The aim of the study was to determine the pattern of dispersion in Feral Pigeons, as well as the factors influencing the degree of dispersion. Aside from studying variation in dispersion among the bird colonies, the direction and distance of dispersion were also analysed. The results of the study point unequivocally to strong dispersion asymmetry in the population, which is mainly age-biased. There were great differences in dispersion between adult (reproducing) individuals and young individuals that had not yet joined the breeding population. Each year, young individuals which had permanently left their natal colonies accounted for 20–30% of the young birds that ultimately joined the breeding population. The insignificant degree of dispersion among adult birds (from 0 to 0.8% per year) was due to their strong philopatry towards their breeding sites. A lack of reproductive success did not have any effect on dispersion in the case of the breeding pairs studied. A factor conducive to a bird's departure from the natal colony was the high density of breeding pairs present in the colony. It was found that the direction of dispersion was from a colony with a higher density to a colony with a lower density of pigeons. The Feral Pigeons did not emigrate to join colonies of domestic pigeons kept on the outskirts of the city, nor did they emigrate to other towns in the neighbourhood of the study area (Słupsk, NW Poland). The time when young birds left the natal colony did not influence the degree of their dispersion. Young birds that left their natal colony experienced significantly higher breeding success in their new colony, compared to those young birds that remained in the natal colony, where the density of breeding pairs was high. Young females dispersed more often than young males, although this difference was not statistically significant. This article also discusses the dispersion mechanism in the case of young pigeons.
How to translate text using browser tools
1 July 2007
Dispersion Asymmetry within a Feral Pigeon Columba livia Population
Tomasz Hetmański
J. Aars
,
R. A. Ims
2000. Population dynamic and genetic consequences of spatial density-dependent dispersal in patchy populations. Am. Nat. 155: 252–265. Google Scholar
G. Beauchamp
1999. A comparative study of breeding traits in colonial birds. Evol. Ecol. Research 1: 251–260. Google Scholar
C. R. Brown
,
M. B. Brown
1992. Ectoparasitism as a cause of natal dispersal in cliff swallows. Ecology 73: 1718–1723. Google Scholar
P. L. Castoro
,
A. M. Guhl
1958. Pairing behavior of pigeons related to aggressiveness and territory. Wilson Bull. 70: 57–69. Google Scholar
N. Chernetsov
,
W. Chromik
,
P. T. Dolata
,
P. Profus
,
P. Tryjanowski
2006. Sex-related natal dispersal of White Storks (Ciconia ciconia) in Poland: how far and where to? Auk 123: 1103–1109. Google Scholar
O. de Bruijn
1994. Population ecology and conservation of the Barn Owl Tyto alba in farmland habitats in Liemers and Achterhoek (The Netherlands). Ardea 82: 1–109. Google Scholar
T. Dittman
,
D. Zinsmeister
,
P. H. Becker
2005. Dispersal decisions: common terns, Sterna hirundo, choose between colonies during prospecting. Anim. Behav. 70: 13–20. Google Scholar
E. D. Doerr
,
V. A. J. Doerr
2005. Dispersal range analysis: quantifying individual variation in dispersal behaviour. Oecologia 142: 1–10. Google Scholar
M. C. Double
,
R. Peakall
,
N. R. Beck
,
A. Cockburn
