no pollution at a regional scale, but sometimes locally concentrations exceeded the soil sanitation threshold, especially for Cu, Pb, and Zn. The spatial patterns of Ni and Cr were related to variations in soil texture whereas the occurrences of Cu and Pb were clearly linked to WWI activities. This difference in spatial behavior was confirmed by an analysis of coregionalization.
Juan José Alava, Sandie Salazar, Marilyn Cruz, Gustavo Jiménez-Uzcátegui, Stella Villegas-Amtmann, Diego Paéz-Rosas, Daniel P. Costa, Peter S. Ross, Michael G. Ikonomou, Frank A.P.C. Gobas
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere