Bird census data from the reed archipelago (109 islands) of Lake Velence, Hungary, were used to assess the relative importance of habitat scale variables (island area and shape, reed stand density and reed height) and landscape scale variables (distance to the nearest reed island and nearest large reed island, percentage of reed-, water- and land-cover around the islands). Habitat and landscape scale variables played a similar general role in explaining the presence of the eight observed reedbed passerines. Reed island area was the most important factor; however, owing to the small average island area (1.74 ha), this simply indicates that too small reed patches were not occupied. A preference for an elongated shape (reedbed edges) was important for half of the species, and no other variables were included into the model of more than two species. The important practical conclusion is that both habitat and landscape scale factors should be considered in nature conservation management of reedbeds.
How to translate text using browser tools
1 July 2006
Factors Influencing Occurrence of Passerines in the Reed Archipelago of Lake Velence (Hungary)
András Báldi
A. Báldi
1999. Microclimate and vegetation edge effects in a reedbed in Hungary. Biodivers. Conserv. 8: 1697–1706. Google Scholar
A. Báldi
2004. Area requirements of passerine birds in the reed archipelago of Lake Velence, Hungary. Acta Zool. Hung. 50:1–8. Google Scholar
A. Báldi
,
T. Kisbenedek
1999. Species-specific distribution of reed-nesting passerine birds across reed-bed edges: effects of spatial scale and edge type. Acta Zool. Hung. 45: 97–114. Google Scholar
A. Báldi
,
T. Kisbenedek
2000. Bird species numbers in an archipelago of reeds at Lake Velence, Hungary. Global Ecol. Biogeogr. 9: 451–462. Google Scholar
P. Batáry
,
A. Báldi
2004. Evidence of an edge effect on avian nest success. Conserv. Biol. 18: 389–400. Google Scholar
P. Batáry
,
A. Báldi
2005. Factors affecting the survival of real and artificial Great Reed Warbler's nests. Biologia 60: 215–219. Google Scholar
K. Böhning-Gaese
,
R. Oberrath
2003. Macroecology of habitat choice in long-distance migratory birds. Oecologia 137: 296–303. Google Scholar
L. Bosschieter
,
P.W. Goedhart
2005. Gap crossing decisions by reed warblers (Acrocephalus scirpaceus) in agricultural landscapes. Landscape Ecol. 20: 455–468. Google Scholar
C. Celada
,
G. Bogliani
1993. Breeding bird communities in fragmented wetlands. Boll. Zool. 60: 73–80. Google Scholar
D. F. R. Cleary
,
M. J. Genner
,
T. J. B. Boyle
,
T. Setyawati
,
C. D. Angraeti
,
S. B. J. Menken
2005. Associations of bird species richness and community composition with local and landscape-scale environmental factors in Borneo. Landscape Ecol. 20: 989–1001. Google Scholar
S. Cramp
1998. The Complete Birds of the Western Palearctic on CD-ROM. Oxford Univ. Press. Google Scholar
T. Csörgő
1995. [Birds] (Aves). In:
T. Vásárhelyi
(ed).
[Animal world of reed belt.] Hungarian Natural History Museum, Budapest, pp. 98–105. Google Scholar
P. Drapeau
,
A. Leduc
,
J. F. Giroux
,
J. P. L. Savard
,
Y. Bergeron
,
W. L. Vickery
2000. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol. Monogr. 70: 423–444. Google Scholar
L. Fahrig
2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34: 487–515. Google Scholar
S. E. Fairbairn
,
J. J. Dinsmore
2001. Local and landscape-level influences on wetland bird communities of the prairie pothole region of Iowa, USA. Wetlands 21: 41–47. Google Scholar
R. P. B. Foppen
,
J. P. Chardon
,
W. Liefveld
2000. Understanding the role of sink patches in source-sink metapopulations: Reed Warbler in an agricultural landscape. Conserv. Biol. 14: 1881–1892. Google Scholar
J. Graveland
1998. Reed die-back, water level management and the decline of the Great Reed Warbler Acrocephalus arundinaceus in The Netherlands. Ardea 86: 187–201. Google Scholar
S. A. Hinsley
,
P. E. Bellamy
,
I. Newton
,
T. H. Sparks
1995 Habitat and landscape factors influencing the presence of individual breeding bird species in woodland fragments. J. Avian Biol. 26: 94–104. Google Scholar
H. Hoi
(ed).
2001. The ecology of reed birds. Austrian Academy of Sciences, Wien. Google Scholar
H. Hoi
,
H. Winkler
1994. Predation on nests — a case of apparent competition. Oecologia 98: 436–440. Google Scholar
D. W. Hosmer
,
S. L. Lemeshow
2000. Applied logistic regression. Wiley & Sons, New York. Google Scholar
B. Leisler
1975. The significance of foot morphology in the habitat separation of Central European Acrocephalus and Locustella species. J. Ornithol. 116: 117–153. Google Scholar
B. Leisler
,
H. W. Ley
,
H. Winkler
1989. Habitat, behavior and morphology of Acrocephalus warblers — an integrated analysis. Ornis Scand. 20: 181–186. Google Scholar
M. J. Mazerolle
,
M. A. Villard
1999. Patch characteristics and landscape context as predictors of species presence and abundance: A review. Ecoscience 6: 117–124. Google Scholar
S. Melles
,
S. Glenn
,
K. Martin
2003. Urban bird diversity and landscape complexity: Species-environment associations along a multiscale habitat gradient. Conserv. Ecol. 7: Art. No. 5. Google Scholar
C. Moskát
,
A. Báldi
1999. The importance of edge effect in line transect censuses applied in marshland habitat. Ornis Fennica 76: 33–40. Google Scholar
C. Moskát
,
M. Honza
2000. Effect of nest and nest site characteristics on the risk of cuckoo Cuculus canorus parasitism in the great reed warbler Acrocephalus arundinaceus. Ecography 23:335–341. Google Scholar
B. Poulin
2001. Introduction: Reedbed management and conservation in Europe. In:
R. Fields
,
R. J. Warren
,
H. Okarma
,
P. R. Sievert
(eds).
Wildlife land and people: Priorities for the 21th century. The Wildlife Society, Bethesda, Maryland, USA, pp. 378–381. Google Scholar
B. Poulin
,
G. Lefebvre
,
A. Mauchamp
2002. Habitat requirements of passerines and reedbed management in southern France. Biol. Conserv. 107: 315–325. Google Scholar
A. Surmacki
2004. Habitat use by Reed Bunting Emberiza schoeniclus in an intensively used farmland in Western Poland. Ornis Fennica 81: 137–143. Google Scholar
A. Surmacki
2005. Habitat use by three Acrocephalus warblers in an intensively used farmland area: the influence of breeding patch and its surroundings. J. Ornithol. 146: 160–166. Google Scholar
D. Whited
,
S. Galatowitsch
,
J. R. Tester
,
K. Schik
,
R. Lehtinen
,
J. Husveth
2000. The importance of local and regional factors in predicting effective conservation planning strategies for wetland bird communities in agricultural and urban landscapes. Landscape & Urban Plann. 49: 49–65. Google Scholar
M. Winter
,
D. H. Johnson
,
J. A. Shaffer
,
T. M. Donovan
,
W. D. Svedarsky
2006. Patch size and landscape effects on density and nesting success of grassland birds. J. Wildl. Manage. 70: 158–172. Google Scholar

Acta Ornithologica
Vol. 41 • No. 1
July 2006
Vol. 41 • No. 1
July 2006
Acrocephalus sp
habitat scale
Hungary
Lake Velence
landscape scale
logistic regression
passerines