2005. Dispersal, philopatry, and infidelity: Dissecting local genetic structure in superb fairy-wrens (Malurus cyaneus). Evolution 59: 625–635. Google Scholar
W. Edrich
,
W. T. Keeton
1977. A comparison of homing behavior in feral and homing pigeons. Z. Tierpsychol. 44: 389–401. Google Scholar
A. C. Fowler
2005. Fine-scale spatial structuring in cackling Canada geese related to reproductive performance and breeding philopatry. Anim. Behav. 69: 973–981. Google Scholar
S. Gandon
1999. Kin competition, the cost of inbreeding and the evolution of dispersal. J. Theor. Biol. 200: 345–364. Google Scholar
D. J. Green
,
A. Cockburn
2001. Post-fledging care, philopatry and recruitment in brown thornbills. J. Anim. Ecol. 70: 505–514. Google Scholar
P. J. Greenwood
1980. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28: 1140–1162. Google Scholar
P. J. Greenwood
,
P. H. Harvey
1982. The natal and breeding dispersal of birds. Ann. Rev. Ecol. Syst. 13: 1–21. Google Scholar
V. Grosbois
,
A. M. Reboulet
,
A. C. Prévot-Julliard
,
L. Bottin
,
J. D. Lebreton
2003. Dispersal and recruitment in the Black-Headed Gull Larus ridibundus. Alauda 71: 139–144. Google Scholar
D. Haag
1988. Die dichteabhängige Regulation im Brutschwarm der Strassentaube Columba livia forma domestica. Ornithol. Beob. 85: 209–224. Google Scholar
D. Haag
1990. Lebenserwartung und Altersstruktur der Strassentaube Columba Uvia forma domestica. Ornithol. Beob. 87: 147–151. Google Scholar
D. Haag
1991a. Ethogramm der Taube. Veröffentlichung in der Reihe “ORN-Projekt” 13. Google Scholar
D. Haag
1991b. Population density as a regulator of mortality among eggs and nestlings of feral pigeons (Columba livia domestica) in Basel, Switzerland. In:
J. Pinowski
,
B. P. Kavanagh
,
W. Górski
(eds).
Nestling mortality of granivorous birds due to microorganisms and toxic substances. PWN, Warsaw, pp. 21–31. Google Scholar
D. Haag-Wackernagel
1998. Ecology of Feral Pigeons in Basel, Switzerland. In:
A. Farina
,
J. Kennedy
,
V. Bossŭ
(eds).,
Proc. VIIth Intern. Congr. Ecol., Florence, pp: 1–4. Google Scholar
C. A. Haas
1998. Effects of prior nesting success on site fidelity and breeding dispersal: An experimental approach. Auk 115: 929–936. Google Scholar
J. T. Hagstrum
2000. Infrasound and the avian navigational map. J. Exp. Biol. 203: 1103–1111. Google Scholar
M. P. Harris
,
S. Wanless
,
T. R. Barton
1996. Site use and fidelity in the Common Guillemot Uria aalge.
Ibis 138: 399–404. Google Scholar
T. Hetmanski
2004. Timing of breeding in the Feral Pigeon Columba livia f. domestica in Słupsk (NW Poland). Acta Ornithol. 39: 105–110. Google Scholar
T. Hetmański
2005. Observations of a Jackdaws attempting to feed a pigeon fledgling. Berkut 14: 231–233. Google Scholar
T. Hetmański
,
M. Barkowska
2007. Density and age of breeding pairs influence feral pigeon Columba livia reproduction. Folia Zool. 56: 71–83. Google Scholar
P. A. Holenweg
2001. Dispersal rates and distances in adult water frogs, Rana lessonae, R. ridibunda, and their hybridogenetic associate R. esculenta. Herpetologica 57: 449–460. Google Scholar
R. Holland
,
F. Bonadonna
,
L. Dall'antonia
,
S. Benvenuti
,
T. Burt de Perera
,
T. Guilford
2000. Short distance phase shifts revisited: tracking clock-shifted homing pigeons (Rock Dove Columba livia) close to the loft. Ibis 142: 111–118. Google Scholar
R. A. Ims
1989. Kinship and origin effects on dispersal and space sharing in Clethrionomys rufocanus. Ecology 70: 607–616. Google Scholar
K. M. Jack
,
L. Fedigan
2004. Male dispersal patterns in whitefaced capuchins, Cebus capucinus Part 2: patterns and causes of secondary dispersal. Anim. Behav. 67: 771–782. Google Scholar
M. Janiga
1987. Seasonal aspect of intensity and course of daily translocations of pigeons (Columba livia f. domestica) for food from Bratislava to its surroundings. Acta F. R. N. Univ. Comen. Zoologia 32: 47–59. Google Scholar
H. Kokko
,
P. Lundberg
2001. Dispersal, migration, and offspring retention in saturated habitats. Am. Nat. 157: 188–202. Google Scholar
D. Lefebvre
,
N. Ménard
,
J. S. Pierre
2003. Modelling the influence of demographic parameters on group structure in social species with dispersal asymmetry and group fission. Behav. Ecol. Sociobiol. 53: 402–410. Google Scholar
C. Lovell-Mansbridge
,
T. R. Birkhead
1998. Do female pigeons trade pair copulations for protection? Anim. Behav. 56: 235–241. Google Scholar
M. T. Murphy
1996. Survivorship, breeding dispersal and mate fidelity in Eastern Kingbirds. Condor 98: 82–92. Google Scholar
J. J. Negro
,
E. Hiraldo
,
F. A. Donazar
1997. Causes of natal dispersal in the lesser kestrel: inbreeding avoidance or resource competition? J. Anim. Ecol. 66: 640–648. Google Scholar
J. Nilsson
1989. Causes and consequences of natal dispersal in the Marsh Tit, Parus palustris.
J. Anim. Ecol. 58: 619–636. Google Scholar
G. Pasinelli
,
J. R. Walters
2002. Social and environmental factors affect natal dispersal and philopatry of male red-cockaded woodpeckers. Ecology 83: 2229–2239. Google Scholar
T. Pärt
,
L. Gustafsson
1989. Breeding dispersal in the Collared Flycatcher (Ficedula albicollis): possible causes and reproductive consequences. J. Anim. Ecol. 58: 305–320. Google Scholar
N. Perrin
,
V. Mazalov
1999. Dispersal and inbreeding avoidance. Am. Nat. 154: 282–292. Google Scholar
J. H. Plissner
,
P. A. Gowaty
1996. Patterns of natal dispersal, turnover and dispersal costs in eastern bluebirds. Anim. Behav. 51: 1307–1322. Google Scholar
C. Rolland
,
E. Danchin
,
M. de Fraipont
1998. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: a comparative analysis. Am. Nat. 151:514–529. Google Scholar
E. Rose
,
D. Haag-Wackernagel
,
P. Nagel
2006a. Practical use of GPS-localization of Feral Pigeons Columba livia in the urban environment. Ibis 148: 231–239. Google Scholar
E. Rose
,
E Nagel
,
D. Haag-Wackernagel
2006b. Spatio-temporal use of the urban habitat by feral pigeons (Columba livia). Behav. Ecol. Sociobiol. 60: 242–254. Google Scholar
R. Sacchi
,
A. Gentilli
,
E. Razzetti
,
F. Barbieri
2002. Effects of building features on density and flock distribution of feral pigeons Columba livia var. domestica in an urban environment. Can. J. Zool. 80: 48–54. Google Scholar
R. Steiner
,
A. Zahner
1994. Untersuchungen zu Siedlungsdichte und Aktionsradius der Straβentauben (Columba livia f. domestica) in Wien mit einer Bestandsschätzung für das gesamte Stadtgebiet. Egretta 37: 78–93. Google Scholar
D. W. Winkler
,
P. H. Wrege
,
P. E. Allen
,
T. L. Kast
,
P. Senesac
,
M. F. Wasson
,
P. E. Liambias
,
V. Ferretti
,
P. J. Sullivan
2004. Breeding dispersal and philopatry in tree swallow. Condor 106: 768–776. Google Scholar
R. Wiltschko
1996. The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? J. Exp. Biol. 199: 113–119. Google Scholar

Acta Ornithologica
Vol. 42 • No. 1
July 2007
Vol. 42 • No. 1
July 2007
animal movement
Columba livia
dispersal pattern
Feral Pigeon